| /* |
| * SMP support for power macintosh. |
| * |
| * We support both the old "powersurge" SMP architecture |
| * and the current Core99 (G4 PowerMac) machines. |
| * |
| * Note that we don't support the very first rev. of |
| * Apple/DayStar 2 CPUs board, the one with the funky |
| * watchdog. Hopefully, none of these should be there except |
| * maybe internally to Apple. I should probably still add some |
| * code to detect this card though and disable SMP. --BenH. |
| * |
| * Support Macintosh G4 SMP by Troy Benjegerdes (hozer@drgw.net) |
| * and Ben Herrenschmidt <benh@kernel.crashing.org>. |
| * |
| * Support for DayStar quad CPU cards |
| * Copyright (C) XLR8, Inc. 1994-2000 |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| */ |
| #include <linux/config.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/smp.h> |
| #include <linux/smp_lock.h> |
| #include <linux/interrupt.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/spinlock.h> |
| #include <linux/errno.h> |
| #include <linux/hardirq.h> |
| #include <linux/cpu.h> |
| |
| #include <asm/ptrace.h> |
| #include <asm/atomic.h> |
| #include <asm/irq.h> |
| #include <asm/page.h> |
| #include <asm/pgtable.h> |
| #include <asm/sections.h> |
| #include <asm/io.h> |
| #include <asm/prom.h> |
| #include <asm/smp.h> |
| #include <asm/residual.h> |
| #include <asm/machdep.h> |
| #include <asm/pmac_feature.h> |
| #include <asm/time.h> |
| #include <asm/open_pic.h> |
| #include <asm/cacheflush.h> |
| #include <asm/keylargo.h> |
| |
| /* |
| * Powersurge (old powermac SMP) support. |
| */ |
| |
| extern void __secondary_start_pmac_0(void); |
| |
| /* Addresses for powersurge registers */ |
| #define HAMMERHEAD_BASE 0xf8000000 |
| #define HHEAD_CONFIG 0x90 |
| #define HHEAD_SEC_INTR 0xc0 |
| |
| /* register for interrupting the primary processor on the powersurge */ |
| /* N.B. this is actually the ethernet ROM! */ |
| #define PSURGE_PRI_INTR 0xf3019000 |
| |
| /* register for storing the start address for the secondary processor */ |
| /* N.B. this is the PCI config space address register for the 1st bridge */ |
| #define PSURGE_START 0xf2800000 |
| |
| /* Daystar/XLR8 4-CPU card */ |
| #define PSURGE_QUAD_REG_ADDR 0xf8800000 |
| |
| #define PSURGE_QUAD_IRQ_SET 0 |
| #define PSURGE_QUAD_IRQ_CLR 1 |
| #define PSURGE_QUAD_IRQ_PRIMARY 2 |
| #define PSURGE_QUAD_CKSTOP_CTL 3 |
| #define PSURGE_QUAD_PRIMARY_ARB 4 |
| #define PSURGE_QUAD_BOARD_ID 6 |
| #define PSURGE_QUAD_WHICH_CPU 7 |
| #define PSURGE_QUAD_CKSTOP_RDBK 8 |
| #define PSURGE_QUAD_RESET_CTL 11 |
| |
| #define PSURGE_QUAD_OUT(r, v) (out_8(quad_base + ((r) << 4) + 4, (v))) |
| #define PSURGE_QUAD_IN(r) (in_8(quad_base + ((r) << 4) + 4) & 0x0f) |
| #define PSURGE_QUAD_BIS(r, v) (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) | (v))) |
| #define PSURGE_QUAD_BIC(r, v) (PSURGE_QUAD_OUT((r), PSURGE_QUAD_IN(r) & ~(v))) |
| |
| /* virtual addresses for the above */ |
| static volatile u8 __iomem *hhead_base; |
| static volatile u8 __iomem *quad_base; |
| static volatile u32 __iomem *psurge_pri_intr; |
| static volatile u8 __iomem *psurge_sec_intr; |
| static volatile u32 __iomem *psurge_start; |
| |
| /* values for psurge_type */ |
| #define PSURGE_NONE -1 |
| #define PSURGE_DUAL 0 |
| #define PSURGE_QUAD_OKEE 1 |
| #define PSURGE_QUAD_COTTON 2 |
| #define PSURGE_QUAD_ICEGRASS 3 |
| |
| /* what sort of powersurge board we have */ |
| static int psurge_type = PSURGE_NONE; |
| |
| /* L2 and L3 cache settings to pass from CPU0 to CPU1 */ |
| volatile static long int core99_l2_cache; |
| volatile static long int core99_l3_cache; |
| |
| /* Timebase freeze GPIO */ |
| static unsigned int core99_tb_gpio; |
| |
| /* Sync flag for HW tb sync */ |
| static volatile int sec_tb_reset = 0; |
| static unsigned int pri_tb_hi, pri_tb_lo; |
| static unsigned int pri_tb_stamp; |
| |
| static void __devinit core99_init_caches(int cpu) |
| { |
| if (!cpu_has_feature(CPU_FTR_L2CR)) |
| return; |
| |
| if (cpu == 0) { |
| core99_l2_cache = _get_L2CR(); |
| printk("CPU0: L2CR is %lx\n", core99_l2_cache); |
| } else { |
| printk("CPU%d: L2CR was %lx\n", cpu, _get_L2CR()); |
| _set_L2CR(0); |
| _set_L2CR(core99_l2_cache); |
| printk("CPU%d: L2CR set to %lx\n", cpu, core99_l2_cache); |
| } |
| |
| if (!cpu_has_feature(CPU_FTR_L3CR)) |
| return; |
| |
| if (cpu == 0){ |
| core99_l3_cache = _get_L3CR(); |
| printk("CPU0: L3CR is %lx\n", core99_l3_cache); |
| } else { |
| printk("CPU%d: L3CR was %lx\n", cpu, _get_L3CR()); |
| _set_L3CR(0); |
| _set_L3CR(core99_l3_cache); |
| printk("CPU%d: L3CR set to %lx\n", cpu, core99_l3_cache); |
| } |
| } |
| |
| /* |
| * Set and clear IPIs for powersurge. |
| */ |
| static inline void psurge_set_ipi(int cpu) |
| { |
| if (psurge_type == PSURGE_NONE) |
| return; |
| if (cpu == 0) |
| in_be32(psurge_pri_intr); |
| else if (psurge_type == PSURGE_DUAL) |
| out_8(psurge_sec_intr, 0); |
| else |
| PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_SET, 1 << cpu); |
| } |
| |
| static inline void psurge_clr_ipi(int cpu) |
| { |
| if (cpu > 0) { |
| switch(psurge_type) { |
| case PSURGE_DUAL: |
| out_8(psurge_sec_intr, ~0); |
| case PSURGE_NONE: |
| break; |
| default: |
| PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, 1 << cpu); |
| } |
| } |
| } |
| |
| /* |
| * On powersurge (old SMP powermac architecture) we don't have |
| * separate IPIs for separate messages like openpic does. Instead |
| * we have a bitmap for each processor, where a 1 bit means that |
| * the corresponding message is pending for that processor. |
| * Ideally each cpu's entry would be in a different cache line. |
| * -- paulus. |
| */ |
| static unsigned long psurge_smp_message[NR_CPUS]; |
| |
| void __pmac psurge_smp_message_recv(struct pt_regs *regs) |
| { |
| int cpu = smp_processor_id(); |
| int msg; |
| |
| /* clear interrupt */ |
| psurge_clr_ipi(cpu); |
| |
| if (num_online_cpus() < 2) |
| return; |
| |
| /* make sure there is a message there */ |
| for (msg = 0; msg < 4; msg++) |
| if (test_and_clear_bit(msg, &psurge_smp_message[cpu])) |
| smp_message_recv(msg, regs); |
| } |
| |
| irqreturn_t __pmac psurge_primary_intr(int irq, void *d, struct pt_regs *regs) |
| { |
| psurge_smp_message_recv(regs); |
| return IRQ_HANDLED; |
| } |
| |
| static void __pmac smp_psurge_message_pass(int target, int msg, unsigned long data, |
| int wait) |
| { |
| int i; |
| |
| if (num_online_cpus() < 2) |
| return; |
| |
| for (i = 0; i < NR_CPUS; i++) { |
| if (!cpu_online(i)) |
| continue; |
| if (target == MSG_ALL |
| || (target == MSG_ALL_BUT_SELF && i != smp_processor_id()) |
| || target == i) { |
| set_bit(msg, &psurge_smp_message[i]); |
| psurge_set_ipi(i); |
| } |
| } |
| } |
| |
| /* |
| * Determine a quad card presence. We read the board ID register, we |
| * force the data bus to change to something else, and we read it again. |
| * It it's stable, then the register probably exist (ugh !) |
| */ |
| static int __init psurge_quad_probe(void) |
| { |
| int type; |
| unsigned int i; |
| |
| type = PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID); |
| if (type < PSURGE_QUAD_OKEE || type > PSURGE_QUAD_ICEGRASS |
| || type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID)) |
| return PSURGE_DUAL; |
| |
| /* looks OK, try a slightly more rigorous test */ |
| /* bogus is not necessarily cacheline-aligned, |
| though I don't suppose that really matters. -- paulus */ |
| for (i = 0; i < 100; i++) { |
| volatile u32 bogus[8]; |
| bogus[(0+i)%8] = 0x00000000; |
| bogus[(1+i)%8] = 0x55555555; |
| bogus[(2+i)%8] = 0xFFFFFFFF; |
| bogus[(3+i)%8] = 0xAAAAAAAA; |
| bogus[(4+i)%8] = 0x33333333; |
| bogus[(5+i)%8] = 0xCCCCCCCC; |
| bogus[(6+i)%8] = 0xCCCCCCCC; |
| bogus[(7+i)%8] = 0x33333333; |
| wmb(); |
| asm volatile("dcbf 0,%0" : : "r" (bogus) : "memory"); |
| mb(); |
| if (type != PSURGE_QUAD_IN(PSURGE_QUAD_BOARD_ID)) |
| return PSURGE_DUAL; |
| } |
| return type; |
| } |
| |
| static void __init psurge_quad_init(void) |
| { |
| int procbits; |
| |
| if (ppc_md.progress) ppc_md.progress("psurge_quad_init", 0x351); |
| procbits = ~PSURGE_QUAD_IN(PSURGE_QUAD_WHICH_CPU); |
| if (psurge_type == PSURGE_QUAD_ICEGRASS) |
| PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits); |
| else |
| PSURGE_QUAD_BIC(PSURGE_QUAD_CKSTOP_CTL, procbits); |
| mdelay(33); |
| out_8(psurge_sec_intr, ~0); |
| PSURGE_QUAD_OUT(PSURGE_QUAD_IRQ_CLR, procbits); |
| PSURGE_QUAD_BIS(PSURGE_QUAD_RESET_CTL, procbits); |
| if (psurge_type != PSURGE_QUAD_ICEGRASS) |
| PSURGE_QUAD_BIS(PSURGE_QUAD_CKSTOP_CTL, procbits); |
| PSURGE_QUAD_BIC(PSURGE_QUAD_PRIMARY_ARB, procbits); |
| mdelay(33); |
| PSURGE_QUAD_BIC(PSURGE_QUAD_RESET_CTL, procbits); |
| mdelay(33); |
| PSURGE_QUAD_BIS(PSURGE_QUAD_PRIMARY_ARB, procbits); |
| mdelay(33); |
| } |
| |
| static int __init smp_psurge_probe(void) |
| { |
| int i, ncpus; |
| |
| /* We don't do SMP on the PPC601 -- paulus */ |
| if (PVR_VER(mfspr(SPRN_PVR)) == 1) |
| return 1; |
| |
| /* |
| * The powersurge cpu board can be used in the generation |
| * of powermacs that have a socket for an upgradeable cpu card, |
| * including the 7500, 8500, 9500, 9600. |
| * The device tree doesn't tell you if you have 2 cpus because |
| * OF doesn't know anything about the 2nd processor. |
| * Instead we look for magic bits in magic registers, |
| * in the hammerhead memory controller in the case of the |
| * dual-cpu powersurge board. -- paulus. |
| */ |
| if (find_devices("hammerhead") == NULL) |
| return 1; |
| |
| hhead_base = ioremap(HAMMERHEAD_BASE, 0x800); |
| quad_base = ioremap(PSURGE_QUAD_REG_ADDR, 1024); |
| psurge_sec_intr = hhead_base + HHEAD_SEC_INTR; |
| |
| psurge_type = psurge_quad_probe(); |
| if (psurge_type != PSURGE_DUAL) { |
| psurge_quad_init(); |
| /* All released cards using this HW design have 4 CPUs */ |
| ncpus = 4; |
| } else { |
| iounmap(quad_base); |
| if ((in_8(hhead_base + HHEAD_CONFIG) & 0x02) == 0) { |
| /* not a dual-cpu card */ |
| iounmap(hhead_base); |
| psurge_type = PSURGE_NONE; |
| return 1; |
| } |
| ncpus = 2; |
| } |
| |
| psurge_start = ioremap(PSURGE_START, 4); |
| psurge_pri_intr = ioremap(PSURGE_PRI_INTR, 4); |
| |
| /* this is not actually strictly necessary -- paulus. */ |
| for (i = 1; i < ncpus; ++i) |
| smp_hw_index[i] = i; |
| |
| if (ppc_md.progress) ppc_md.progress("smp_psurge_probe - done", 0x352); |
| |
| return ncpus; |
| } |
| |
| static void __init smp_psurge_kick_cpu(int nr) |
| { |
| unsigned long start = __pa(__secondary_start_pmac_0) + nr * 8; |
| unsigned long a; |
| |
| /* may need to flush here if secondary bats aren't setup */ |
| for (a = KERNELBASE; a < KERNELBASE + 0x800000; a += 32) |
| asm volatile("dcbf 0,%0" : : "r" (a) : "memory"); |
| asm volatile("sync"); |
| |
| if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu", 0x353); |
| |
| out_be32(psurge_start, start); |
| mb(); |
| |
| psurge_set_ipi(nr); |
| udelay(10); |
| psurge_clr_ipi(nr); |
| |
| if (ppc_md.progress) ppc_md.progress("smp_psurge_kick_cpu - done", 0x354); |
| } |
| |
| /* |
| * With the dual-cpu powersurge board, the decrementers and timebases |
| * of both cpus are frozen after the secondary cpu is started up, |
| * until we give the secondary cpu another interrupt. This routine |
| * uses this to get the timebases synchronized. |
| * -- paulus. |
| */ |
| static void __init psurge_dual_sync_tb(int cpu_nr) |
| { |
| int t; |
| |
| set_dec(tb_ticks_per_jiffy); |
| set_tb(0, 0); |
| last_jiffy_stamp(cpu_nr) = 0; |
| |
| if (cpu_nr > 0) { |
| mb(); |
| sec_tb_reset = 1; |
| return; |
| } |
| |
| /* wait for the secondary to have reset its TB before proceeding */ |
| for (t = 10000000; t > 0 && !sec_tb_reset; --t) |
| ; |
| |
| /* now interrupt the secondary, starting both TBs */ |
| psurge_set_ipi(1); |
| |
| smp_tb_synchronized = 1; |
| } |
| |
| static struct irqaction psurge_irqaction = { |
| .handler = psurge_primary_intr, |
| .flags = SA_INTERRUPT, |
| .mask = CPU_MASK_NONE, |
| .name = "primary IPI", |
| }; |
| |
| static void __init smp_psurge_setup_cpu(int cpu_nr) |
| { |
| |
| if (cpu_nr == 0) { |
| /* If we failed to start the second CPU, we should still |
| * send it an IPI to start the timebase & DEC or we might |
| * have them stuck. |
| */ |
| if (num_online_cpus() < 2) { |
| if (psurge_type == PSURGE_DUAL) |
| psurge_set_ipi(1); |
| return; |
| } |
| /* reset the entry point so if we get another intr we won't |
| * try to startup again */ |
| out_be32(psurge_start, 0x100); |
| if (setup_irq(30, &psurge_irqaction)) |
| printk(KERN_ERR "Couldn't get primary IPI interrupt"); |
| } |
| |
| if (psurge_type == PSURGE_DUAL) |
| psurge_dual_sync_tb(cpu_nr); |
| } |
| |
| void __init smp_psurge_take_timebase(void) |
| { |
| /* Dummy implementation */ |
| } |
| |
| void __init smp_psurge_give_timebase(void) |
| { |
| /* Dummy implementation */ |
| } |
| |
| static int __init smp_core99_probe(void) |
| { |
| #ifdef CONFIG_6xx |
| extern int powersave_nap; |
| #endif |
| struct device_node *cpus, *firstcpu; |
| int i, ncpus = 0, boot_cpu = -1; |
| u32 *tbprop = NULL; |
| |
| if (ppc_md.progress) ppc_md.progress("smp_core99_probe", 0x345); |
| cpus = firstcpu = find_type_devices("cpu"); |
| while(cpus != NULL) { |
| u32 *regprop = (u32 *)get_property(cpus, "reg", NULL); |
| char *stateprop = (char *)get_property(cpus, "state", NULL); |
| if (regprop != NULL && stateprop != NULL && |
| !strncmp(stateprop, "running", 7)) |
| boot_cpu = *regprop; |
| ++ncpus; |
| cpus = cpus->next; |
| } |
| if (boot_cpu == -1) |
| printk(KERN_WARNING "Couldn't detect boot CPU !\n"); |
| if (boot_cpu != 0) |
| printk(KERN_WARNING "Boot CPU is %d, unsupported setup !\n", boot_cpu); |
| |
| if (machine_is_compatible("MacRISC4")) { |
| extern struct smp_ops_t core99_smp_ops; |
| |
| core99_smp_ops.take_timebase = smp_generic_take_timebase; |
| core99_smp_ops.give_timebase = smp_generic_give_timebase; |
| } else { |
| if (firstcpu != NULL) |
| tbprop = (u32 *)get_property(firstcpu, "timebase-enable", NULL); |
| if (tbprop) |
| core99_tb_gpio = *tbprop; |
| else |
| core99_tb_gpio = KL_GPIO_TB_ENABLE; |
| } |
| |
| if (ncpus > 1) { |
| openpic_request_IPIs(); |
| for (i = 1; i < ncpus; ++i) |
| smp_hw_index[i] = i; |
| #ifdef CONFIG_6xx |
| powersave_nap = 0; |
| #endif |
| core99_init_caches(0); |
| } |
| |
| return ncpus; |
| } |
| |
| static void __devinit smp_core99_kick_cpu(int nr) |
| { |
| unsigned long save_vector, new_vector; |
| unsigned long flags; |
| |
| volatile unsigned long *vector |
| = ((volatile unsigned long *)(KERNELBASE+0x100)); |
| if (nr < 0 || nr > 3) |
| return; |
| if (ppc_md.progress) ppc_md.progress("smp_core99_kick_cpu", 0x346); |
| |
| local_irq_save(flags); |
| local_irq_disable(); |
| |
| /* Save reset vector */ |
| save_vector = *vector; |
| |
| /* Setup fake reset vector that does |
| * b __secondary_start_pmac_0 + nr*8 - KERNELBASE |
| */ |
| new_vector = (unsigned long) __secondary_start_pmac_0 + nr * 8; |
| *vector = 0x48000002 + new_vector - KERNELBASE; |
| |
| /* flush data cache and inval instruction cache */ |
| flush_icache_range((unsigned long) vector, (unsigned long) vector + 4); |
| |
| /* Put some life in our friend */ |
| pmac_call_feature(PMAC_FTR_RESET_CPU, NULL, nr, 0); |
| |
| /* FIXME: We wait a bit for the CPU to take the exception, I should |
| * instead wait for the entry code to set something for me. Well, |
| * ideally, all that crap will be done in prom.c and the CPU left |
| * in a RAM-based wait loop like CHRP. |
| */ |
| mdelay(1); |
| |
| /* Restore our exception vector */ |
| *vector = save_vector; |
| flush_icache_range((unsigned long) vector, (unsigned long) vector + 4); |
| |
| local_irq_restore(flags); |
| if (ppc_md.progress) ppc_md.progress("smp_core99_kick_cpu done", 0x347); |
| } |
| |
| static void __devinit smp_core99_setup_cpu(int cpu_nr) |
| { |
| /* Setup L2/L3 */ |
| if (cpu_nr != 0) |
| core99_init_caches(cpu_nr); |
| |
| /* Setup openpic */ |
| do_openpic_setup_cpu(); |
| |
| if (cpu_nr == 0) { |
| #ifdef CONFIG_POWER4 |
| extern void g5_phy_disable_cpu1(void); |
| |
| /* If we didn't start the second CPU, we must take |
| * it off the bus |
| */ |
| if (machine_is_compatible("MacRISC4") && |
| num_online_cpus() < 2) |
| g5_phy_disable_cpu1(); |
| #endif /* CONFIG_POWER4 */ |
| if (ppc_md.progress) ppc_md.progress("core99_setup_cpu 0 done", 0x349); |
| } |
| } |
| |
| /* not __init, called in sleep/wakeup code */ |
| void smp_core99_take_timebase(void) |
| { |
| unsigned long flags; |
| |
| /* tell the primary we're here */ |
| sec_tb_reset = 1; |
| mb(); |
| |
| /* wait for the primary to set pri_tb_hi/lo */ |
| while (sec_tb_reset < 2) |
| mb(); |
| |
| /* set our stuff the same as the primary */ |
| local_irq_save(flags); |
| set_dec(1); |
| set_tb(pri_tb_hi, pri_tb_lo); |
| last_jiffy_stamp(smp_processor_id()) = pri_tb_stamp; |
| mb(); |
| |
| /* tell the primary we're done */ |
| sec_tb_reset = 0; |
| mb(); |
| local_irq_restore(flags); |
| } |
| |
| /* not __init, called in sleep/wakeup code */ |
| void smp_core99_give_timebase(void) |
| { |
| unsigned long flags; |
| unsigned int t; |
| |
| /* wait for the secondary to be in take_timebase */ |
| for (t = 100000; t > 0 && !sec_tb_reset; --t) |
| udelay(10); |
| if (!sec_tb_reset) { |
| printk(KERN_WARNING "Timeout waiting sync on second CPU\n"); |
| return; |
| } |
| |
| /* freeze the timebase and read it */ |
| /* disable interrupts so the timebase is disabled for the |
| shortest possible time */ |
| local_irq_save(flags); |
| pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 4); |
| pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, core99_tb_gpio, 0); |
| mb(); |
| pri_tb_hi = get_tbu(); |
| pri_tb_lo = get_tbl(); |
| pri_tb_stamp = last_jiffy_stamp(smp_processor_id()); |
| mb(); |
| |
| /* tell the secondary we're ready */ |
| sec_tb_reset = 2; |
| mb(); |
| |
| /* wait for the secondary to have taken it */ |
| for (t = 100000; t > 0 && sec_tb_reset; --t) |
| udelay(10); |
| if (sec_tb_reset) |
| printk(KERN_WARNING "Timeout waiting sync(2) on second CPU\n"); |
| else |
| smp_tb_synchronized = 1; |
| |
| /* Now, restart the timebase by leaving the GPIO to an open collector */ |
| pmac_call_feature(PMAC_FTR_WRITE_GPIO, NULL, core99_tb_gpio, 0); |
| pmac_call_feature(PMAC_FTR_READ_GPIO, NULL, core99_tb_gpio, 0); |
| local_irq_restore(flags); |
| } |
| |
| |
| /* PowerSurge-style Macs */ |
| struct smp_ops_t psurge_smp_ops __pmacdata = { |
| .message_pass = smp_psurge_message_pass, |
| .probe = smp_psurge_probe, |
| .kick_cpu = smp_psurge_kick_cpu, |
| .setup_cpu = smp_psurge_setup_cpu, |
| .give_timebase = smp_psurge_give_timebase, |
| .take_timebase = smp_psurge_take_timebase, |
| }; |
| |
| /* Core99 Macs (dual G4s) */ |
| struct smp_ops_t core99_smp_ops __pmacdata = { |
| .message_pass = smp_openpic_message_pass, |
| .probe = smp_core99_probe, |
| .kick_cpu = smp_core99_kick_cpu, |
| .setup_cpu = smp_core99_setup_cpu, |
| .give_timebase = smp_core99_give_timebase, |
| .take_timebase = smp_core99_take_timebase, |
| }; |
| |
| #ifdef CONFIG_HOTPLUG_CPU |
| |
| int __cpu_disable(void) |
| { |
| cpu_clear(smp_processor_id(), cpu_online_map); |
| |
| /* XXX reset cpu affinity here */ |
| openpic_set_priority(0xf); |
| asm volatile("mtdec %0" : : "r" (0x7fffffff)); |
| mb(); |
| udelay(20); |
| asm volatile("mtdec %0" : : "r" (0x7fffffff)); |
| return 0; |
| } |
| |
| extern void low_cpu_die(void) __attribute__((noreturn)); /* in pmac_sleep.S */ |
| static int cpu_dead[NR_CPUS]; |
| |
| void cpu_die(void) |
| { |
| local_irq_disable(); |
| cpu_dead[smp_processor_id()] = 1; |
| mb(); |
| low_cpu_die(); |
| } |
| |
| void __cpu_die(unsigned int cpu) |
| { |
| int timeout; |
| |
| timeout = 1000; |
| while (!cpu_dead[cpu]) { |
| if (--timeout == 0) { |
| printk("CPU %u refused to die!\n", cpu); |
| break; |
| } |
| msleep(1); |
| } |
| cpu_callin_map[cpu] = 0; |
| cpu_dead[cpu] = 0; |
| } |
| |
| #endif |