blob: 6d5663a599a7a362756b5bcb6d3ff3e30ee34bae [file] [log] [blame]
/* bpf_jit_comp.c : BPF JIT compiler
*
* Copyright (C) 2011-2013 Eric Dumazet (eric.dumazet@gmail.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; version 2
* of the License.
*/
#include <linux/moduleloader.h>
#include <asm/cacheflush.h>
#include <linux/netdevice.h>
#include <linux/filter.h>
#include <linux/if_vlan.h>
#include <linux/random.h>
/*
* Conventions :
* EAX : BPF A accumulator
* EBX : BPF X accumulator
* RDI : pointer to skb (first argument given to JIT function)
* RBP : frame pointer (even if CONFIG_FRAME_POINTER=n)
* ECX,EDX,ESI : scratch registers
* r9d : skb->len - skb->data_len (headlen)
* r8 : skb->data
* -8(RBP) : saved RBX value
* -16(RBP)..-80(RBP) : BPF_MEMWORDS values
*/
int bpf_jit_enable __read_mostly;
/*
* assembly code in arch/x86/net/bpf_jit.S
*/
extern u8 sk_load_word[], sk_load_half[], sk_load_byte[], sk_load_byte_msh[];
extern u8 sk_load_word_positive_offset[], sk_load_half_positive_offset[];
extern u8 sk_load_byte_positive_offset[], sk_load_byte_msh_positive_offset[];
extern u8 sk_load_word_negative_offset[], sk_load_half_negative_offset[];
extern u8 sk_load_byte_negative_offset[], sk_load_byte_msh_negative_offset[];
static inline u8 *emit_code(u8 *ptr, u32 bytes, unsigned int len)
{
if (len == 1)
*ptr = bytes;
else if (len == 2)
*(u16 *)ptr = bytes;
else {
*(u32 *)ptr = bytes;
barrier();
}
return ptr + len;
}
#define EMIT(bytes, len) do { prog = emit_code(prog, bytes, len); } while (0)
#define EMIT1(b1) EMIT(b1, 1)
#define EMIT2(b1, b2) EMIT((b1) + ((b2) << 8), 2)
#define EMIT3(b1, b2, b3) EMIT((b1) + ((b2) << 8) + ((b3) << 16), 3)
#define EMIT4(b1, b2, b3, b4) EMIT((b1) + ((b2) << 8) + ((b3) << 16) + ((b4) << 24), 4)
#define EMIT1_off32(b1, off) do { EMIT1(b1); EMIT(off, 4);} while (0)
#define CLEAR_A() EMIT2(0x31, 0xc0) /* xor %eax,%eax */
#define CLEAR_X() EMIT2(0x31, 0xdb) /* xor %ebx,%ebx */
static inline bool is_imm8(int value)
{
return value <= 127 && value >= -128;
}
static inline bool is_near(int offset)
{
return offset <= 127 && offset >= -128;
}
#define EMIT_JMP(offset) \
do { \
if (offset) { \
if (is_near(offset)) \
EMIT2(0xeb, offset); /* jmp .+off8 */ \
else \
EMIT1_off32(0xe9, offset); /* jmp .+off32 */ \
} \
} while (0)
/* list of x86 cond jumps opcodes (. + s8)
* Add 0x10 (and an extra 0x0f) to generate far jumps (. + s32)
*/
#define X86_JB 0x72
#define X86_JAE 0x73
#define X86_JE 0x74
#define X86_JNE 0x75
#define X86_JBE 0x76
#define X86_JA 0x77
#define EMIT_COND_JMP(op, offset) \
do { \
if (is_near(offset)) \
EMIT2(op, offset); /* jxx .+off8 */ \
else { \
EMIT2(0x0f, op + 0x10); \
EMIT(offset, 4); /* jxx .+off32 */ \
} \
} while (0)
#define COND_SEL(CODE, TOP, FOP) \
case CODE: \
t_op = TOP; \
f_op = FOP; \
goto cond_branch
#define SEEN_DATAREF 1 /* might call external helpers */
#define SEEN_XREG 2 /* ebx is used */
#define SEEN_MEM 4 /* use mem[] for temporary storage */
static inline void bpf_flush_icache(void *start, void *end)
{
mm_segment_t old_fs = get_fs();
set_fs(KERNEL_DS);
smp_wmb();
flush_icache_range((unsigned long)start, (unsigned long)end);
set_fs(old_fs);
}
#define CHOOSE_LOAD_FUNC(K, func) \
((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
/* Helper to find the offset of pkt_type in sk_buff
* We want to make sure its still a 3bit field starting at a byte boundary.
*/
#define PKT_TYPE_MAX 7
static int pkt_type_offset(void)
{
struct sk_buff skb_probe = {
.pkt_type = ~0,
};
char *ct = (char *)&skb_probe;
unsigned int off;
for (off = 0; off < sizeof(struct sk_buff); off++) {
if (ct[off] == PKT_TYPE_MAX)
return off;
}
pr_err_once("Please fix pkt_type_offset(), as pkt_type couldn't be found\n");
return -1;
}
struct bpf_binary_header {
unsigned int pages;
/* Note : for security reasons, bpf code will follow a randomly
* sized amount of int3 instructions
*/
u8 image[];
};
static struct bpf_binary_header *bpf_alloc_binary(unsigned int proglen,
u8 **image_ptr)
{
unsigned int sz, hole;
struct bpf_binary_header *header;
/* Most of BPF filters are really small,
* but if some of them fill a page, allow at least
* 128 extra bytes to insert a random section of int3
*/
sz = round_up(proglen + sizeof(*header) + 128, PAGE_SIZE);
header = module_alloc(sz);
if (!header)
return NULL;
memset(header, 0xcc, sz); /* fill whole space with int3 instructions */
header->pages = sz / PAGE_SIZE;
hole = min(sz - (proglen + sizeof(*header)), PAGE_SIZE - sizeof(*header));
/* insert a random number of int3 instructions before BPF code */
*image_ptr = &header->image[prandom_u32() % hole];
return header;
}
void bpf_jit_compile(struct sk_filter *fp)
{
u8 temp[64];
u8 *prog;
unsigned int proglen, oldproglen = 0;
int ilen, i;
int t_offset, f_offset;
u8 t_op, f_op, seen = 0, pass;
u8 *image = NULL;
struct bpf_binary_header *header = NULL;
u8 *func;
int pc_ret0 = -1; /* bpf index of first RET #0 instruction (if any) */
unsigned int cleanup_addr; /* epilogue code offset */
unsigned int *addrs;
const struct sock_filter *filter = fp->insns;
int flen = fp->len;
if (!bpf_jit_enable)
return;
addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
if (addrs == NULL)
return;
/* Before first pass, make a rough estimation of addrs[]
* each bpf instruction is translated to less than 64 bytes
*/
for (proglen = 0, i = 0; i < flen; i++) {
proglen += 64;
addrs[i] = proglen;
}
cleanup_addr = proglen; /* epilogue address */
for (pass = 0; pass < 10; pass++) {
u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
/* no prologue/epilogue for trivial filters (RET something) */
proglen = 0;
prog = temp;
if (seen_or_pass0) {
EMIT4(0x55, 0x48, 0x89, 0xe5); /* push %rbp; mov %rsp,%rbp */
EMIT4(0x48, 0x83, 0xec, 96); /* subq $96,%rsp */
/* note : must save %rbx in case bpf_error is hit */
if (seen_or_pass0 & (SEEN_XREG | SEEN_DATAREF))
EMIT4(0x48, 0x89, 0x5d, 0xf8); /* mov %rbx, -8(%rbp) */
if (seen_or_pass0 & SEEN_XREG)
CLEAR_X(); /* make sure we dont leek kernel memory */
/*
* If this filter needs to access skb data,
* loads r9 and r8 with :
* r9 = skb->len - skb->data_len
* r8 = skb->data
*/
if (seen_or_pass0 & SEEN_DATAREF) {
if (offsetof(struct sk_buff, len) <= 127)
/* mov off8(%rdi),%r9d */
EMIT4(0x44, 0x8b, 0x4f, offsetof(struct sk_buff, len));
else {
/* mov off32(%rdi),%r9d */
EMIT3(0x44, 0x8b, 0x8f);
EMIT(offsetof(struct sk_buff, len), 4);
}
if (is_imm8(offsetof(struct sk_buff, data_len)))
/* sub off8(%rdi),%r9d */
EMIT4(0x44, 0x2b, 0x4f, offsetof(struct sk_buff, data_len));
else {
EMIT3(0x44, 0x2b, 0x8f);
EMIT(offsetof(struct sk_buff, data_len), 4);
}
if (is_imm8(offsetof(struct sk_buff, data)))
/* mov off8(%rdi),%r8 */
EMIT4(0x4c, 0x8b, 0x47, offsetof(struct sk_buff, data));
else {
/* mov off32(%rdi),%r8 */
EMIT3(0x4c, 0x8b, 0x87);
EMIT(offsetof(struct sk_buff, data), 4);
}
}
}
switch (filter[0].code) {
case BPF_S_RET_K:
case BPF_S_LD_W_LEN:
case BPF_S_ANC_PROTOCOL:
case BPF_S_ANC_IFINDEX:
case BPF_S_ANC_MARK:
case BPF_S_ANC_RXHASH:
case BPF_S_ANC_CPU:
case BPF_S_ANC_VLAN_TAG:
case BPF_S_ANC_VLAN_TAG_PRESENT:
case BPF_S_ANC_QUEUE:
case BPF_S_ANC_PKTTYPE:
case BPF_S_LD_W_ABS:
case BPF_S_LD_H_ABS:
case BPF_S_LD_B_ABS:
/* first instruction sets A register (or is RET 'constant') */
break;
default:
/* make sure we dont leak kernel information to user */
CLEAR_A(); /* A = 0 */
}
for (i = 0; i < flen; i++) {
unsigned int K = filter[i].k;
switch (filter[i].code) {
case BPF_S_ALU_ADD_X: /* A += X; */
seen |= SEEN_XREG;
EMIT2(0x01, 0xd8); /* add %ebx,%eax */
break;
case BPF_S_ALU_ADD_K: /* A += K; */
if (!K)
break;
if (is_imm8(K))
EMIT3(0x83, 0xc0, K); /* add imm8,%eax */
else
EMIT1_off32(0x05, K); /* add imm32,%eax */
break;
case BPF_S_ALU_SUB_X: /* A -= X; */
seen |= SEEN_XREG;
EMIT2(0x29, 0xd8); /* sub %ebx,%eax */
break;
case BPF_S_ALU_SUB_K: /* A -= K */
if (!K)
break;
if (is_imm8(K))
EMIT3(0x83, 0xe8, K); /* sub imm8,%eax */
else
EMIT1_off32(0x2d, K); /* sub imm32,%eax */
break;
case BPF_S_ALU_MUL_X: /* A *= X; */
seen |= SEEN_XREG;
EMIT3(0x0f, 0xaf, 0xc3); /* imul %ebx,%eax */
break;
case BPF_S_ALU_MUL_K: /* A *= K */
if (is_imm8(K))
EMIT3(0x6b, 0xc0, K); /* imul imm8,%eax,%eax */
else {
EMIT2(0x69, 0xc0); /* imul imm32,%eax */
EMIT(K, 4);
}
break;
case BPF_S_ALU_DIV_X: /* A /= X; */
seen |= SEEN_XREG;
EMIT2(0x85, 0xdb); /* test %ebx,%ebx */
if (pc_ret0 > 0) {
/* addrs[pc_ret0 - 1] is start address of target
* (addrs[i] - 4) is the address following this jmp
* ("xor %edx,%edx; div %ebx" being 4 bytes long)
*/
EMIT_COND_JMP(X86_JE, addrs[pc_ret0 - 1] -
(addrs[i] - 4));
} else {
EMIT_COND_JMP(X86_JNE, 2 + 5);
CLEAR_A();
EMIT1_off32(0xe9, cleanup_addr - (addrs[i] - 4)); /* jmp .+off32 */
}
EMIT4(0x31, 0xd2, 0xf7, 0xf3); /* xor %edx,%edx; div %ebx */
break;
case BPF_S_ALU_MOD_X: /* A %= X; */
seen |= SEEN_XREG;
EMIT2(0x85, 0xdb); /* test %ebx,%ebx */
if (pc_ret0 > 0) {
/* addrs[pc_ret0 - 1] is start address of target
* (addrs[i] - 6) is the address following this jmp
* ("xor %edx,%edx; div %ebx;mov %edx,%eax" being 6 bytes long)
*/
EMIT_COND_JMP(X86_JE, addrs[pc_ret0 - 1] -
(addrs[i] - 6));
} else {
EMIT_COND_JMP(X86_JNE, 2 + 5);
CLEAR_A();
EMIT1_off32(0xe9, cleanup_addr - (addrs[i] - 6)); /* jmp .+off32 */
}
EMIT2(0x31, 0xd2); /* xor %edx,%edx */
EMIT2(0xf7, 0xf3); /* div %ebx */
EMIT2(0x89, 0xd0); /* mov %edx,%eax */
break;
case BPF_S_ALU_MOD_K: /* A %= K; */
if (K == 1) {
CLEAR_A();
break;
}
EMIT2(0x31, 0xd2); /* xor %edx,%edx */
EMIT1(0xb9);EMIT(K, 4); /* mov imm32,%ecx */
EMIT2(0xf7, 0xf1); /* div %ecx */
EMIT2(0x89, 0xd0); /* mov %edx,%eax */
break;
case BPF_S_ALU_DIV_K: /* A /= K */
if (K == 1)
break;
EMIT2(0x31, 0xd2); /* xor %edx,%edx */
EMIT1(0xb9);EMIT(K, 4); /* mov imm32,%ecx */
EMIT2(0xf7, 0xf1); /* div %ecx */
break;
case BPF_S_ALU_AND_X:
seen |= SEEN_XREG;
EMIT2(0x21, 0xd8); /* and %ebx,%eax */
break;
case BPF_S_ALU_AND_K:
if (K >= 0xFFFFFF00) {
EMIT2(0x24, K & 0xFF); /* and imm8,%al */
} else if (K >= 0xFFFF0000) {
EMIT2(0x66, 0x25); /* and imm16,%ax */
EMIT(K, 2);
} else {
EMIT1_off32(0x25, K); /* and imm32,%eax */
}
break;
case BPF_S_ALU_OR_X:
seen |= SEEN_XREG;
EMIT2(0x09, 0xd8); /* or %ebx,%eax */
break;
case BPF_S_ALU_OR_K:
if (is_imm8(K))
EMIT3(0x83, 0xc8, K); /* or imm8,%eax */
else
EMIT1_off32(0x0d, K); /* or imm32,%eax */
break;
case BPF_S_ANC_ALU_XOR_X: /* A ^= X; */
case BPF_S_ALU_XOR_X:
seen |= SEEN_XREG;
EMIT2(0x31, 0xd8); /* xor %ebx,%eax */
break;
case BPF_S_ALU_XOR_K: /* A ^= K; */
if (K == 0)
break;
if (is_imm8(K))
EMIT3(0x83, 0xf0, K); /* xor imm8,%eax */
else
EMIT1_off32(0x35, K); /* xor imm32,%eax */
break;
case BPF_S_ALU_LSH_X: /* A <<= X; */
seen |= SEEN_XREG;
EMIT4(0x89, 0xd9, 0xd3, 0xe0); /* mov %ebx,%ecx; shl %cl,%eax */
break;
case BPF_S_ALU_LSH_K:
if (K == 0)
break;
else if (K == 1)
EMIT2(0xd1, 0xe0); /* shl %eax */
else
EMIT3(0xc1, 0xe0, K);
break;
case BPF_S_ALU_RSH_X: /* A >>= X; */
seen |= SEEN_XREG;
EMIT4(0x89, 0xd9, 0xd3, 0xe8); /* mov %ebx,%ecx; shr %cl,%eax */
break;
case BPF_S_ALU_RSH_K: /* A >>= K; */
if (K == 0)
break;
else if (K == 1)
EMIT2(0xd1, 0xe8); /* shr %eax */
else
EMIT3(0xc1, 0xe8, K);
break;
case BPF_S_ALU_NEG:
EMIT2(0xf7, 0xd8); /* neg %eax */
break;
case BPF_S_RET_K:
if (!K) {
if (pc_ret0 == -1)
pc_ret0 = i;
CLEAR_A();
} else {
EMIT1_off32(0xb8, K); /* mov $imm32,%eax */
}
/* fallinto */
case BPF_S_RET_A:
if (seen_or_pass0) {
if (i != flen - 1) {
EMIT_JMP(cleanup_addr - addrs[i]);
break;
}
if (seen_or_pass0 & SEEN_XREG)
EMIT4(0x48, 0x8b, 0x5d, 0xf8); /* mov -8(%rbp),%rbx */
EMIT1(0xc9); /* leaveq */
}
EMIT1(0xc3); /* ret */
break;
case BPF_S_MISC_TAX: /* X = A */
seen |= SEEN_XREG;
EMIT2(0x89, 0xc3); /* mov %eax,%ebx */
break;
case BPF_S_MISC_TXA: /* A = X */
seen |= SEEN_XREG;
EMIT2(0x89, 0xd8); /* mov %ebx,%eax */
break;
case BPF_S_LD_IMM: /* A = K */
if (!K)
CLEAR_A();
else
EMIT1_off32(0xb8, K); /* mov $imm32,%eax */
break;
case BPF_S_LDX_IMM: /* X = K */
seen |= SEEN_XREG;
if (!K)
CLEAR_X();
else
EMIT1_off32(0xbb, K); /* mov $imm32,%ebx */
break;
case BPF_S_LD_MEM: /* A = mem[K] : mov off8(%rbp),%eax */
seen |= SEEN_MEM;
EMIT3(0x8b, 0x45, 0xf0 - K*4);
break;
case BPF_S_LDX_MEM: /* X = mem[K] : mov off8(%rbp),%ebx */
seen |= SEEN_XREG | SEEN_MEM;
EMIT3(0x8b, 0x5d, 0xf0 - K*4);
break;
case BPF_S_ST: /* mem[K] = A : mov %eax,off8(%rbp) */
seen |= SEEN_MEM;
EMIT3(0x89, 0x45, 0xf0 - K*4);
break;
case BPF_S_STX: /* mem[K] = X : mov %ebx,off8(%rbp) */
seen |= SEEN_XREG | SEEN_MEM;
EMIT3(0x89, 0x5d, 0xf0 - K*4);
break;
case BPF_S_LD_W_LEN: /* A = skb->len; */
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, len) != 4);
if (is_imm8(offsetof(struct sk_buff, len)))
/* mov off8(%rdi),%eax */
EMIT3(0x8b, 0x47, offsetof(struct sk_buff, len));
else {
EMIT2(0x8b, 0x87);
EMIT(offsetof(struct sk_buff, len), 4);
}
break;
case BPF_S_LDX_W_LEN: /* X = skb->len; */
seen |= SEEN_XREG;
if (is_imm8(offsetof(struct sk_buff, len)))
/* mov off8(%rdi),%ebx */
EMIT3(0x8b, 0x5f, offsetof(struct sk_buff, len));
else {
EMIT2(0x8b, 0x9f);
EMIT(offsetof(struct sk_buff, len), 4);
}
break;
case BPF_S_ANC_PROTOCOL: /* A = ntohs(skb->protocol); */
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
if (is_imm8(offsetof(struct sk_buff, protocol))) {
/* movzwl off8(%rdi),%eax */
EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, protocol));
} else {
EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
EMIT(offsetof(struct sk_buff, protocol), 4);
}
EMIT2(0x86, 0xc4); /* ntohs() : xchg %al,%ah */
break;
case BPF_S_ANC_IFINDEX:
if (is_imm8(offsetof(struct sk_buff, dev))) {
/* movq off8(%rdi),%rax */
EMIT4(0x48, 0x8b, 0x47, offsetof(struct sk_buff, dev));
} else {
EMIT3(0x48, 0x8b, 0x87); /* movq off32(%rdi),%rax */
EMIT(offsetof(struct sk_buff, dev), 4);
}
EMIT3(0x48, 0x85, 0xc0); /* test %rax,%rax */
EMIT_COND_JMP(X86_JE, cleanup_addr - (addrs[i] - 6));
BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
EMIT2(0x8b, 0x80); /* mov off32(%rax),%eax */
EMIT(offsetof(struct net_device, ifindex), 4);
break;
case BPF_S_ANC_MARK:
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
if (is_imm8(offsetof(struct sk_buff, mark))) {
/* mov off8(%rdi),%eax */
EMIT3(0x8b, 0x47, offsetof(struct sk_buff, mark));
} else {
EMIT2(0x8b, 0x87);
EMIT(offsetof(struct sk_buff, mark), 4);
}
break;
case BPF_S_ANC_RXHASH:
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
if (is_imm8(offsetof(struct sk_buff, hash))) {
/* mov off8(%rdi),%eax */
EMIT3(0x8b, 0x47, offsetof(struct sk_buff, hash));
} else {
EMIT2(0x8b, 0x87);
EMIT(offsetof(struct sk_buff, hash), 4);
}
break;
case BPF_S_ANC_QUEUE:
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
if (is_imm8(offsetof(struct sk_buff, queue_mapping))) {
/* movzwl off8(%rdi),%eax */
EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, queue_mapping));
} else {
EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
EMIT(offsetof(struct sk_buff, queue_mapping), 4);
}
break;
case BPF_S_ANC_CPU:
#ifdef CONFIG_SMP
EMIT4(0x65, 0x8b, 0x04, 0x25); /* mov %gs:off32,%eax */
EMIT((u32)(unsigned long)&cpu_number, 4); /* A = smp_processor_id(); */
#else
CLEAR_A();
#endif
break;
case BPF_S_ANC_VLAN_TAG:
case BPF_S_ANC_VLAN_TAG_PRESENT:
BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
if (is_imm8(offsetof(struct sk_buff, vlan_tci))) {
/* movzwl off8(%rdi),%eax */
EMIT4(0x0f, 0xb7, 0x47, offsetof(struct sk_buff, vlan_tci));
} else {
EMIT3(0x0f, 0xb7, 0x87); /* movzwl off32(%rdi),%eax */
EMIT(offsetof(struct sk_buff, vlan_tci), 4);
}
BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
if (filter[i].code == BPF_S_ANC_VLAN_TAG) {
EMIT3(0x80, 0xe4, 0xef); /* and $0xef,%ah */
} else {
EMIT3(0xc1, 0xe8, 0x0c); /* shr $0xc,%eax */
EMIT3(0x83, 0xe0, 0x01); /* and $0x1,%eax */
}
break;
case BPF_S_ANC_PKTTYPE:
{
int off = pkt_type_offset();
if (off < 0)
goto out;
if (is_imm8(off)) {
/* movzbl off8(%rdi),%eax */
EMIT4(0x0f, 0xb6, 0x47, off);
} else {
/* movbl off32(%rdi),%eax */
EMIT3(0x0f, 0xb6, 0x87);
EMIT(off, 4);
}
EMIT3(0x83, 0xe0, PKT_TYPE_MAX); /* and $0x7,%eax */
break;
}
case BPF_S_LD_W_ABS:
func = CHOOSE_LOAD_FUNC(K, sk_load_word);
common_load: seen |= SEEN_DATAREF;
t_offset = func - (image + addrs[i]);
EMIT1_off32(0xbe, K); /* mov imm32,%esi */
EMIT1_off32(0xe8, t_offset); /* call */
break;
case BPF_S_LD_H_ABS:
func = CHOOSE_LOAD_FUNC(K, sk_load_half);
goto common_load;
case BPF_S_LD_B_ABS:
func = CHOOSE_LOAD_FUNC(K, sk_load_byte);
goto common_load;
case BPF_S_LDX_B_MSH:
func = CHOOSE_LOAD_FUNC(K, sk_load_byte_msh);
seen |= SEEN_DATAREF | SEEN_XREG;
t_offset = func - (image + addrs[i]);
EMIT1_off32(0xbe, K); /* mov imm32,%esi */
EMIT1_off32(0xe8, t_offset); /* call sk_load_byte_msh */
break;
case BPF_S_LD_W_IND:
func = sk_load_word;
common_load_ind: seen |= SEEN_DATAREF | SEEN_XREG;
t_offset = func - (image + addrs[i]);
if (K) {
if (is_imm8(K)) {
EMIT3(0x8d, 0x73, K); /* lea imm8(%rbx), %esi */
} else {
EMIT2(0x8d, 0xb3); /* lea imm32(%rbx),%esi */
EMIT(K, 4);
}
} else {
EMIT2(0x89,0xde); /* mov %ebx,%esi */
}
EMIT1_off32(0xe8, t_offset); /* call sk_load_xxx_ind */
break;
case BPF_S_LD_H_IND:
func = sk_load_half;
goto common_load_ind;
case BPF_S_LD_B_IND:
func = sk_load_byte;
goto common_load_ind;
case BPF_S_JMP_JA:
t_offset = addrs[i + K] - addrs[i];
EMIT_JMP(t_offset);
break;
COND_SEL(BPF_S_JMP_JGT_K, X86_JA, X86_JBE);
COND_SEL(BPF_S_JMP_JGE_K, X86_JAE, X86_JB);
COND_SEL(BPF_S_JMP_JEQ_K, X86_JE, X86_JNE);
COND_SEL(BPF_S_JMP_JSET_K,X86_JNE, X86_JE);
COND_SEL(BPF_S_JMP_JGT_X, X86_JA, X86_JBE);
COND_SEL(BPF_S_JMP_JGE_X, X86_JAE, X86_JB);
COND_SEL(BPF_S_JMP_JEQ_X, X86_JE, X86_JNE);
COND_SEL(BPF_S_JMP_JSET_X,X86_JNE, X86_JE);
cond_branch: f_offset = addrs[i + filter[i].jf] - addrs[i];
t_offset = addrs[i + filter[i].jt] - addrs[i];
/* same targets, can avoid doing the test :) */
if (filter[i].jt == filter[i].jf) {
EMIT_JMP(t_offset);
break;
}
switch (filter[i].code) {
case BPF_S_JMP_JGT_X:
case BPF_S_JMP_JGE_X:
case BPF_S_JMP_JEQ_X:
seen |= SEEN_XREG;
EMIT2(0x39, 0xd8); /* cmp %ebx,%eax */
break;
case BPF_S_JMP_JSET_X:
seen |= SEEN_XREG;
EMIT2(0x85, 0xd8); /* test %ebx,%eax */
break;
case BPF_S_JMP_JEQ_K:
if (K == 0) {
EMIT2(0x85, 0xc0); /* test %eax,%eax */
break;
}
case BPF_S_JMP_JGT_K:
case BPF_S_JMP_JGE_K:
if (K <= 127)
EMIT3(0x83, 0xf8, K); /* cmp imm8,%eax */
else
EMIT1_off32(0x3d, K); /* cmp imm32,%eax */
break;
case BPF_S_JMP_JSET_K:
if (K <= 0xFF)
EMIT2(0xa8, K); /* test imm8,%al */
else if (!(K & 0xFFFF00FF))
EMIT3(0xf6, 0xc4, K >> 8); /* test imm8,%ah */
else if (K <= 0xFFFF) {
EMIT2(0x66, 0xa9); /* test imm16,%ax */
EMIT(K, 2);
} else {
EMIT1_off32(0xa9, K); /* test imm32,%eax */
}
break;
}
if (filter[i].jt != 0) {
if (filter[i].jf && f_offset)
t_offset += is_near(f_offset) ? 2 : 5;
EMIT_COND_JMP(t_op, t_offset);
if (filter[i].jf)
EMIT_JMP(f_offset);
break;
}
EMIT_COND_JMP(f_op, f_offset);
break;
default:
/* hmm, too complex filter, give up with jit compiler */
goto out;
}
ilen = prog - temp;
if (image) {
if (unlikely(proglen + ilen > oldproglen)) {
pr_err("bpb_jit_compile fatal error\n");
kfree(addrs);
module_free(NULL, header);
return;
}
memcpy(image + proglen, temp, ilen);
}
proglen += ilen;
addrs[i] = proglen;
prog = temp;
}
/* last bpf instruction is always a RET :
* use it to give the cleanup instruction(s) addr
*/
cleanup_addr = proglen - 1; /* ret */
if (seen_or_pass0)
cleanup_addr -= 1; /* leaveq */
if (seen_or_pass0 & SEEN_XREG)
cleanup_addr -= 4; /* mov -8(%rbp),%rbx */
if (image) {
if (proglen != oldproglen)
pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n", proglen, oldproglen);
break;
}
if (proglen == oldproglen) {
header = bpf_alloc_binary(proglen, &image);
if (!header)
goto out;
}
oldproglen = proglen;
}
if (bpf_jit_enable > 1)
bpf_jit_dump(flen, proglen, pass, image);
if (image) {
bpf_flush_icache(header, image + proglen);
set_memory_ro((unsigned long)header, header->pages);
fp->bpf_func = (void *)image;
fp->jited = 1;
}
out:
kfree(addrs);
return;
}
static void bpf_jit_free_deferred(struct work_struct *work)
{
struct sk_filter *fp = container_of(work, struct sk_filter, work);
unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
struct bpf_binary_header *header = (void *)addr;
set_memory_rw(addr, header->pages);
module_free(NULL, header);
kfree(fp);
}
void bpf_jit_free(struct sk_filter *fp)
{
if (fp->jited) {
INIT_WORK(&fp->work, bpf_jit_free_deferred);
schedule_work(&fp->work);
} else {
kfree(fp);
}
}