blob: d4e6ec0dbe25c57954ac82223dd8bc6c78f8355b [file] [log] [blame]
/*
* Copyright (c) 2010, 2012-2013, 2017 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2007-2008 The Florida State University
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Stephen Hines
*/
#ifndef __ARCH_ARM_TYPES_HH__
#define __ARCH_ARM_TYPES_HH__
#include "arch/generic/types.hh"
#include "base/bitunion.hh"
#include "base/logging.hh"
#include "base/types.hh"
#include "debug/Decoder.hh"
namespace ArmISA
{
typedef uint32_t MachInst;
BitUnion8(ITSTATE)
/* Note that the split (cond, mask) below is not as in ARM ARM.
* But it is more convenient for simulation. The condition
* is always the concatenation of the top 3 bits and the next bit,
* which applies when one of the bottom 4 bits is set.
* Refer to predecoder.cc for the use case.
*/
Bitfield<7, 4> cond;
Bitfield<3, 0> mask;
// Bitfields for moving to/from CPSR
Bitfield<7, 2> top6;
Bitfield<1, 0> bottom2;
EndBitUnion(ITSTATE)
BitUnion64(ExtMachInst)
// Decoder state
Bitfield<63, 62> decoderFault; // See DecoderFault
// ITSTATE bits
Bitfield<55, 48> itstate;
Bitfield<55, 52> itstateCond;
Bitfield<51, 48> itstateMask;
// FPSCR fields
Bitfield<41, 40> fpscrStride;
Bitfield<39, 37> fpscrLen;
// Bitfields to select mode.
Bitfield<36> thumb;
Bitfield<35> bigThumb;
Bitfield<34> aarch64;
// Made up bitfields that make life easier.
Bitfield<33> sevenAndFour;
Bitfield<32> isMisc;
uint32_t instBits;
// All the different types of opcode fields.
Bitfield<27, 25> encoding;
Bitfield<25> useImm;
Bitfield<24, 21> opcode;
Bitfield<24, 20> mediaOpcode;
Bitfield<24> opcode24;
Bitfield<24, 23> opcode24_23;
Bitfield<23, 20> opcode23_20;
Bitfield<23, 21> opcode23_21;
Bitfield<20> opcode20;
Bitfield<22> opcode22;
Bitfield<19, 16> opcode19_16;
Bitfield<19> opcode19;
Bitfield<18> opcode18;
Bitfield<15, 12> opcode15_12;
Bitfield<15> opcode15;
Bitfield<7, 4> miscOpcode;
Bitfield<7,5> opc2;
Bitfield<7> opcode7;
Bitfield<6> opcode6;
Bitfield<4> opcode4;
Bitfield<31, 28> condCode;
Bitfield<20> sField;
Bitfield<19, 16> rn;
Bitfield<15, 12> rd;
Bitfield<15, 12> rt;
Bitfield<11, 7> shiftSize;
Bitfield<6, 5> shift;
Bitfield<3, 0> rm;
Bitfield<11, 8> rs;
SubBitUnion(puswl, 24, 20)
Bitfield<24> prepost;
Bitfield<23> up;
Bitfield<22> psruser;
Bitfield<21> writeback;
Bitfield<20> loadOp;
EndSubBitUnion(puswl)
Bitfield<24, 20> pubwl;
Bitfield<7, 0> imm;
Bitfield<11, 8> rotate;
Bitfield<11, 0> immed11_0;
Bitfield<7, 0> immed7_0;
Bitfield<11, 8> immedHi11_8;
Bitfield<3, 0> immedLo3_0;
Bitfield<15, 0> regList;
Bitfield<23, 0> offset;
Bitfield<23, 0> immed23_0;
Bitfield<11, 8> cpNum;
Bitfield<18, 16> fn;
Bitfield<14, 12> fd;
Bitfield<3> fpRegImm;
Bitfield<3, 0> fm;
Bitfield<2, 0> fpImm;
Bitfield<24, 20> punwl;
Bitfield<15, 8> m5Func;
// 16 bit thumb bitfields
Bitfield<15, 13> topcode15_13;
Bitfield<13, 11> topcode13_11;
Bitfield<12, 11> topcode12_11;
Bitfield<12, 10> topcode12_10;
Bitfield<11, 9> topcode11_9;
Bitfield<11, 8> topcode11_8;
Bitfield<10, 9> topcode10_9;
Bitfield<10, 8> topcode10_8;
Bitfield<9, 6> topcode9_6;
Bitfield<7> topcode7;
Bitfield<7, 6> topcode7_6;
Bitfield<7, 5> topcode7_5;
Bitfield<7, 4> topcode7_4;
Bitfield<3, 0> topcode3_0;
// 32 bit thumb bitfields
Bitfield<28, 27> htopcode12_11;
Bitfield<26, 25> htopcode10_9;
Bitfield<25> htopcode9;
Bitfield<25, 24> htopcode9_8;
Bitfield<25, 21> htopcode9_5;
Bitfield<25, 20> htopcode9_4;
Bitfield<24> htopcode8;
Bitfield<24, 23> htopcode8_7;
Bitfield<24, 22> htopcode8_6;
Bitfield<24, 21> htopcode8_5;
Bitfield<23> htopcode7;
Bitfield<23, 21> htopcode7_5;
Bitfield<22> htopcode6;
Bitfield<22, 21> htopcode6_5;
Bitfield<21, 20> htopcode5_4;
Bitfield<20> htopcode4;
Bitfield<19, 16> htrn;
Bitfield<20> hts;
Bitfield<15> ltopcode15;
Bitfield<11, 8> ltopcode11_8;
Bitfield<7, 6> ltopcode7_6;
Bitfield<7, 4> ltopcode7_4;
Bitfield<4> ltopcode4;
Bitfield<11, 8> ltrd;
Bitfield<11, 8> ltcoproc;
EndBitUnion(ExtMachInst)
class PCState : public GenericISA::UPCState<MachInst>
{
protected:
typedef GenericISA::UPCState<MachInst> Base;
enum FlagBits {
ThumbBit = (1 << 0),
JazelleBit = (1 << 1),
AArch64Bit = (1 << 2)
};
uint8_t flags;
uint8_t nextFlags;
uint8_t _itstate;
uint8_t _nextItstate;
uint8_t _size;
public:
PCState() : flags(0), nextFlags(0), _itstate(0), _nextItstate(0),
_size(0)
{}
void
set(Addr val)
{
Base::set(val);
npc(val + (thumb() ? 2 : 4));
}
PCState(Addr val) : flags(0), nextFlags(0), _itstate(0),
_nextItstate(0), _size(0)
{ set(val); }
bool
thumb() const
{
return flags & ThumbBit;
}
void
thumb(bool val)
{
if (val)
flags |= ThumbBit;
else
flags &= ~ThumbBit;
}
bool
nextThumb() const
{
return nextFlags & ThumbBit;
}
void
nextThumb(bool val)
{
if (val)
nextFlags |= ThumbBit;
else
nextFlags &= ~ThumbBit;
}
void size(uint8_t s) { _size = s; }
uint8_t size() const { return _size; }
bool
branching() const
{
return ((this->pc() + this->size()) != this->npc());
}
bool
jazelle() const
{
return flags & JazelleBit;
}
void
jazelle(bool val)
{
if (val)
flags |= JazelleBit;
else
flags &= ~JazelleBit;
}
bool
nextJazelle() const
{
return nextFlags & JazelleBit;
}
void
nextJazelle(bool val)
{
if (val)
nextFlags |= JazelleBit;
else
nextFlags &= ~JazelleBit;
}
bool
aarch64() const
{
return flags & AArch64Bit;
}
void
aarch64(bool val)
{
if (val)
flags |= AArch64Bit;
else
flags &= ~AArch64Bit;
}
bool
nextAArch64() const
{
return nextFlags & AArch64Bit;
}
void
nextAArch64(bool val)
{
if (val)
nextFlags |= AArch64Bit;
else
nextFlags &= ~AArch64Bit;
}
uint8_t
itstate() const
{
return _itstate;
}
void
itstate(uint8_t value)
{
_itstate = value;
}
uint8_t
nextItstate() const
{
return _nextItstate;
}
void
nextItstate(uint8_t value)
{
_nextItstate = value;
}
void
advance()
{
Base::advance();
flags = nextFlags;
npc(pc() + (thumb() ? 2 : 4));
if (_nextItstate) {
_itstate = _nextItstate;
_nextItstate = 0;
} else if (_itstate) {
ITSTATE it = _itstate;
uint8_t cond_mask = it.mask;
uint8_t thumb_cond = it.cond;
DPRINTF(Decoder, "Advancing ITSTATE from %#x,%#x.\n",
thumb_cond, cond_mask);
cond_mask <<= 1;
uint8_t new_bit = bits(cond_mask, 4);
cond_mask &= mask(4);
if (cond_mask == 0)
thumb_cond = 0;
else
replaceBits(thumb_cond, 0, new_bit);
DPRINTF(Decoder, "Advancing ITSTATE to %#x,%#x.\n",
thumb_cond, cond_mask);
it.mask = cond_mask;
it.cond = thumb_cond;
_itstate = it;
}
}
void
uEnd()
{
advance();
upc(0);
nupc(1);
}
Addr
instPC() const
{
return pc() + (thumb() ? 4 : 8);
}
void
instNPC(Addr val)
{
// @todo: review this when AArch32/64 interprocessing is
// supported
if (aarch64())
npc(val); // AArch64 doesn't force PC alignment, a PC
// Alignment Fault can be raised instead
else
npc(val &~ mask(nextThumb() ? 1 : 2));
}
Addr
instNPC() const
{
return npc();
}
// Perform an interworking branch.
void
instIWNPC(Addr val)
{
bool thumbEE = (thumb() && jazelle());
Addr newPC = val;
if (thumbEE) {
if (bits(newPC, 0)) {
newPC = newPC & ~mask(1);
} // else we have a bad interworking address; do not call
// panic() since the instruction could be executed
// speculatively
} else {
if (bits(newPC, 0)) {
nextThumb(true);
newPC = newPC & ~mask(1);
} else if (!bits(newPC, 1)) {
nextThumb(false);
} else {
// This state is UNPREDICTABLE in the ARM architecture
// The easy thing to do is just mask off the bit and
// stay in the current mode, so we'll do that.
newPC &= ~mask(2);
}
}
npc(newPC);
}
// Perform an interworking branch in ARM mode, a regular branch
// otherwise.
void
instAIWNPC(Addr val)
{
if (!thumb() && !jazelle())
instIWNPC(val);
else
instNPC(val);
}
bool
operator == (const PCState &opc) const
{
return Base::operator == (opc) &&
flags == opc.flags && nextFlags == opc.nextFlags &&
_itstate == opc._itstate && _nextItstate == opc._nextItstate;
}
bool
operator != (const PCState &opc) const
{
return !(*this == opc);
}
void
serialize(CheckpointOut &cp) const override
{
Base::serialize(cp);
SERIALIZE_SCALAR(flags);
SERIALIZE_SCALAR(_size);
SERIALIZE_SCALAR(nextFlags);
SERIALIZE_SCALAR(_itstate);
SERIALIZE_SCALAR(_nextItstate);
}
void
unserialize(CheckpointIn &cp) override
{
Base::unserialize(cp);
UNSERIALIZE_SCALAR(flags);
UNSERIALIZE_SCALAR(_size);
UNSERIALIZE_SCALAR(nextFlags);
UNSERIALIZE_SCALAR(_itstate);
UNSERIALIZE_SCALAR(_nextItstate);
}
};
// Shift types for ARM instructions
enum ArmShiftType {
LSL = 0,
LSR,
ASR,
ROR
};
// Extension types for ARM instructions
enum ArmExtendType {
UXTB = 0,
UXTH = 1,
UXTW = 2,
UXTX = 3,
SXTB = 4,
SXTH = 5,
SXTW = 6,
SXTX = 7
};
typedef int RegContextParam;
typedef int RegContextVal;
//used in FP convert & round function
enum ConvertType{
SINGLE_TO_DOUBLE,
SINGLE_TO_WORD,
SINGLE_TO_LONG,
DOUBLE_TO_SINGLE,
DOUBLE_TO_WORD,
DOUBLE_TO_LONG,
LONG_TO_SINGLE,
LONG_TO_DOUBLE,
LONG_TO_WORD,
LONG_TO_PS,
WORD_TO_SINGLE,
WORD_TO_DOUBLE,
WORD_TO_LONG,
WORD_TO_PS,
PL_TO_SINGLE,
PU_TO_SINGLE
};
//used in FP convert & round function
enum RoundMode{
RND_ZERO,
RND_DOWN,
RND_UP,
RND_NEAREST
};
enum ExceptionLevel {
EL0 = 0,
EL1,
EL2,
EL3
};
enum OperatingMode {
MODE_EL0T = 0x0,
MODE_EL1T = 0x4,
MODE_EL1H = 0x5,
MODE_EL2T = 0x8,
MODE_EL2H = 0x9,
MODE_EL3T = 0xC,
MODE_EL3H = 0xD,
MODE_USER = 16,
MODE_FIQ = 17,
MODE_IRQ = 18,
MODE_SVC = 19,
MODE_MON = 22,
MODE_ABORT = 23,
MODE_HYP = 26,
MODE_UNDEFINED = 27,
MODE_SYSTEM = 31,
MODE_MAXMODE = MODE_SYSTEM
};
enum ExceptionClass {
EC_INVALID = -1,
EC_UNKNOWN = 0x0,
EC_TRAPPED_WFI_WFE = 0x1,
EC_TRAPPED_CP15_MCR_MRC = 0x3,
EC_TRAPPED_CP15_MCRR_MRRC = 0x4,
EC_TRAPPED_CP14_MCR_MRC = 0x5,
EC_TRAPPED_CP14_LDC_STC = 0x6,
EC_TRAPPED_HCPTR = 0x7,
EC_TRAPPED_SIMD_FP = 0x7, // AArch64 alias
EC_TRAPPED_CP10_MRC_VMRS = 0x8,
EC_TRAPPED_BXJ = 0xA,
EC_TRAPPED_CP14_MCRR_MRRC = 0xC,
EC_ILLEGAL_INST = 0xE,
EC_SVC_TO_HYP = 0x11,
EC_SVC = 0x11, // AArch64 alias
EC_HVC = 0x12,
EC_SMC_TO_HYP = 0x13,
EC_SMC = 0x13, // AArch64 alias
EC_SVC_64 = 0x15,
EC_HVC_64 = 0x16,
EC_SMC_64 = 0x17,
EC_TRAPPED_MSR_MRS_64 = 0x18,
EC_PREFETCH_ABORT_TO_HYP = 0x20,
EC_PREFETCH_ABORT_LOWER_EL = 0x20, // AArch64 alias
EC_PREFETCH_ABORT_FROM_HYP = 0x21,
EC_PREFETCH_ABORT_CURR_EL = 0x21, // AArch64 alias
EC_PC_ALIGNMENT = 0x22,
EC_DATA_ABORT_TO_HYP = 0x24,
EC_DATA_ABORT_LOWER_EL = 0x24, // AArch64 alias
EC_DATA_ABORT_FROM_HYP = 0x25,
EC_DATA_ABORT_CURR_EL = 0x25, // AArch64 alias
EC_STACK_PTR_ALIGNMENT = 0x26,
EC_FP_EXCEPTION = 0x28,
EC_FP_EXCEPTION_64 = 0x2C,
EC_SERROR = 0x2F,
EC_SOFTWARE_BREAKPOINT = 0x38,
};
/**
* Instruction decoder fault codes in ExtMachInst.
*/
enum DecoderFault : std::uint8_t {
OK = 0x0, ///< No fault
UNALIGNED = 0x1, ///< Unaligned instruction fault
PANIC = 0x3, ///< Internal gem5 error
};
BitUnion8(OperatingMode64)
Bitfield<0> spX;
Bitfield<3, 2> el;
Bitfield<4> width;
EndBitUnion(OperatingMode64)
static bool inline
opModeIs64(OperatingMode mode)
{
return ((OperatingMode64)(uint8_t)mode).width == 0;
}
static bool inline
opModeIsH(OperatingMode mode)
{
return (mode == MODE_EL1H || mode == MODE_EL2H || mode == MODE_EL3H);
}
static bool inline
opModeIsT(OperatingMode mode)
{
return (mode == MODE_EL0T || mode == MODE_EL1T || mode == MODE_EL2T ||
mode == MODE_EL3T);
}
static ExceptionLevel inline
opModeToEL(OperatingMode mode)
{
bool aarch32 = ((mode >> 4) & 1) ? true : false;
if (aarch32) {
switch (mode) {
case MODE_USER:
return EL0;
case MODE_FIQ:
case MODE_IRQ:
case MODE_SVC:
case MODE_ABORT:
case MODE_UNDEFINED:
case MODE_SYSTEM:
return EL1;
case MODE_HYP:
return EL2;
case MODE_MON:
return EL3;
default:
panic("Invalid operating mode: %d", mode);
break;
}
} else {
// aarch64
return (ExceptionLevel) ((mode >> 2) & 3);
}
}
static inline bool
badMode(OperatingMode mode)
{
switch (mode) {
case MODE_EL0T:
case MODE_EL1T:
case MODE_EL1H:
case MODE_EL2T:
case MODE_EL2H:
case MODE_EL3T:
case MODE_EL3H:
case MODE_USER:
case MODE_FIQ:
case MODE_IRQ:
case MODE_SVC:
case MODE_MON:
case MODE_ABORT:
case MODE_HYP:
case MODE_UNDEFINED:
case MODE_SYSTEM:
return false;
default:
return true;
}
}
static inline bool
badMode32(OperatingMode mode)
{
switch (mode) {
case MODE_USER:
case MODE_FIQ:
case MODE_IRQ:
case MODE_SVC:
case MODE_MON:
case MODE_ABORT:
case MODE_HYP:
case MODE_UNDEFINED:
case MODE_SYSTEM:
return false;
default:
return true;
}
}
} // namespace ArmISA
#endif