| /* |
| * linux/kernel/time/tick-broadcast.c |
| * |
| * This file contains functions which emulate a local clock-event |
| * device via a broadcast event source. |
| * |
| * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> |
| * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar |
| * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner |
| * |
| * This code is licenced under the GPL version 2. For details see |
| * kernel-base/COPYING. |
| */ |
| #include <linux/cpu.h> |
| #include <linux/err.h> |
| #include <linux/hrtimer.h> |
| #include <linux/irq.h> |
| #include <linux/percpu.h> |
| #include <linux/profile.h> |
| #include <linux/sched.h> |
| #include <linux/tick.h> |
| |
| #include "tick-internal.h" |
| |
| /* |
| * Broadcast support for broken x86 hardware, where the local apic |
| * timer stops in C3 state. |
| */ |
| |
| struct tick_device tick_broadcast_device; |
| static cpumask_t tick_broadcast_mask; |
| static DEFINE_SPINLOCK(tick_broadcast_lock); |
| |
| /* |
| * Debugging: see timer_list.c |
| */ |
| struct tick_device *tick_get_broadcast_device(void) |
| { |
| return &tick_broadcast_device; |
| } |
| |
| cpumask_t *tick_get_broadcast_mask(void) |
| { |
| return &tick_broadcast_mask; |
| } |
| |
| /* |
| * Start the device in periodic mode |
| */ |
| static void tick_broadcast_start_periodic(struct clock_event_device *bc) |
| { |
| if (bc && bc->mode == CLOCK_EVT_MODE_SHUTDOWN) |
| tick_setup_periodic(bc, 1); |
| } |
| |
| /* |
| * Check, if the device can be utilized as broadcast device: |
| */ |
| int tick_check_broadcast_device(struct clock_event_device *dev) |
| { |
| if (tick_broadcast_device.evtdev || |
| (dev->features & CLOCK_EVT_FEAT_C3STOP)) |
| return 0; |
| |
| clockevents_exchange_device(NULL, dev); |
| tick_broadcast_device.evtdev = dev; |
| if (!cpus_empty(tick_broadcast_mask)) |
| tick_broadcast_start_periodic(dev); |
| return 1; |
| } |
| |
| /* |
| * Check, if the device is the broadcast device |
| */ |
| int tick_is_broadcast_device(struct clock_event_device *dev) |
| { |
| return (dev && tick_broadcast_device.evtdev == dev); |
| } |
| |
| /* |
| * Check, if the device is disfunctional and a place holder, which |
| * needs to be handled by the broadcast device. |
| */ |
| int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu) |
| { |
| unsigned long flags; |
| int ret = 0; |
| |
| spin_lock_irqsave(&tick_broadcast_lock, flags); |
| |
| /* |
| * Devices might be registered with both periodic and oneshot |
| * mode disabled. This signals, that the device needs to be |
| * operated from the broadcast device and is a placeholder for |
| * the cpu local device. |
| */ |
| if (!tick_device_is_functional(dev)) { |
| dev->event_handler = tick_handle_periodic; |
| cpu_set(cpu, tick_broadcast_mask); |
| tick_broadcast_start_periodic(tick_broadcast_device.evtdev); |
| ret = 1; |
| } |
| |
| spin_unlock_irqrestore(&tick_broadcast_lock, flags); |
| return ret; |
| } |
| |
| /* |
| * Broadcast the event to the cpus, which are set in the mask |
| */ |
| int tick_do_broadcast(cpumask_t mask) |
| { |
| int ret = 0, cpu = smp_processor_id(); |
| struct tick_device *td; |
| |
| /* |
| * Check, if the current cpu is in the mask |
| */ |
| if (cpu_isset(cpu, mask)) { |
| cpu_clear(cpu, mask); |
| td = &per_cpu(tick_cpu_device, cpu); |
| td->evtdev->event_handler(td->evtdev); |
| ret = 1; |
| } |
| |
| if (!cpus_empty(mask)) { |
| /* |
| * It might be necessary to actually check whether the devices |
| * have different broadcast functions. For now, just use the |
| * one of the first device. This works as long as we have this |
| * misfeature only on x86 (lapic) |
| */ |
| cpu = first_cpu(mask); |
| td = &per_cpu(tick_cpu_device, cpu); |
| td->evtdev->broadcast(mask); |
| ret = 1; |
| } |
| return ret; |
| } |
| |
| /* |
| * Periodic broadcast: |
| * - invoke the broadcast handlers |
| */ |
| static void tick_do_periodic_broadcast(void) |
| { |
| cpumask_t mask; |
| |
| spin_lock(&tick_broadcast_lock); |
| |
| cpus_and(mask, cpu_online_map, tick_broadcast_mask); |
| tick_do_broadcast(mask); |
| |
| spin_unlock(&tick_broadcast_lock); |
| } |
| |
| /* |
| * Event handler for periodic broadcast ticks |
| */ |
| static void tick_handle_periodic_broadcast(struct clock_event_device *dev) |
| { |
| dev->next_event.tv64 = KTIME_MAX; |
| |
| tick_do_periodic_broadcast(); |
| |
| /* |
| * The device is in periodic mode. No reprogramming necessary: |
| */ |
| if (dev->mode == CLOCK_EVT_MODE_PERIODIC) |
| return; |
| |
| /* |
| * Setup the next period for devices, which do not have |
| * periodic mode: |
| */ |
| for (;;) { |
| ktime_t next = ktime_add(dev->next_event, tick_period); |
| |
| if (!clockevents_program_event(dev, next, ktime_get())) |
| return; |
| tick_do_periodic_broadcast(); |
| } |
| } |
| |
| /* |
| * Powerstate information: The system enters/leaves a state, where |
| * affected devices might stop |
| */ |
| static void tick_do_broadcast_on_off(void *why) |
| { |
| struct clock_event_device *bc, *dev; |
| struct tick_device *td; |
| unsigned long flags, *reason = why; |
| int cpu; |
| |
| spin_lock_irqsave(&tick_broadcast_lock, flags); |
| |
| cpu = smp_processor_id(); |
| td = &per_cpu(tick_cpu_device, cpu); |
| dev = td->evtdev; |
| bc = tick_broadcast_device.evtdev; |
| |
| /* |
| * Is the device in broadcast mode forever or is it not |
| * affected by the powerstate ? |
| */ |
| if (!dev || !tick_device_is_functional(dev) || |
| !(dev->features & CLOCK_EVT_FEAT_C3STOP)) |
| goto out; |
| |
| if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_ON) { |
| if (!cpu_isset(cpu, tick_broadcast_mask)) { |
| cpu_set(cpu, tick_broadcast_mask); |
| if (td->mode == TICKDEV_MODE_PERIODIC) |
| clockevents_set_mode(dev, |
| CLOCK_EVT_MODE_SHUTDOWN); |
| } |
| } else { |
| if (cpu_isset(cpu, tick_broadcast_mask)) { |
| cpu_clear(cpu, tick_broadcast_mask); |
| if (td->mode == TICKDEV_MODE_PERIODIC) |
| tick_setup_periodic(dev, 0); |
| } |
| } |
| |
| if (cpus_empty(tick_broadcast_mask)) |
| clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN); |
| else { |
| if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) |
| tick_broadcast_start_periodic(bc); |
| else |
| tick_broadcast_setup_oneshot(bc); |
| } |
| out: |
| spin_unlock_irqrestore(&tick_broadcast_lock, flags); |
| } |
| |
| /* |
| * Powerstate information: The system enters/leaves a state, where |
| * affected devices might stop. |
| */ |
| void tick_broadcast_on_off(unsigned long reason, int *oncpu) |
| { |
| int cpu = get_cpu(); |
| |
| if (cpu == *oncpu) |
| tick_do_broadcast_on_off(&reason); |
| else |
| smp_call_function_single(*oncpu, tick_do_broadcast_on_off, |
| &reason, 1, 1); |
| put_cpu(); |
| } |
| |
| /* |
| * Set the periodic handler depending on broadcast on/off |
| */ |
| void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast) |
| { |
| if (!broadcast) |
| dev->event_handler = tick_handle_periodic; |
| else |
| dev->event_handler = tick_handle_periodic_broadcast; |
| } |
| |
| /* |
| * Remove a CPU from broadcasting |
| */ |
| void tick_shutdown_broadcast(unsigned int *cpup) |
| { |
| struct clock_event_device *bc; |
| unsigned long flags; |
| unsigned int cpu = *cpup; |
| |
| spin_lock_irqsave(&tick_broadcast_lock, flags); |
| |
| bc = tick_broadcast_device.evtdev; |
| cpu_clear(cpu, tick_broadcast_mask); |
| |
| if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) { |
| if (bc && cpus_empty(tick_broadcast_mask)) |
| clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN); |
| } |
| |
| spin_unlock_irqrestore(&tick_broadcast_lock, flags); |
| } |
| |
| void tick_suspend_broadcast(void) |
| { |
| struct clock_event_device *bc; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&tick_broadcast_lock, flags); |
| |
| bc = tick_broadcast_device.evtdev; |
| if (bc && tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) |
| clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN); |
| |
| spin_unlock_irqrestore(&tick_broadcast_lock, flags); |
| } |
| |
| int tick_resume_broadcast(void) |
| { |
| struct clock_event_device *bc; |
| unsigned long flags; |
| int broadcast = 0; |
| |
| spin_lock_irqsave(&tick_broadcast_lock, flags); |
| |
| bc = tick_broadcast_device.evtdev; |
| |
| if (bc) { |
| switch (tick_broadcast_device.mode) { |
| case TICKDEV_MODE_PERIODIC: |
| if(!cpus_empty(tick_broadcast_mask)) |
| tick_broadcast_start_periodic(bc); |
| broadcast = cpu_isset(smp_processor_id(), |
| tick_broadcast_mask); |
| break; |
| case TICKDEV_MODE_ONESHOT: |
| broadcast = tick_resume_broadcast_oneshot(bc); |
| break; |
| } |
| } |
| spin_unlock_irqrestore(&tick_broadcast_lock, flags); |
| |
| return broadcast; |
| } |
| |
| |
| #ifdef CONFIG_TICK_ONESHOT |
| |
| static cpumask_t tick_broadcast_oneshot_mask; |
| |
| /* |
| * Debugging: see timer_list.c |
| */ |
| cpumask_t *tick_get_broadcast_oneshot_mask(void) |
| { |
| return &tick_broadcast_oneshot_mask; |
| } |
| |
| static int tick_broadcast_set_event(ktime_t expires, int force) |
| { |
| struct clock_event_device *bc = tick_broadcast_device.evtdev; |
| ktime_t now = ktime_get(); |
| int res; |
| |
| for(;;) { |
| res = clockevents_program_event(bc, expires, now); |
| if (!res || !force) |
| return res; |
| now = ktime_get(); |
| expires = ktime_add(now, ktime_set(0, bc->min_delta_ns)); |
| } |
| } |
| |
| int tick_resume_broadcast_oneshot(struct clock_event_device *bc) |
| { |
| clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); |
| |
| if(!cpus_empty(tick_broadcast_oneshot_mask)) |
| tick_broadcast_set_event(ktime_get(), 1); |
| |
| return cpu_isset(smp_processor_id(), tick_broadcast_oneshot_mask); |
| } |
| |
| /* |
| * Reprogram the broadcast device: |
| * |
| * Called with tick_broadcast_lock held and interrupts disabled. |
| */ |
| static int tick_broadcast_reprogram(void) |
| { |
| ktime_t expires = { .tv64 = KTIME_MAX }; |
| struct tick_device *td; |
| int cpu; |
| |
| /* |
| * Find the event which expires next: |
| */ |
| for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS; |
| cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) { |
| td = &per_cpu(tick_cpu_device, cpu); |
| if (td->evtdev->next_event.tv64 < expires.tv64) |
| expires = td->evtdev->next_event; |
| } |
| |
| if (expires.tv64 == KTIME_MAX) |
| return 0; |
| |
| return tick_broadcast_set_event(expires, 0); |
| } |
| |
| /* |
| * Handle oneshot mode broadcasting |
| */ |
| static void tick_handle_oneshot_broadcast(struct clock_event_device *dev) |
| { |
| struct tick_device *td; |
| cpumask_t mask; |
| ktime_t now; |
| int cpu; |
| |
| spin_lock(&tick_broadcast_lock); |
| again: |
| dev->next_event.tv64 = KTIME_MAX; |
| mask = CPU_MASK_NONE; |
| now = ktime_get(); |
| /* Find all expired events */ |
| for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS; |
| cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) { |
| td = &per_cpu(tick_cpu_device, cpu); |
| if (td->evtdev->next_event.tv64 <= now.tv64) |
| cpu_set(cpu, mask); |
| } |
| |
| /* |
| * Wakeup the cpus which have an expired event. The broadcast |
| * device is reprogrammed in the return from idle code. |
| */ |
| if (!tick_do_broadcast(mask)) { |
| /* |
| * The global event did not expire any CPU local |
| * events. This happens in dyntick mode, as the |
| * maximum PIT delta is quite small. |
| */ |
| if (tick_broadcast_reprogram()) |
| goto again; |
| } |
| spin_unlock(&tick_broadcast_lock); |
| } |
| |
| /* |
| * Powerstate information: The system enters/leaves a state, where |
| * affected devices might stop |
| */ |
| void tick_broadcast_oneshot_control(unsigned long reason) |
| { |
| struct clock_event_device *bc, *dev; |
| struct tick_device *td; |
| unsigned long flags; |
| int cpu; |
| |
| spin_lock_irqsave(&tick_broadcast_lock, flags); |
| |
| /* |
| * Periodic mode does not care about the enter/exit of power |
| * states |
| */ |
| if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) |
| goto out; |
| |
| bc = tick_broadcast_device.evtdev; |
| cpu = smp_processor_id(); |
| td = &per_cpu(tick_cpu_device, cpu); |
| dev = td->evtdev; |
| |
| if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) |
| goto out; |
| |
| if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) { |
| if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) { |
| cpu_set(cpu, tick_broadcast_oneshot_mask); |
| clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN); |
| if (dev->next_event.tv64 < bc->next_event.tv64) |
| tick_broadcast_set_event(dev->next_event, 1); |
| } |
| } else { |
| if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) { |
| cpu_clear(cpu, tick_broadcast_oneshot_mask); |
| clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT); |
| if (dev->next_event.tv64 != KTIME_MAX) |
| tick_program_event(dev->next_event, 1); |
| } |
| } |
| |
| out: |
| spin_unlock_irqrestore(&tick_broadcast_lock, flags); |
| } |
| |
| /** |
| * tick_broadcast_setup_highres - setup the broadcast device for highres |
| */ |
| void tick_broadcast_setup_oneshot(struct clock_event_device *bc) |
| { |
| if (bc->mode != CLOCK_EVT_MODE_ONESHOT) { |
| bc->event_handler = tick_handle_oneshot_broadcast; |
| clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT); |
| bc->next_event.tv64 = KTIME_MAX; |
| } |
| } |
| |
| /* |
| * Select oneshot operating mode for the broadcast device |
| */ |
| void tick_broadcast_switch_to_oneshot(void) |
| { |
| struct clock_event_device *bc; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&tick_broadcast_lock, flags); |
| |
| tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT; |
| bc = tick_broadcast_device.evtdev; |
| if (bc) |
| tick_broadcast_setup_oneshot(bc); |
| spin_unlock_irqrestore(&tick_broadcast_lock, flags); |
| } |
| |
| |
| /* |
| * Remove a dead CPU from broadcasting |
| */ |
| void tick_shutdown_broadcast_oneshot(unsigned int *cpup) |
| { |
| struct clock_event_device *bc; |
| unsigned long flags; |
| unsigned int cpu = *cpup; |
| |
| spin_lock_irqsave(&tick_broadcast_lock, flags); |
| |
| bc = tick_broadcast_device.evtdev; |
| cpu_clear(cpu, tick_broadcast_oneshot_mask); |
| |
| if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT) { |
| if (bc && cpus_empty(tick_broadcast_oneshot_mask)) |
| clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN); |
| } |
| |
| spin_unlock_irqrestore(&tick_broadcast_lock, flags); |
| } |
| |
| #endif |