| /* $Id: bbc_envctrl.c,v 1.4 2001/04/06 16:48:08 davem Exp $ |
| * bbc_envctrl.c: UltraSPARC-III environment control driver. |
| * |
| * Copyright (C) 2001 David S. Miller (davem@redhat.com) |
| */ |
| |
| #define __KERNEL_SYSCALLS__ |
| static int errno; |
| |
| #include <linux/kernel.h> |
| #include <linux/kthread.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/delay.h> |
| #include <asm/oplib.h> |
| #include <asm/ebus.h> |
| |
| #include "bbc_i2c.h" |
| #include "max1617.h" |
| |
| #undef ENVCTRL_TRACE |
| |
| /* WARNING: Making changes to this driver is very dangerous. |
| * If you misprogram the sensor chips they can |
| * cut the power on you instantly. |
| */ |
| |
| /* Two temperature sensors exist in the SunBLADE-1000 enclosure. |
| * Both are implemented using max1617 i2c devices. Each max1617 |
| * monitors 2 temperatures, one for one of the cpu dies and the other |
| * for the ambient temperature. |
| * |
| * The max1617 is capable of being programmed with power-off |
| * temperature values, one low limit and one high limit. These |
| * can be controlled independently for the cpu or ambient temperature. |
| * If a limit is violated, the power is simply shut off. The frequency |
| * with which the max1617 does temperature sampling can be controlled |
| * as well. |
| * |
| * Three fans exist inside the machine, all three are controlled with |
| * an i2c digital to analog converter. There is a fan directed at the |
| * two processor slots, another for the rest of the enclosure, and the |
| * third is for the power supply. The first two fans may be speed |
| * controlled by changing the voltage fed to them. The third fan may |
| * only be completely off or on. The third fan is meant to only be |
| * disabled/enabled when entering/exiting the lowest power-saving |
| * mode of the machine. |
| * |
| * An environmental control kernel thread periodically monitors all |
| * temperature sensors. Based upon the samples it will adjust the |
| * fan speeds to try and keep the system within a certain temperature |
| * range (the goal being to make the fans as quiet as possible without |
| * allowing the system to get too hot). |
| * |
| * If the temperature begins to rise/fall outside of the acceptable |
| * operating range, a periodic warning will be sent to the kernel log. |
| * The fans will be put on full blast to attempt to deal with this |
| * situation. After exceeding the acceptable operating range by a |
| * certain threshold, the kernel thread will shut down the system. |
| * Here, the thread is attempting to shut the machine down cleanly |
| * before the hardware based power-off event is triggered. |
| */ |
| |
| /* These settings are in Celsius. We use these defaults only |
| * if we cannot interrogate the cpu-fru SEEPROM. |
| */ |
| struct temp_limits { |
| s8 high_pwroff, high_shutdown, high_warn; |
| s8 low_warn, low_shutdown, low_pwroff; |
| }; |
| |
| static struct temp_limits cpu_temp_limits[2] = { |
| { 100, 85, 80, 5, -5, -10 }, |
| { 100, 85, 80, 5, -5, -10 }, |
| }; |
| |
| static struct temp_limits amb_temp_limits[2] = { |
| { 65, 55, 40, 5, -5, -10 }, |
| { 65, 55, 40, 5, -5, -10 }, |
| }; |
| |
| enum fan_action { FAN_SLOWER, FAN_SAME, FAN_FASTER, FAN_FULLBLAST, FAN_STATE_MAX }; |
| |
| struct bbc_cpu_temperature { |
| struct bbc_cpu_temperature *next; |
| |
| struct bbc_i2c_client *client; |
| int index; |
| |
| /* Current readings, and history. */ |
| s8 curr_cpu_temp; |
| s8 curr_amb_temp; |
| s8 prev_cpu_temp; |
| s8 prev_amb_temp; |
| s8 avg_cpu_temp; |
| s8 avg_amb_temp; |
| |
| int sample_tick; |
| |
| enum fan_action fan_todo[2]; |
| #define FAN_AMBIENT 0 |
| #define FAN_CPU 1 |
| }; |
| |
| struct bbc_cpu_temperature *all_bbc_temps; |
| |
| struct bbc_fan_control { |
| struct bbc_fan_control *next; |
| |
| struct bbc_i2c_client *client; |
| int index; |
| |
| int psupply_fan_on; |
| int cpu_fan_speed; |
| int system_fan_speed; |
| }; |
| |
| struct bbc_fan_control *all_bbc_fans; |
| |
| #define CPU_FAN_REG 0xf0 |
| #define SYS_FAN_REG 0xf2 |
| #define PSUPPLY_FAN_REG 0xf4 |
| |
| #define FAN_SPEED_MIN 0x0c |
| #define FAN_SPEED_MAX 0x3f |
| |
| #define PSUPPLY_FAN_ON 0x1f |
| #define PSUPPLY_FAN_OFF 0x00 |
| |
| static void set_fan_speeds(struct bbc_fan_control *fp) |
| { |
| /* Put temperatures into range so we don't mis-program |
| * the hardware. |
| */ |
| if (fp->cpu_fan_speed < FAN_SPEED_MIN) |
| fp->cpu_fan_speed = FAN_SPEED_MIN; |
| if (fp->cpu_fan_speed > FAN_SPEED_MAX) |
| fp->cpu_fan_speed = FAN_SPEED_MAX; |
| if (fp->system_fan_speed < FAN_SPEED_MIN) |
| fp->system_fan_speed = FAN_SPEED_MIN; |
| if (fp->system_fan_speed > FAN_SPEED_MAX) |
| fp->system_fan_speed = FAN_SPEED_MAX; |
| #ifdef ENVCTRL_TRACE |
| printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n", |
| fp->index, |
| fp->cpu_fan_speed, fp->system_fan_speed); |
| #endif |
| |
| bbc_i2c_writeb(fp->client, fp->cpu_fan_speed, CPU_FAN_REG); |
| bbc_i2c_writeb(fp->client, fp->system_fan_speed, SYS_FAN_REG); |
| bbc_i2c_writeb(fp->client, |
| (fp->psupply_fan_on ? |
| PSUPPLY_FAN_ON : PSUPPLY_FAN_OFF), |
| PSUPPLY_FAN_REG); |
| } |
| |
| static void get_current_temps(struct bbc_cpu_temperature *tp) |
| { |
| tp->prev_amb_temp = tp->curr_amb_temp; |
| bbc_i2c_readb(tp->client, |
| (unsigned char *) &tp->curr_amb_temp, |
| MAX1617_AMB_TEMP); |
| tp->prev_cpu_temp = tp->curr_cpu_temp; |
| bbc_i2c_readb(tp->client, |
| (unsigned char *) &tp->curr_cpu_temp, |
| MAX1617_CPU_TEMP); |
| #ifdef ENVCTRL_TRACE |
| printk("temp%d: cpu(%d C) amb(%d C)\n", |
| tp->index, |
| (int) tp->curr_cpu_temp, (int) tp->curr_amb_temp); |
| #endif |
| } |
| |
| |
| static void do_envctrl_shutdown(struct bbc_cpu_temperature *tp) |
| { |
| static int shutting_down = 0; |
| static char *envp[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL }; |
| char *argv[] = { "/sbin/shutdown", "-h", "now", NULL }; |
| char *type = "???"; |
| s8 val = -1; |
| |
| if (shutting_down != 0) |
| return; |
| |
| if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown || |
| tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) { |
| type = "ambient"; |
| val = tp->curr_amb_temp; |
| } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown || |
| tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) { |
| type = "CPU"; |
| val = tp->curr_cpu_temp; |
| } |
| |
| printk(KERN_CRIT "temp%d: Outside of safe %s " |
| "operating temperature, %d C.\n", |
| tp->index, type, val); |
| |
| printk(KERN_CRIT "kenvctrld: Shutting down the system now.\n"); |
| |
| shutting_down = 1; |
| if (execve("/sbin/shutdown", argv, envp) < 0) |
| printk(KERN_CRIT "envctrl: shutdown execution failed\n"); |
| } |
| |
| #define WARN_INTERVAL (30 * HZ) |
| |
| static void analyze_ambient_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick) |
| { |
| int ret = 0; |
| |
| if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) { |
| if (tp->curr_amb_temp >= |
| amb_temp_limits[tp->index].high_warn) { |
| printk(KERN_WARNING "temp%d: " |
| "Above safe ambient operating temperature, %d C.\n", |
| tp->index, (int) tp->curr_amb_temp); |
| ret = 1; |
| } else if (tp->curr_amb_temp < |
| amb_temp_limits[tp->index].low_warn) { |
| printk(KERN_WARNING "temp%d: " |
| "Below safe ambient operating temperature, %d C.\n", |
| tp->index, (int) tp->curr_amb_temp); |
| ret = 1; |
| } |
| if (ret) |
| *last_warn = jiffies; |
| } else if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_warn || |
| tp->curr_amb_temp < amb_temp_limits[tp->index].low_warn) |
| ret = 1; |
| |
| /* Now check the shutdown limits. */ |
| if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown || |
| tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) { |
| do_envctrl_shutdown(tp); |
| ret = 1; |
| } |
| |
| if (ret) { |
| tp->fan_todo[FAN_AMBIENT] = FAN_FULLBLAST; |
| } else if ((tick & (8 - 1)) == 0) { |
| s8 amb_goal_hi = amb_temp_limits[tp->index].high_warn - 10; |
| s8 amb_goal_lo; |
| |
| amb_goal_lo = amb_goal_hi - 3; |
| |
| /* We do not try to avoid 'too cold' events. Basically we |
| * only try to deal with over-heating and fan noise reduction. |
| */ |
| if (tp->avg_amb_temp < amb_goal_hi) { |
| if (tp->avg_amb_temp >= amb_goal_lo) |
| tp->fan_todo[FAN_AMBIENT] = FAN_SAME; |
| else |
| tp->fan_todo[FAN_AMBIENT] = FAN_SLOWER; |
| } else { |
| tp->fan_todo[FAN_AMBIENT] = FAN_FASTER; |
| } |
| } else { |
| tp->fan_todo[FAN_AMBIENT] = FAN_SAME; |
| } |
| } |
| |
| static void analyze_cpu_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick) |
| { |
| int ret = 0; |
| |
| if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) { |
| if (tp->curr_cpu_temp >= |
| cpu_temp_limits[tp->index].high_warn) { |
| printk(KERN_WARNING "temp%d: " |
| "Above safe CPU operating temperature, %d C.\n", |
| tp->index, (int) tp->curr_cpu_temp); |
| ret = 1; |
| } else if (tp->curr_cpu_temp < |
| cpu_temp_limits[tp->index].low_warn) { |
| printk(KERN_WARNING "temp%d: " |
| "Below safe CPU operating temperature, %d C.\n", |
| tp->index, (int) tp->curr_cpu_temp); |
| ret = 1; |
| } |
| if (ret) |
| *last_warn = jiffies; |
| } else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_warn || |
| tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_warn) |
| ret = 1; |
| |
| /* Now check the shutdown limits. */ |
| if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown || |
| tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) { |
| do_envctrl_shutdown(tp); |
| ret = 1; |
| } |
| |
| if (ret) { |
| tp->fan_todo[FAN_CPU] = FAN_FULLBLAST; |
| } else if ((tick & (8 - 1)) == 0) { |
| s8 cpu_goal_hi = cpu_temp_limits[tp->index].high_warn - 10; |
| s8 cpu_goal_lo; |
| |
| cpu_goal_lo = cpu_goal_hi - 3; |
| |
| /* We do not try to avoid 'too cold' events. Basically we |
| * only try to deal with over-heating and fan noise reduction. |
| */ |
| if (tp->avg_cpu_temp < cpu_goal_hi) { |
| if (tp->avg_cpu_temp >= cpu_goal_lo) |
| tp->fan_todo[FAN_CPU] = FAN_SAME; |
| else |
| tp->fan_todo[FAN_CPU] = FAN_SLOWER; |
| } else { |
| tp->fan_todo[FAN_CPU] = FAN_FASTER; |
| } |
| } else { |
| tp->fan_todo[FAN_CPU] = FAN_SAME; |
| } |
| } |
| |
| static void analyze_temps(struct bbc_cpu_temperature *tp, unsigned long *last_warn) |
| { |
| tp->avg_amb_temp = (s8)((int)((int)tp->avg_amb_temp + (int)tp->curr_amb_temp) / 2); |
| tp->avg_cpu_temp = (s8)((int)((int)tp->avg_cpu_temp + (int)tp->curr_cpu_temp) / 2); |
| |
| analyze_ambient_temp(tp, last_warn, tp->sample_tick); |
| analyze_cpu_temp(tp, last_warn, tp->sample_tick); |
| |
| tp->sample_tick++; |
| } |
| |
| static enum fan_action prioritize_fan_action(int which_fan) |
| { |
| struct bbc_cpu_temperature *tp; |
| enum fan_action decision = FAN_STATE_MAX; |
| |
| /* Basically, prioritize what the temperature sensors |
| * recommend we do, and perform that action on all the |
| * fans. |
| */ |
| for (tp = all_bbc_temps; tp; tp = tp->next) { |
| if (tp->fan_todo[which_fan] == FAN_FULLBLAST) { |
| decision = FAN_FULLBLAST; |
| break; |
| } |
| if (tp->fan_todo[which_fan] == FAN_SAME && |
| decision != FAN_FASTER) |
| decision = FAN_SAME; |
| else if (tp->fan_todo[which_fan] == FAN_FASTER) |
| decision = FAN_FASTER; |
| else if (decision != FAN_FASTER && |
| decision != FAN_SAME && |
| tp->fan_todo[which_fan] == FAN_SLOWER) |
| decision = FAN_SLOWER; |
| } |
| if (decision == FAN_STATE_MAX) |
| decision = FAN_SAME; |
| |
| return decision; |
| } |
| |
| static int maybe_new_ambient_fan_speed(struct bbc_fan_control *fp) |
| { |
| enum fan_action decision = prioritize_fan_action(FAN_AMBIENT); |
| int ret; |
| |
| if (decision == FAN_SAME) |
| return 0; |
| |
| ret = 1; |
| if (decision == FAN_FULLBLAST) { |
| if (fp->system_fan_speed >= FAN_SPEED_MAX) |
| ret = 0; |
| else |
| fp->system_fan_speed = FAN_SPEED_MAX; |
| } else { |
| if (decision == FAN_FASTER) { |
| if (fp->system_fan_speed >= FAN_SPEED_MAX) |
| ret = 0; |
| else |
| fp->system_fan_speed += 2; |
| } else { |
| int orig_speed = fp->system_fan_speed; |
| |
| if (orig_speed <= FAN_SPEED_MIN || |
| orig_speed <= (fp->cpu_fan_speed - 3)) |
| ret = 0; |
| else |
| fp->system_fan_speed -= 1; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static int maybe_new_cpu_fan_speed(struct bbc_fan_control *fp) |
| { |
| enum fan_action decision = prioritize_fan_action(FAN_CPU); |
| int ret; |
| |
| if (decision == FAN_SAME) |
| return 0; |
| |
| ret = 1; |
| if (decision == FAN_FULLBLAST) { |
| if (fp->cpu_fan_speed >= FAN_SPEED_MAX) |
| ret = 0; |
| else |
| fp->cpu_fan_speed = FAN_SPEED_MAX; |
| } else { |
| if (decision == FAN_FASTER) { |
| if (fp->cpu_fan_speed >= FAN_SPEED_MAX) |
| ret = 0; |
| else { |
| fp->cpu_fan_speed += 2; |
| if (fp->system_fan_speed < |
| (fp->cpu_fan_speed - 3)) |
| fp->system_fan_speed = |
| fp->cpu_fan_speed - 3; |
| } |
| } else { |
| if (fp->cpu_fan_speed <= FAN_SPEED_MIN) |
| ret = 0; |
| else |
| fp->cpu_fan_speed -= 1; |
| } |
| } |
| |
| return ret; |
| } |
| |
| static void maybe_new_fan_speeds(struct bbc_fan_control *fp) |
| { |
| int new; |
| |
| new = maybe_new_ambient_fan_speed(fp); |
| new |= maybe_new_cpu_fan_speed(fp); |
| |
| if (new) |
| set_fan_speeds(fp); |
| } |
| |
| static void fans_full_blast(void) |
| { |
| struct bbc_fan_control *fp; |
| |
| /* Since we will not be monitoring things anymore, put |
| * the fans on full blast. |
| */ |
| for (fp = all_bbc_fans; fp; fp = fp->next) { |
| fp->cpu_fan_speed = FAN_SPEED_MAX; |
| fp->system_fan_speed = FAN_SPEED_MAX; |
| fp->psupply_fan_on = 1; |
| set_fan_speeds(fp); |
| } |
| } |
| |
| #define POLL_INTERVAL (5 * 1000) |
| static unsigned long last_warning_jiffies; |
| static struct task_struct *kenvctrld_task; |
| |
| static int kenvctrld(void *__unused) |
| { |
| printk(KERN_INFO "bbc_envctrl: kenvctrld starting...\n"); |
| last_warning_jiffies = jiffies - WARN_INTERVAL; |
| for (;;) { |
| struct bbc_cpu_temperature *tp; |
| struct bbc_fan_control *fp; |
| |
| msleep_interruptible(POLL_INTERVAL); |
| if (kthread_should_stop()) |
| break; |
| |
| for (tp = all_bbc_temps; tp; tp = tp->next) { |
| get_current_temps(tp); |
| analyze_temps(tp, &last_warning_jiffies); |
| } |
| for (fp = all_bbc_fans; fp; fp = fp->next) |
| maybe_new_fan_speeds(fp); |
| } |
| printk(KERN_INFO "bbc_envctrl: kenvctrld exiting...\n"); |
| |
| fans_full_blast(); |
| |
| return 0; |
| } |
| |
| static void attach_one_temp(struct linux_ebus_child *echild, int temp_idx) |
| { |
| struct bbc_cpu_temperature *tp = kmalloc(sizeof(*tp), GFP_KERNEL); |
| |
| if (!tp) |
| return; |
| memset(tp, 0, sizeof(*tp)); |
| tp->client = bbc_i2c_attach(echild); |
| if (!tp->client) { |
| kfree(tp); |
| return; |
| } |
| |
| tp->index = temp_idx; |
| { |
| struct bbc_cpu_temperature **tpp = &all_bbc_temps; |
| while (*tpp) |
| tpp = &((*tpp)->next); |
| tp->next = NULL; |
| *tpp = tp; |
| } |
| |
| /* Tell it to convert once every 5 seconds, clear all cfg |
| * bits. |
| */ |
| bbc_i2c_writeb(tp->client, 0x00, MAX1617_WR_CFG_BYTE); |
| bbc_i2c_writeb(tp->client, 0x02, MAX1617_WR_CVRATE_BYTE); |
| |
| /* Program the hard temperature limits into the chip. */ |
| bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].high_pwroff, |
| MAX1617_WR_AMB_HIGHLIM); |
| bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].low_pwroff, |
| MAX1617_WR_AMB_LOWLIM); |
| bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].high_pwroff, |
| MAX1617_WR_CPU_HIGHLIM); |
| bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].low_pwroff, |
| MAX1617_WR_CPU_LOWLIM); |
| |
| get_current_temps(tp); |
| tp->prev_cpu_temp = tp->avg_cpu_temp = tp->curr_cpu_temp; |
| tp->prev_amb_temp = tp->avg_amb_temp = tp->curr_amb_temp; |
| |
| tp->fan_todo[FAN_AMBIENT] = FAN_SAME; |
| tp->fan_todo[FAN_CPU] = FAN_SAME; |
| } |
| |
| static void attach_one_fan(struct linux_ebus_child *echild, int fan_idx) |
| { |
| struct bbc_fan_control *fp = kmalloc(sizeof(*fp), GFP_KERNEL); |
| |
| if (!fp) |
| return; |
| memset(fp, 0, sizeof(*fp)); |
| fp->client = bbc_i2c_attach(echild); |
| if (!fp->client) { |
| kfree(fp); |
| return; |
| } |
| |
| fp->index = fan_idx; |
| |
| { |
| struct bbc_fan_control **fpp = &all_bbc_fans; |
| while (*fpp) |
| fpp = &((*fpp)->next); |
| fp->next = NULL; |
| *fpp = fp; |
| } |
| |
| /* The i2c device controlling the fans is write-only. |
| * So the only way to keep track of the current power |
| * level fed to the fans is via software. Choose half |
| * power for cpu/system and 'on' fo the powersupply fan |
| * and set it now. |
| */ |
| fp->psupply_fan_on = 1; |
| fp->cpu_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2; |
| fp->cpu_fan_speed += FAN_SPEED_MIN; |
| fp->system_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2; |
| fp->system_fan_speed += FAN_SPEED_MIN; |
| |
| set_fan_speeds(fp); |
| } |
| |
| int bbc_envctrl_init(void) |
| { |
| struct linux_ebus_child *echild; |
| int temp_index = 0; |
| int fan_index = 0; |
| int devidx = 0; |
| |
| while ((echild = bbc_i2c_getdev(devidx++)) != NULL) { |
| if (!strcmp(echild->prom_name, "temperature")) |
| attach_one_temp(echild, temp_index++); |
| if (!strcmp(echild->prom_name, "fan-control")) |
| attach_one_fan(echild, fan_index++); |
| } |
| if (temp_index != 0 && fan_index != 0) { |
| kenvctrld_task = kthread_run(kenvctrld, NULL, "kenvctrld"); |
| if (IS_ERR(kenvctrld_task)) |
| return PTR_ERR(kenvctrld_task); |
| } |
| |
| return 0; |
| } |
| |
| static void destroy_one_temp(struct bbc_cpu_temperature *tp) |
| { |
| bbc_i2c_detach(tp->client); |
| kfree(tp); |
| } |
| |
| static void destroy_one_fan(struct bbc_fan_control *fp) |
| { |
| bbc_i2c_detach(fp->client); |
| kfree(fp); |
| } |
| |
| void bbc_envctrl_cleanup(void) |
| { |
| struct bbc_cpu_temperature *tp; |
| struct bbc_fan_control *fp; |
| |
| kthread_stop(kenvctrld_task); |
| |
| tp = all_bbc_temps; |
| while (tp != NULL) { |
| struct bbc_cpu_temperature *next = tp->next; |
| destroy_one_temp(tp); |
| tp = next; |
| } |
| all_bbc_temps = NULL; |
| |
| fp = all_bbc_fans; |
| while (fp != NULL) { |
| struct bbc_fan_control *next = fp->next; |
| destroy_one_fan(fp); |
| fp = next; |
| } |
| all_bbc_fans = NULL; |
| } |