| /* |
| * PMC-Sierra SPCv/ve 8088/8089 SAS/SATA based host adapters driver |
| * |
| * Copyright (c) 2008-2009 PMC-Sierra, Inc., |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions, and the following disclaimer, |
| * without modification. |
| * 2. Redistributions in binary form must reproduce at minimum a disclaimer |
| * substantially similar to the "NO WARRANTY" disclaimer below |
| * ("Disclaimer") and any redistribution must be conditioned upon |
| * including a substantially similar Disclaimer requirement for further |
| * binary redistribution. |
| * 3. Neither the names of the above-listed copyright holders nor the names |
| * of any contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * Alternatively, this software may be distributed under the terms of the |
| * GNU General Public License ("GPL") version 2 as published by the Free |
| * Software Foundation. |
| * |
| * NO WARRANTY |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING |
| * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| * POSSIBILITY OF SUCH DAMAGES. |
| * |
| */ |
| #include <linux/slab.h> |
| #include "pm8001_sas.h" |
| #include "pm80xx_hwi.h" |
| #include "pm8001_chips.h" |
| #include "pm8001_ctl.h" |
| |
| #define SMP_DIRECT 1 |
| #define SMP_INDIRECT 2 |
| /** |
| * read_main_config_table - read the configure table and save it. |
| * @pm8001_ha: our hba card information |
| */ |
| static void read_main_config_table(struct pm8001_hba_info *pm8001_ha) |
| { |
| void __iomem *address = pm8001_ha->main_cfg_tbl_addr; |
| |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.signature = |
| pm8001_mr32(address, MAIN_SIGNATURE_OFFSET); |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.interface_rev = |
| pm8001_mr32(address, MAIN_INTERFACE_REVISION); |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.firmware_rev = |
| pm8001_mr32(address, MAIN_FW_REVISION); |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.max_out_io = |
| pm8001_mr32(address, MAIN_MAX_OUTSTANDING_IO_OFFSET); |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.max_sgl = |
| pm8001_mr32(address, MAIN_MAX_SGL_OFFSET); |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.ctrl_cap_flag = |
| pm8001_mr32(address, MAIN_CNTRL_CAP_OFFSET); |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.gst_offset = |
| pm8001_mr32(address, MAIN_GST_OFFSET); |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.inbound_queue_offset = |
| pm8001_mr32(address, MAIN_IBQ_OFFSET); |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.outbound_queue_offset = |
| pm8001_mr32(address, MAIN_OBQ_OFFSET); |
| |
| /* read Error Dump Offset and Length */ |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.fatal_err_dump_offset0 = |
| pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_OFFSET); |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.fatal_err_dump_length0 = |
| pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP0_LENGTH); |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.fatal_err_dump_offset1 = |
| pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_OFFSET); |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.fatal_err_dump_length1 = |
| pm8001_mr32(address, MAIN_FATAL_ERROR_RDUMP1_LENGTH); |
| |
| /* read GPIO LED settings from the configuration table */ |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.gpio_led_mapping = |
| pm8001_mr32(address, MAIN_GPIO_LED_FLAGS_OFFSET); |
| |
| /* read analog Setting offset from the configuration table */ |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.analog_setup_table_offset = |
| pm8001_mr32(address, MAIN_ANALOG_SETUP_OFFSET); |
| |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.int_vec_table_offset = |
| pm8001_mr32(address, MAIN_INT_VECTOR_TABLE_OFFSET); |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.phy_attr_table_offset = |
| pm8001_mr32(address, MAIN_SAS_PHY_ATTR_TABLE_OFFSET); |
| } |
| |
| /** |
| * read_general_status_table - read the general status table and save it. |
| * @pm8001_ha: our hba card information |
| */ |
| static void read_general_status_table(struct pm8001_hba_info *pm8001_ha) |
| { |
| void __iomem *address = pm8001_ha->general_stat_tbl_addr; |
| pm8001_ha->gs_tbl.pm80xx_tbl.gst_len_mpistate = |
| pm8001_mr32(address, GST_GSTLEN_MPIS_OFFSET); |
| pm8001_ha->gs_tbl.pm80xx_tbl.iq_freeze_state0 = |
| pm8001_mr32(address, GST_IQ_FREEZE_STATE0_OFFSET); |
| pm8001_ha->gs_tbl.pm80xx_tbl.iq_freeze_state1 = |
| pm8001_mr32(address, GST_IQ_FREEZE_STATE1_OFFSET); |
| pm8001_ha->gs_tbl.pm80xx_tbl.msgu_tcnt = |
| pm8001_mr32(address, GST_MSGUTCNT_OFFSET); |
| pm8001_ha->gs_tbl.pm80xx_tbl.iop_tcnt = |
| pm8001_mr32(address, GST_IOPTCNT_OFFSET); |
| pm8001_ha->gs_tbl.pm80xx_tbl.gpio_input_val = |
| pm8001_mr32(address, GST_GPIO_INPUT_VAL); |
| pm8001_ha->gs_tbl.pm80xx_tbl.recover_err_info[0] = |
| pm8001_mr32(address, GST_RERRINFO_OFFSET0); |
| pm8001_ha->gs_tbl.pm80xx_tbl.recover_err_info[1] = |
| pm8001_mr32(address, GST_RERRINFO_OFFSET1); |
| pm8001_ha->gs_tbl.pm80xx_tbl.recover_err_info[2] = |
| pm8001_mr32(address, GST_RERRINFO_OFFSET2); |
| pm8001_ha->gs_tbl.pm80xx_tbl.recover_err_info[3] = |
| pm8001_mr32(address, GST_RERRINFO_OFFSET3); |
| pm8001_ha->gs_tbl.pm80xx_tbl.recover_err_info[4] = |
| pm8001_mr32(address, GST_RERRINFO_OFFSET4); |
| pm8001_ha->gs_tbl.pm80xx_tbl.recover_err_info[5] = |
| pm8001_mr32(address, GST_RERRINFO_OFFSET5); |
| pm8001_ha->gs_tbl.pm80xx_tbl.recover_err_info[6] = |
| pm8001_mr32(address, GST_RERRINFO_OFFSET6); |
| pm8001_ha->gs_tbl.pm80xx_tbl.recover_err_info[7] = |
| pm8001_mr32(address, GST_RERRINFO_OFFSET7); |
| } |
| /** |
| * read_phy_attr_table - read the phy attribute table and save it. |
| * @pm8001_ha: our hba card information |
| */ |
| static void read_phy_attr_table(struct pm8001_hba_info *pm8001_ha) |
| { |
| void __iomem *address = pm8001_ha->pspa_q_tbl_addr; |
| pm8001_ha->phy_attr_table.phystart1_16[0] = |
| pm8001_mr32(address, PSPA_PHYSTATE0_OFFSET); |
| pm8001_ha->phy_attr_table.phystart1_16[1] = |
| pm8001_mr32(address, PSPA_PHYSTATE1_OFFSET); |
| pm8001_ha->phy_attr_table.phystart1_16[2] = |
| pm8001_mr32(address, PSPA_PHYSTATE2_OFFSET); |
| pm8001_ha->phy_attr_table.phystart1_16[3] = |
| pm8001_mr32(address, PSPA_PHYSTATE3_OFFSET); |
| pm8001_ha->phy_attr_table.phystart1_16[4] = |
| pm8001_mr32(address, PSPA_PHYSTATE4_OFFSET); |
| pm8001_ha->phy_attr_table.phystart1_16[5] = |
| pm8001_mr32(address, PSPA_PHYSTATE5_OFFSET); |
| pm8001_ha->phy_attr_table.phystart1_16[6] = |
| pm8001_mr32(address, PSPA_PHYSTATE6_OFFSET); |
| pm8001_ha->phy_attr_table.phystart1_16[7] = |
| pm8001_mr32(address, PSPA_PHYSTATE7_OFFSET); |
| pm8001_ha->phy_attr_table.phystart1_16[8] = |
| pm8001_mr32(address, PSPA_PHYSTATE8_OFFSET); |
| pm8001_ha->phy_attr_table.phystart1_16[9] = |
| pm8001_mr32(address, PSPA_PHYSTATE9_OFFSET); |
| pm8001_ha->phy_attr_table.phystart1_16[10] = |
| pm8001_mr32(address, PSPA_PHYSTATE10_OFFSET); |
| pm8001_ha->phy_attr_table.phystart1_16[11] = |
| pm8001_mr32(address, PSPA_PHYSTATE11_OFFSET); |
| pm8001_ha->phy_attr_table.phystart1_16[12] = |
| pm8001_mr32(address, PSPA_PHYSTATE12_OFFSET); |
| pm8001_ha->phy_attr_table.phystart1_16[13] = |
| pm8001_mr32(address, PSPA_PHYSTATE13_OFFSET); |
| pm8001_ha->phy_attr_table.phystart1_16[14] = |
| pm8001_mr32(address, PSPA_PHYSTATE14_OFFSET); |
| pm8001_ha->phy_attr_table.phystart1_16[15] = |
| pm8001_mr32(address, PSPA_PHYSTATE15_OFFSET); |
| |
| pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[0] = |
| pm8001_mr32(address, PSPA_OB_HW_EVENT_PID0_OFFSET); |
| pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[1] = |
| pm8001_mr32(address, PSPA_OB_HW_EVENT_PID1_OFFSET); |
| pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[2] = |
| pm8001_mr32(address, PSPA_OB_HW_EVENT_PID2_OFFSET); |
| pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[3] = |
| pm8001_mr32(address, PSPA_OB_HW_EVENT_PID3_OFFSET); |
| pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[4] = |
| pm8001_mr32(address, PSPA_OB_HW_EVENT_PID4_OFFSET); |
| pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[5] = |
| pm8001_mr32(address, PSPA_OB_HW_EVENT_PID5_OFFSET); |
| pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[6] = |
| pm8001_mr32(address, PSPA_OB_HW_EVENT_PID6_OFFSET); |
| pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[7] = |
| pm8001_mr32(address, PSPA_OB_HW_EVENT_PID7_OFFSET); |
| pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[8] = |
| pm8001_mr32(address, PSPA_OB_HW_EVENT_PID8_OFFSET); |
| pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[9] = |
| pm8001_mr32(address, PSPA_OB_HW_EVENT_PID9_OFFSET); |
| pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[10] = |
| pm8001_mr32(address, PSPA_OB_HW_EVENT_PID10_OFFSET); |
| pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[11] = |
| pm8001_mr32(address, PSPA_OB_HW_EVENT_PID11_OFFSET); |
| pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[12] = |
| pm8001_mr32(address, PSPA_OB_HW_EVENT_PID12_OFFSET); |
| pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[13] = |
| pm8001_mr32(address, PSPA_OB_HW_EVENT_PID13_OFFSET); |
| pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[14] = |
| pm8001_mr32(address, PSPA_OB_HW_EVENT_PID14_OFFSET); |
| pm8001_ha->phy_attr_table.outbound_hw_event_pid1_16[15] = |
| pm8001_mr32(address, PSPA_OB_HW_EVENT_PID15_OFFSET); |
| |
| } |
| |
| /** |
| * read_inbnd_queue_table - read the inbound queue table and save it. |
| * @pm8001_ha: our hba card information |
| */ |
| static void read_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha) |
| { |
| int i; |
| void __iomem *address = pm8001_ha->inbnd_q_tbl_addr; |
| for (i = 0; i < PM8001_MAX_SPCV_INB_NUM; i++) { |
| u32 offset = i * 0x20; |
| pm8001_ha->inbnd_q_tbl[i].pi_pci_bar = |
| get_pci_bar_index(pm8001_mr32(address, |
| (offset + IB_PIPCI_BAR))); |
| pm8001_ha->inbnd_q_tbl[i].pi_offset = |
| pm8001_mr32(address, (offset + IB_PIPCI_BAR_OFFSET)); |
| } |
| } |
| |
| /** |
| * read_outbnd_queue_table - read the outbound queue table and save it. |
| * @pm8001_ha: our hba card information |
| */ |
| static void read_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha) |
| { |
| int i; |
| void __iomem *address = pm8001_ha->outbnd_q_tbl_addr; |
| for (i = 0; i < PM8001_MAX_SPCV_OUTB_NUM; i++) { |
| u32 offset = i * 0x24; |
| pm8001_ha->outbnd_q_tbl[i].ci_pci_bar = |
| get_pci_bar_index(pm8001_mr32(address, |
| (offset + OB_CIPCI_BAR))); |
| pm8001_ha->outbnd_q_tbl[i].ci_offset = |
| pm8001_mr32(address, (offset + OB_CIPCI_BAR_OFFSET)); |
| } |
| } |
| |
| /** |
| * init_default_table_values - init the default table. |
| * @pm8001_ha: our hba card information |
| */ |
| static void init_default_table_values(struct pm8001_hba_info *pm8001_ha) |
| { |
| int i; |
| u32 offsetib, offsetob; |
| void __iomem *addressib = pm8001_ha->inbnd_q_tbl_addr; |
| void __iomem *addressob = pm8001_ha->outbnd_q_tbl_addr; |
| |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.upper_event_log_addr = |
| pm8001_ha->memoryMap.region[AAP1].phys_addr_hi; |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.lower_event_log_addr = |
| pm8001_ha->memoryMap.region[AAP1].phys_addr_lo; |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.event_log_size = |
| PM8001_EVENT_LOG_SIZE; |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.event_log_severity = 0x01; |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.upper_pcs_event_log_addr = |
| pm8001_ha->memoryMap.region[IOP].phys_addr_hi; |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.lower_pcs_event_log_addr = |
| pm8001_ha->memoryMap.region[IOP].phys_addr_lo; |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.pcs_event_log_size = |
| PM8001_EVENT_LOG_SIZE; |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.pcs_event_log_severity = 0x01; |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.fatal_err_interrupt = 0x01; |
| |
| /* Disable end to end CRC checking */ |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.crc_core_dump = (0x1 << 16); |
| |
| for (i = 0; i < PM8001_MAX_SPCV_INB_NUM; i++) { |
| pm8001_ha->inbnd_q_tbl[i].element_pri_size_cnt = |
| PM8001_MPI_QUEUE | (pm8001_ha->iomb_size << 16) | (0x00<<30); |
| pm8001_ha->inbnd_q_tbl[i].upper_base_addr = |
| pm8001_ha->memoryMap.region[IB + i].phys_addr_hi; |
| pm8001_ha->inbnd_q_tbl[i].lower_base_addr = |
| pm8001_ha->memoryMap.region[IB + i].phys_addr_lo; |
| pm8001_ha->inbnd_q_tbl[i].base_virt = |
| (u8 *)pm8001_ha->memoryMap.region[IB + i].virt_ptr; |
| pm8001_ha->inbnd_q_tbl[i].total_length = |
| pm8001_ha->memoryMap.region[IB + i].total_len; |
| pm8001_ha->inbnd_q_tbl[i].ci_upper_base_addr = |
| pm8001_ha->memoryMap.region[CI + i].phys_addr_hi; |
| pm8001_ha->inbnd_q_tbl[i].ci_lower_base_addr = |
| pm8001_ha->memoryMap.region[CI + i].phys_addr_lo; |
| pm8001_ha->inbnd_q_tbl[i].ci_virt = |
| pm8001_ha->memoryMap.region[CI + i].virt_ptr; |
| offsetib = i * 0x20; |
| pm8001_ha->inbnd_q_tbl[i].pi_pci_bar = |
| get_pci_bar_index(pm8001_mr32(addressib, |
| (offsetib + 0x14))); |
| pm8001_ha->inbnd_q_tbl[i].pi_offset = |
| pm8001_mr32(addressib, (offsetib + 0x18)); |
| pm8001_ha->inbnd_q_tbl[i].producer_idx = 0; |
| pm8001_ha->inbnd_q_tbl[i].consumer_index = 0; |
| } |
| for (i = 0; i < PM8001_MAX_SPCV_OUTB_NUM; i++) { |
| pm8001_ha->outbnd_q_tbl[i].element_size_cnt = |
| PM8001_MPI_QUEUE | (pm8001_ha->iomb_size << 16) | (0x01<<30); |
| pm8001_ha->outbnd_q_tbl[i].upper_base_addr = |
| pm8001_ha->memoryMap.region[OB + i].phys_addr_hi; |
| pm8001_ha->outbnd_q_tbl[i].lower_base_addr = |
| pm8001_ha->memoryMap.region[OB + i].phys_addr_lo; |
| pm8001_ha->outbnd_q_tbl[i].base_virt = |
| (u8 *)pm8001_ha->memoryMap.region[OB + i].virt_ptr; |
| pm8001_ha->outbnd_q_tbl[i].total_length = |
| pm8001_ha->memoryMap.region[OB + i].total_len; |
| pm8001_ha->outbnd_q_tbl[i].pi_upper_base_addr = |
| pm8001_ha->memoryMap.region[PI + i].phys_addr_hi; |
| pm8001_ha->outbnd_q_tbl[i].pi_lower_base_addr = |
| pm8001_ha->memoryMap.region[PI + i].phys_addr_lo; |
| /* interrupt vector based on oq */ |
| pm8001_ha->outbnd_q_tbl[i].interrup_vec_cnt_delay = (i << 24); |
| pm8001_ha->outbnd_q_tbl[i].pi_virt = |
| pm8001_ha->memoryMap.region[PI + i].virt_ptr; |
| offsetob = i * 0x24; |
| pm8001_ha->outbnd_q_tbl[i].ci_pci_bar = |
| get_pci_bar_index(pm8001_mr32(addressob, |
| offsetob + 0x14)); |
| pm8001_ha->outbnd_q_tbl[i].ci_offset = |
| pm8001_mr32(addressob, (offsetob + 0x18)); |
| pm8001_ha->outbnd_q_tbl[i].consumer_idx = 0; |
| pm8001_ha->outbnd_q_tbl[i].producer_index = 0; |
| } |
| } |
| |
| /** |
| * update_main_config_table - update the main default table to the HBA. |
| * @pm8001_ha: our hba card information |
| */ |
| static void update_main_config_table(struct pm8001_hba_info *pm8001_ha) |
| { |
| void __iomem *address = pm8001_ha->main_cfg_tbl_addr; |
| pm8001_mw32(address, MAIN_IQNPPD_HPPD_OFFSET, |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.inbound_q_nppd_hppd); |
| pm8001_mw32(address, MAIN_EVENT_LOG_ADDR_HI, |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.upper_event_log_addr); |
| pm8001_mw32(address, MAIN_EVENT_LOG_ADDR_LO, |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.lower_event_log_addr); |
| pm8001_mw32(address, MAIN_EVENT_LOG_BUFF_SIZE, |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.event_log_size); |
| pm8001_mw32(address, MAIN_EVENT_LOG_OPTION, |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.event_log_severity); |
| pm8001_mw32(address, MAIN_PCS_EVENT_LOG_ADDR_HI, |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.upper_pcs_event_log_addr); |
| pm8001_mw32(address, MAIN_PCS_EVENT_LOG_ADDR_LO, |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.lower_pcs_event_log_addr); |
| pm8001_mw32(address, MAIN_PCS_EVENT_LOG_BUFF_SIZE, |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.pcs_event_log_size); |
| pm8001_mw32(address, MAIN_PCS_EVENT_LOG_OPTION, |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.pcs_event_log_severity); |
| pm8001_mw32(address, MAIN_FATAL_ERROR_INTERRUPT, |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.fatal_err_interrupt); |
| pm8001_mw32(address, MAIN_EVENT_CRC_CHECK, |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.crc_core_dump); |
| |
| /* SPCv specific */ |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.gpio_led_mapping &= 0xCFFFFFFF; |
| /* Set GPIOLED to 0x2 for LED indicator */ |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.gpio_led_mapping |= 0x20000000; |
| pm8001_mw32(address, MAIN_GPIO_LED_FLAGS_OFFSET, |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.gpio_led_mapping); |
| |
| pm8001_mw32(address, MAIN_PORT_RECOVERY_TIMER, |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.port_recovery_timer); |
| pm8001_mw32(address, MAIN_INT_REASSERTION_DELAY, |
| pm8001_ha->main_cfg_tbl.pm80xx_tbl.interrupt_reassertion_delay); |
| } |
| |
| /** |
| * update_inbnd_queue_table - update the inbound queue table to the HBA. |
| * @pm8001_ha: our hba card information |
| */ |
| static void update_inbnd_queue_table(struct pm8001_hba_info *pm8001_ha, |
| int number) |
| { |
| void __iomem *address = pm8001_ha->inbnd_q_tbl_addr; |
| u16 offset = number * 0x20; |
| pm8001_mw32(address, offset + IB_PROPERITY_OFFSET, |
| pm8001_ha->inbnd_q_tbl[number].element_pri_size_cnt); |
| pm8001_mw32(address, offset + IB_BASE_ADDR_HI_OFFSET, |
| pm8001_ha->inbnd_q_tbl[number].upper_base_addr); |
| pm8001_mw32(address, offset + IB_BASE_ADDR_LO_OFFSET, |
| pm8001_ha->inbnd_q_tbl[number].lower_base_addr); |
| pm8001_mw32(address, offset + IB_CI_BASE_ADDR_HI_OFFSET, |
| pm8001_ha->inbnd_q_tbl[number].ci_upper_base_addr); |
| pm8001_mw32(address, offset + IB_CI_BASE_ADDR_LO_OFFSET, |
| pm8001_ha->inbnd_q_tbl[number].ci_lower_base_addr); |
| } |
| |
| /** |
| * update_outbnd_queue_table - update the outbound queue table to the HBA. |
| * @pm8001_ha: our hba card information |
| */ |
| static void update_outbnd_queue_table(struct pm8001_hba_info *pm8001_ha, |
| int number) |
| { |
| void __iomem *address = pm8001_ha->outbnd_q_tbl_addr; |
| u16 offset = number * 0x24; |
| pm8001_mw32(address, offset + OB_PROPERITY_OFFSET, |
| pm8001_ha->outbnd_q_tbl[number].element_size_cnt); |
| pm8001_mw32(address, offset + OB_BASE_ADDR_HI_OFFSET, |
| pm8001_ha->outbnd_q_tbl[number].upper_base_addr); |
| pm8001_mw32(address, offset + OB_BASE_ADDR_LO_OFFSET, |
| pm8001_ha->outbnd_q_tbl[number].lower_base_addr); |
| pm8001_mw32(address, offset + OB_PI_BASE_ADDR_HI_OFFSET, |
| pm8001_ha->outbnd_q_tbl[number].pi_upper_base_addr); |
| pm8001_mw32(address, offset + OB_PI_BASE_ADDR_LO_OFFSET, |
| pm8001_ha->outbnd_q_tbl[number].pi_lower_base_addr); |
| pm8001_mw32(address, offset + OB_INTERRUPT_COALES_OFFSET, |
| pm8001_ha->outbnd_q_tbl[number].interrup_vec_cnt_delay); |
| } |
| |
| /** |
| * mpi_init_check - check firmware initialization status. |
| * @pm8001_ha: our hba card information |
| */ |
| static int mpi_init_check(struct pm8001_hba_info *pm8001_ha) |
| { |
| u32 max_wait_count; |
| u32 value; |
| u32 gst_len_mpistate; |
| |
| /* Write bit0=1 to Inbound DoorBell Register to tell the SPC FW the |
| table is updated */ |
| pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPCv_MSGU_CFG_TABLE_UPDATE); |
| /* wait until Inbound DoorBell Clear Register toggled */ |
| if (IS_SPCV_12G(pm8001_ha->pdev)) { |
| max_wait_count = 4 * 1000 * 1000;/* 4 sec */ |
| } else { |
| max_wait_count = 2 * 1000 * 1000;/* 2 sec */ |
| } |
| do { |
| udelay(1); |
| value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET); |
| value &= SPCv_MSGU_CFG_TABLE_UPDATE; |
| } while ((value != 0) && (--max_wait_count)); |
| |
| if (!max_wait_count) |
| return -1; |
| /* check the MPI-State for initialization upto 100ms*/ |
| max_wait_count = 100 * 1000;/* 100 msec */ |
| do { |
| udelay(1); |
| gst_len_mpistate = |
| pm8001_mr32(pm8001_ha->general_stat_tbl_addr, |
| GST_GSTLEN_MPIS_OFFSET); |
| } while ((GST_MPI_STATE_INIT != |
| (gst_len_mpistate & GST_MPI_STATE_MASK)) && (--max_wait_count)); |
| if (!max_wait_count) |
| return -1; |
| |
| /* check MPI Initialization error */ |
| gst_len_mpistate = gst_len_mpistate >> 16; |
| if (0x0000 != gst_len_mpistate) |
| return -1; |
| |
| return 0; |
| } |
| |
| /** |
| * check_fw_ready - The LLDD check if the FW is ready, if not, return error. |
| * @pm8001_ha: our hba card information |
| */ |
| static int check_fw_ready(struct pm8001_hba_info *pm8001_ha) |
| { |
| u32 value; |
| u32 max_wait_count; |
| u32 max_wait_time; |
| int ret = 0; |
| |
| /* reset / PCIe ready */ |
| max_wait_time = max_wait_count = 100 * 1000; /* 100 milli sec */ |
| do { |
| udelay(1); |
| value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); |
| } while ((value == 0xFFFFFFFF) && (--max_wait_count)); |
| |
| /* check ila status */ |
| max_wait_time = max_wait_count = 1000 * 1000; /* 1000 milli sec */ |
| do { |
| udelay(1); |
| value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); |
| } while (((value & SCRATCH_PAD_ILA_READY) != |
| SCRATCH_PAD_ILA_READY) && (--max_wait_count)); |
| if (!max_wait_count) |
| ret = -1; |
| else { |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" ila ready status in %d millisec\n", |
| (max_wait_time - max_wait_count))); |
| } |
| |
| /* check RAAE status */ |
| max_wait_time = max_wait_count = 1800 * 1000; /* 1800 milli sec */ |
| do { |
| udelay(1); |
| value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); |
| } while (((value & SCRATCH_PAD_RAAE_READY) != |
| SCRATCH_PAD_RAAE_READY) && (--max_wait_count)); |
| if (!max_wait_count) |
| ret = -1; |
| else { |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" raae ready status in %d millisec\n", |
| (max_wait_time - max_wait_count))); |
| } |
| |
| /* check iop0 status */ |
| max_wait_time = max_wait_count = 600 * 1000; /* 600 milli sec */ |
| do { |
| udelay(1); |
| value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); |
| } while (((value & SCRATCH_PAD_IOP0_READY) != SCRATCH_PAD_IOP0_READY) && |
| (--max_wait_count)); |
| if (!max_wait_count) |
| ret = -1; |
| else { |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" iop0 ready status in %d millisec\n", |
| (max_wait_time - max_wait_count))); |
| } |
| |
| /* check iop1 status only for 16 port controllers */ |
| if ((pm8001_ha->chip_id != chip_8008) && |
| (pm8001_ha->chip_id != chip_8009)) { |
| /* 200 milli sec */ |
| max_wait_time = max_wait_count = 200 * 1000; |
| do { |
| udelay(1); |
| value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1); |
| } while (((value & SCRATCH_PAD_IOP1_READY) != |
| SCRATCH_PAD_IOP1_READY) && (--max_wait_count)); |
| if (!max_wait_count) |
| ret = -1; |
| else { |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk( |
| "iop1 ready status in %d millisec\n", |
| (max_wait_time - max_wait_count))); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static void init_pci_device_addresses(struct pm8001_hba_info *pm8001_ha) |
| { |
| void __iomem *base_addr; |
| u32 value; |
| u32 offset; |
| u32 pcibar; |
| u32 pcilogic; |
| |
| value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_0); |
| offset = value & 0x03FFFFFF; /* scratch pad 0 TBL address */ |
| |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("Scratchpad 0 Offset: 0x%x value 0x%x\n", |
| offset, value)); |
| pcilogic = (value & 0xFC000000) >> 26; |
| pcibar = get_pci_bar_index(pcilogic); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("Scratchpad 0 PCI BAR: %d\n", pcibar)); |
| pm8001_ha->main_cfg_tbl_addr = base_addr = |
| pm8001_ha->io_mem[pcibar].memvirtaddr + offset; |
| pm8001_ha->general_stat_tbl_addr = |
| base_addr + (pm8001_cr32(pm8001_ha, pcibar, offset + 0x18) & |
| 0xFFFFFF); |
| pm8001_ha->inbnd_q_tbl_addr = |
| base_addr + (pm8001_cr32(pm8001_ha, pcibar, offset + 0x1C) & |
| 0xFFFFFF); |
| pm8001_ha->outbnd_q_tbl_addr = |
| base_addr + (pm8001_cr32(pm8001_ha, pcibar, offset + 0x20) & |
| 0xFFFFFF); |
| pm8001_ha->ivt_tbl_addr = |
| base_addr + (pm8001_cr32(pm8001_ha, pcibar, offset + 0x8C) & |
| 0xFFFFFF); |
| pm8001_ha->pspa_q_tbl_addr = |
| base_addr + (pm8001_cr32(pm8001_ha, pcibar, offset + 0x90) & |
| 0xFFFFFF); |
| |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("GST OFFSET 0x%x\n", |
| pm8001_cr32(pm8001_ha, pcibar, offset + 0x18))); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("INBND OFFSET 0x%x\n", |
| pm8001_cr32(pm8001_ha, pcibar, offset + 0x1C))); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("OBND OFFSET 0x%x\n", |
| pm8001_cr32(pm8001_ha, pcibar, offset + 0x20))); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("IVT OFFSET 0x%x\n", |
| pm8001_cr32(pm8001_ha, pcibar, offset + 0x8C))); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("PSPA OFFSET 0x%x\n", |
| pm8001_cr32(pm8001_ha, pcibar, offset + 0x90))); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("addr - main cfg %p general status %p\n", |
| pm8001_ha->main_cfg_tbl_addr, |
| pm8001_ha->general_stat_tbl_addr)); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("addr - inbnd %p obnd %p\n", |
| pm8001_ha->inbnd_q_tbl_addr, |
| pm8001_ha->outbnd_q_tbl_addr)); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("addr - pspa %p ivt %p\n", |
| pm8001_ha->pspa_q_tbl_addr, |
| pm8001_ha->ivt_tbl_addr)); |
| } |
| |
| /** |
| * pm80xx_set_thermal_config - support the thermal configuration |
| * @pm8001_ha: our hba card information. |
| */ |
| int |
| pm80xx_set_thermal_config(struct pm8001_hba_info *pm8001_ha) |
| { |
| struct set_ctrl_cfg_req payload; |
| struct inbound_queue_table *circularQ; |
| int rc; |
| u32 tag; |
| u32 opc = OPC_INB_SET_CONTROLLER_CONFIG; |
| |
| memset(&payload, 0, sizeof(struct set_ctrl_cfg_req)); |
| rc = pm8001_tag_alloc(pm8001_ha, &tag); |
| if (rc) |
| return -1; |
| |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| payload.tag = cpu_to_le32(tag); |
| payload.cfg_pg[0] = (THERMAL_LOG_ENABLE << 9) | |
| (THERMAL_ENABLE << 8) | THERMAL_OP_CODE; |
| payload.cfg_pg[1] = (LTEMPHIL << 24) | (RTEMPHIL << 8); |
| |
| rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, 0); |
| return rc; |
| |
| } |
| |
| /** |
| * pm80xx_set_sas_protocol_timer_config - support the SAS Protocol |
| * Timer configuration page |
| * @pm8001_ha: our hba card information. |
| */ |
| static int |
| pm80xx_set_sas_protocol_timer_config(struct pm8001_hba_info *pm8001_ha) |
| { |
| struct set_ctrl_cfg_req payload; |
| struct inbound_queue_table *circularQ; |
| SASProtocolTimerConfig_t SASConfigPage; |
| int rc; |
| u32 tag; |
| u32 opc = OPC_INB_SET_CONTROLLER_CONFIG; |
| |
| memset(&payload, 0, sizeof(struct set_ctrl_cfg_req)); |
| memset(&SASConfigPage, 0, sizeof(SASProtocolTimerConfig_t)); |
| |
| rc = pm8001_tag_alloc(pm8001_ha, &tag); |
| |
| if (rc) |
| return -1; |
| |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| payload.tag = cpu_to_le32(tag); |
| |
| SASConfigPage.pageCode = SAS_PROTOCOL_TIMER_CONFIG_PAGE; |
| SASConfigPage.MST_MSI = 3 << 15; |
| SASConfigPage.STP_SSP_MCT_TMO = (STP_MCT_TMO << 16) | SSP_MCT_TMO; |
| SASConfigPage.STP_FRM_TMO = (SAS_MAX_OPEN_TIME << 24) | |
| (SMP_MAX_CONN_TIMER << 16) | STP_FRM_TIMER; |
| SASConfigPage.STP_IDLE_TMO = STP_IDLE_TIME; |
| |
| if (SASConfigPage.STP_IDLE_TMO > 0x3FFFFFF) |
| SASConfigPage.STP_IDLE_TMO = 0x3FFFFFF; |
| |
| |
| SASConfigPage.OPNRJT_RTRY_INTVL = (SAS_MFD << 16) | |
| SAS_OPNRJT_RTRY_INTVL; |
| SASConfigPage.Data_Cmd_OPNRJT_RTRY_TMO = (SAS_DOPNRJT_RTRY_TMO << 16) |
| | SAS_COPNRJT_RTRY_TMO; |
| SASConfigPage.Data_Cmd_OPNRJT_RTRY_THR = (SAS_DOPNRJT_RTRY_THR << 16) |
| | SAS_COPNRJT_RTRY_THR; |
| SASConfigPage.MAX_AIP = SAS_MAX_AIP; |
| |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("SASConfigPage.pageCode " |
| "0x%08x\n", SASConfigPage.pageCode)); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("SASConfigPage.MST_MSI " |
| " 0x%08x\n", SASConfigPage.MST_MSI)); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("SASConfigPage.STP_SSP_MCT_TMO " |
| " 0x%08x\n", SASConfigPage.STP_SSP_MCT_TMO)); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("SASConfigPage.STP_FRM_TMO " |
| " 0x%08x\n", SASConfigPage.STP_FRM_TMO)); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("SASConfigPage.STP_IDLE_TMO " |
| " 0x%08x\n", SASConfigPage.STP_IDLE_TMO)); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("SASConfigPage.OPNRJT_RTRY_INTVL " |
| " 0x%08x\n", SASConfigPage.OPNRJT_RTRY_INTVL)); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("SASConfigPage.Data_Cmd_OPNRJT_RTRY_TMO " |
| " 0x%08x\n", SASConfigPage.Data_Cmd_OPNRJT_RTRY_TMO)); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("SASConfigPage.Data_Cmd_OPNRJT_RTRY_THR " |
| " 0x%08x\n", SASConfigPage.Data_Cmd_OPNRJT_RTRY_THR)); |
| PM8001_INIT_DBG(pm8001_ha, pm8001_printk("SASConfigPage.MAX_AIP " |
| " 0x%08x\n", SASConfigPage.MAX_AIP)); |
| |
| memcpy(&payload.cfg_pg, &SASConfigPage, |
| sizeof(SASProtocolTimerConfig_t)); |
| |
| rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, 0); |
| |
| return rc; |
| } |
| |
| /** |
| * pm80xx_get_encrypt_info - Check for encryption |
| * @pm8001_ha: our hba card information. |
| */ |
| static int |
| pm80xx_get_encrypt_info(struct pm8001_hba_info *pm8001_ha) |
| { |
| u32 scratch3_value; |
| int ret; |
| |
| /* Read encryption status from SCRATCH PAD 3 */ |
| scratch3_value = pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_3); |
| |
| if ((scratch3_value & SCRATCH_PAD3_ENC_MASK) == |
| SCRATCH_PAD3_ENC_READY) { |
| if (scratch3_value & SCRATCH_PAD3_XTS_ENABLED) |
| pm8001_ha->encrypt_info.cipher_mode = CIPHER_MODE_XTS; |
| if ((scratch3_value & SCRATCH_PAD3_SM_MASK) == |
| SCRATCH_PAD3_SMF_ENABLED) |
| pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMF; |
| if ((scratch3_value & SCRATCH_PAD3_SM_MASK) == |
| SCRATCH_PAD3_SMA_ENABLED) |
| pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMA; |
| if ((scratch3_value & SCRATCH_PAD3_SM_MASK) == |
| SCRATCH_PAD3_SMB_ENABLED) |
| pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMB; |
| pm8001_ha->encrypt_info.status = 0; |
| PM8001_INIT_DBG(pm8001_ha, pm8001_printk( |
| "Encryption: SCRATCH_PAD3_ENC_READY 0x%08X." |
| "Cipher mode 0x%x Sec mode 0x%x status 0x%x\n", |
| scratch3_value, pm8001_ha->encrypt_info.cipher_mode, |
| pm8001_ha->encrypt_info.sec_mode, |
| pm8001_ha->encrypt_info.status)); |
| ret = 0; |
| } else if ((scratch3_value & SCRATCH_PAD3_ENC_READY) == |
| SCRATCH_PAD3_ENC_DISABLED) { |
| PM8001_INIT_DBG(pm8001_ha, pm8001_printk( |
| "Encryption: SCRATCH_PAD3_ENC_DISABLED 0x%08X\n", |
| scratch3_value)); |
| pm8001_ha->encrypt_info.status = 0xFFFFFFFF; |
| pm8001_ha->encrypt_info.cipher_mode = 0; |
| pm8001_ha->encrypt_info.sec_mode = 0; |
| return 0; |
| } else if ((scratch3_value & SCRATCH_PAD3_ENC_MASK) == |
| SCRATCH_PAD3_ENC_DIS_ERR) { |
| pm8001_ha->encrypt_info.status = |
| (scratch3_value & SCRATCH_PAD3_ERR_CODE) >> 16; |
| if (scratch3_value & SCRATCH_PAD3_XTS_ENABLED) |
| pm8001_ha->encrypt_info.cipher_mode = CIPHER_MODE_XTS; |
| if ((scratch3_value & SCRATCH_PAD3_SM_MASK) == |
| SCRATCH_PAD3_SMF_ENABLED) |
| pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMF; |
| if ((scratch3_value & SCRATCH_PAD3_SM_MASK) == |
| SCRATCH_PAD3_SMA_ENABLED) |
| pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMA; |
| if ((scratch3_value & SCRATCH_PAD3_SM_MASK) == |
| SCRATCH_PAD3_SMB_ENABLED) |
| pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMB; |
| PM8001_INIT_DBG(pm8001_ha, pm8001_printk( |
| "Encryption: SCRATCH_PAD3_DIS_ERR 0x%08X." |
| "Cipher mode 0x%x sec mode 0x%x status 0x%x\n", |
| scratch3_value, pm8001_ha->encrypt_info.cipher_mode, |
| pm8001_ha->encrypt_info.sec_mode, |
| pm8001_ha->encrypt_info.status)); |
| ret = -1; |
| } else if ((scratch3_value & SCRATCH_PAD3_ENC_MASK) == |
| SCRATCH_PAD3_ENC_ENA_ERR) { |
| |
| pm8001_ha->encrypt_info.status = |
| (scratch3_value & SCRATCH_PAD3_ERR_CODE) >> 16; |
| if (scratch3_value & SCRATCH_PAD3_XTS_ENABLED) |
| pm8001_ha->encrypt_info.cipher_mode = CIPHER_MODE_XTS; |
| if ((scratch3_value & SCRATCH_PAD3_SM_MASK) == |
| SCRATCH_PAD3_SMF_ENABLED) |
| pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMF; |
| if ((scratch3_value & SCRATCH_PAD3_SM_MASK) == |
| SCRATCH_PAD3_SMA_ENABLED) |
| pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMA; |
| if ((scratch3_value & SCRATCH_PAD3_SM_MASK) == |
| SCRATCH_PAD3_SMB_ENABLED) |
| pm8001_ha->encrypt_info.sec_mode = SEC_MODE_SMB; |
| |
| PM8001_INIT_DBG(pm8001_ha, pm8001_printk( |
| "Encryption: SCRATCH_PAD3_ENA_ERR 0x%08X." |
| "Cipher mode 0x%x sec mode 0x%x status 0x%x\n", |
| scratch3_value, pm8001_ha->encrypt_info.cipher_mode, |
| pm8001_ha->encrypt_info.sec_mode, |
| pm8001_ha->encrypt_info.status)); |
| ret = -1; |
| } |
| return ret; |
| } |
| |
| /** |
| * pm80xx_encrypt_update - update flash with encryption informtion |
| * @pm8001_ha: our hba card information. |
| */ |
| static int pm80xx_encrypt_update(struct pm8001_hba_info *pm8001_ha) |
| { |
| struct kek_mgmt_req payload; |
| struct inbound_queue_table *circularQ; |
| int rc; |
| u32 tag; |
| u32 opc = OPC_INB_KEK_MANAGEMENT; |
| |
| memset(&payload, 0, sizeof(struct kek_mgmt_req)); |
| rc = pm8001_tag_alloc(pm8001_ha, &tag); |
| if (rc) |
| return -1; |
| |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| payload.tag = cpu_to_le32(tag); |
| /* Currently only one key is used. New KEK index is 1. |
| * Current KEK index is 1. Store KEK to NVRAM is 1. |
| */ |
| payload.new_curidx_ksop = ((1 << 24) | (1 << 16) | (1 << 8) | |
| KEK_MGMT_SUBOP_KEYCARDUPDATE); |
| |
| rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, 0); |
| |
| return rc; |
| } |
| |
| /** |
| * pm8001_chip_init - the main init function that initialize whole PM8001 chip. |
| * @pm8001_ha: our hba card information |
| */ |
| static int pm80xx_chip_init(struct pm8001_hba_info *pm8001_ha) |
| { |
| int ret; |
| u8 i = 0; |
| |
| /* check the firmware status */ |
| if (-1 == check_fw_ready(pm8001_ha)) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("Firmware is not ready!\n")); |
| return -EBUSY; |
| } |
| |
| /* Initialize pci space address eg: mpi offset */ |
| init_pci_device_addresses(pm8001_ha); |
| init_default_table_values(pm8001_ha); |
| read_main_config_table(pm8001_ha); |
| read_general_status_table(pm8001_ha); |
| read_inbnd_queue_table(pm8001_ha); |
| read_outbnd_queue_table(pm8001_ha); |
| read_phy_attr_table(pm8001_ha); |
| |
| /* update main config table ,inbound table and outbound table */ |
| update_main_config_table(pm8001_ha); |
| for (i = 0; i < PM8001_MAX_SPCV_INB_NUM; i++) |
| update_inbnd_queue_table(pm8001_ha, i); |
| for (i = 0; i < PM8001_MAX_SPCV_OUTB_NUM; i++) |
| update_outbnd_queue_table(pm8001_ha, i); |
| |
| /* notify firmware update finished and check initialization status */ |
| if (0 == mpi_init_check(pm8001_ha)) { |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("MPI initialize successful!\n")); |
| } else |
| return -EBUSY; |
| |
| /* send SAS protocol timer configuration page to FW */ |
| ret = pm80xx_set_sas_protocol_timer_config(pm8001_ha); |
| |
| /* Check for encryption */ |
| if (pm8001_ha->chip->encrypt) { |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("Checking for encryption\n")); |
| ret = pm80xx_get_encrypt_info(pm8001_ha); |
| if (ret == -1) { |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("Encryption error !!\n")); |
| if (pm8001_ha->encrypt_info.status == 0x81) { |
| PM8001_INIT_DBG(pm8001_ha, pm8001_printk( |
| "Encryption enabled with error." |
| "Saving encryption key to flash\n")); |
| pm80xx_encrypt_update(pm8001_ha); |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static int mpi_uninit_check(struct pm8001_hba_info *pm8001_ha) |
| { |
| u32 max_wait_count; |
| u32 value; |
| u32 gst_len_mpistate; |
| init_pci_device_addresses(pm8001_ha); |
| /* Write bit1=1 to Inbound DoorBell Register to tell the SPC FW the |
| table is stop */ |
| pm8001_cw32(pm8001_ha, 0, MSGU_IBDB_SET, SPCv_MSGU_CFG_TABLE_RESET); |
| |
| /* wait until Inbound DoorBell Clear Register toggled */ |
| if (IS_SPCV_12G(pm8001_ha->pdev)) { |
| max_wait_count = 4 * 1000 * 1000;/* 4 sec */ |
| } else { |
| max_wait_count = 2 * 1000 * 1000;/* 2 sec */ |
| } |
| do { |
| udelay(1); |
| value = pm8001_cr32(pm8001_ha, 0, MSGU_IBDB_SET); |
| value &= SPCv_MSGU_CFG_TABLE_RESET; |
| } while ((value != 0) && (--max_wait_count)); |
| |
| if (!max_wait_count) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("TIMEOUT:IBDB value/=%x\n", value)); |
| return -1; |
| } |
| |
| /* check the MPI-State for termination in progress */ |
| /* wait until Inbound DoorBell Clear Register toggled */ |
| max_wait_count = 2 * 1000 * 1000; /* 2 sec for spcv/ve */ |
| do { |
| udelay(1); |
| gst_len_mpistate = |
| pm8001_mr32(pm8001_ha->general_stat_tbl_addr, |
| GST_GSTLEN_MPIS_OFFSET); |
| if (GST_MPI_STATE_UNINIT == |
| (gst_len_mpistate & GST_MPI_STATE_MASK)) |
| break; |
| } while (--max_wait_count); |
| if (!max_wait_count) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk(" TIME OUT MPI State = 0x%x\n", |
| gst_len_mpistate & GST_MPI_STATE_MASK)); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * pm8001_chip_soft_rst - soft reset the PM8001 chip, so that the clear all |
| * the FW register status to the originated status. |
| * @pm8001_ha: our hba card information |
| */ |
| |
| static int |
| pm80xx_chip_soft_rst(struct pm8001_hba_info *pm8001_ha) |
| { |
| u32 regval; |
| u32 bootloader_state; |
| |
| /* Check if MPI is in ready state to reset */ |
| if (mpi_uninit_check(pm8001_ha) != 0) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("MPI state is not ready\n")); |
| return -1; |
| } |
| |
| /* checked for reset register normal state; 0x0 */ |
| regval = pm8001_cr32(pm8001_ha, 0, SPC_REG_SOFT_RESET); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("reset register before write : 0x%x\n", regval)); |
| |
| pm8001_cw32(pm8001_ha, 0, SPC_REG_SOFT_RESET, SPCv_NORMAL_RESET_VALUE); |
| mdelay(500); |
| |
| regval = pm8001_cr32(pm8001_ha, 0, SPC_REG_SOFT_RESET); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("reset register after write 0x%x\n", regval)); |
| |
| if ((regval & SPCv_SOFT_RESET_READ_MASK) == |
| SPCv_SOFT_RESET_NORMAL_RESET_OCCURED) { |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" soft reset successful [regval: 0x%x]\n", |
| regval)); |
| } else { |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" soft reset failed [regval: 0x%x]\n", |
| regval)); |
| |
| /* check bootloader is successfully executed or in HDA mode */ |
| bootloader_state = |
| pm8001_cr32(pm8001_ha, 0, MSGU_SCRATCH_PAD_1) & |
| SCRATCH_PAD1_BOOTSTATE_MASK; |
| |
| if (bootloader_state == SCRATCH_PAD1_BOOTSTATE_HDA_SEEPROM) { |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk( |
| "Bootloader state - HDA mode SEEPROM\n")); |
| } else if (bootloader_state == |
| SCRATCH_PAD1_BOOTSTATE_HDA_BOOTSTRAP) { |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk( |
| "Bootloader state - HDA mode Bootstrap Pin\n")); |
| } else if (bootloader_state == |
| SCRATCH_PAD1_BOOTSTATE_HDA_SOFTRESET) { |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk( |
| "Bootloader state - HDA mode soft reset\n")); |
| } else if (bootloader_state == |
| SCRATCH_PAD1_BOOTSTATE_CRIT_ERROR) { |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk( |
| "Bootloader state-HDA mode critical error\n")); |
| } |
| return -EBUSY; |
| } |
| |
| /* check the firmware status after reset */ |
| if (-1 == check_fw_ready(pm8001_ha)) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("Firmware is not ready!\n")); |
| return -EBUSY; |
| } |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("SPCv soft reset Complete\n")); |
| return 0; |
| } |
| |
| static void pm80xx_hw_chip_rst(struct pm8001_hba_info *pm8001_ha) |
| { |
| u32 i; |
| |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("chip reset start\n")); |
| |
| /* do SPCv chip reset. */ |
| pm8001_cw32(pm8001_ha, 0, SPC_REG_SOFT_RESET, 0x11); |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("SPC soft reset Complete\n")); |
| |
| /* Check this ..whether delay is required or no */ |
| /* delay 10 usec */ |
| udelay(10); |
| |
| /* wait for 20 msec until the firmware gets reloaded */ |
| i = 20; |
| do { |
| mdelay(1); |
| } while ((--i) != 0); |
| |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("chip reset finished\n")); |
| } |
| |
| /** |
| * pm8001_chip_interrupt_enable - enable PM8001 chip interrupt |
| * @pm8001_ha: our hba card information |
| */ |
| static void |
| pm80xx_chip_intx_interrupt_enable(struct pm8001_hba_info *pm8001_ha) |
| { |
| pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, ODMR_CLEAR_ALL); |
| pm8001_cw32(pm8001_ha, 0, MSGU_ODCR, ODCR_CLEAR_ALL); |
| } |
| |
| /** |
| * pm8001_chip_intx_interrupt_disable- disable PM8001 chip interrupt |
| * @pm8001_ha: our hba card information |
| */ |
| static void |
| pm80xx_chip_intx_interrupt_disable(struct pm8001_hba_info *pm8001_ha) |
| { |
| pm8001_cw32(pm8001_ha, 0, MSGU_ODMR_CLR, ODMR_MASK_ALL); |
| } |
| |
| /** |
| * pm8001_chip_interrupt_enable - enable PM8001 chip interrupt |
| * @pm8001_ha: our hba card information |
| */ |
| static void |
| pm80xx_chip_interrupt_enable(struct pm8001_hba_info *pm8001_ha, u8 vec) |
| { |
| #ifdef PM8001_USE_MSIX |
| u32 mask; |
| mask = (u32)(1 << vec); |
| |
| pm8001_cw32(pm8001_ha, 0, MSGU_ODMR_CLR, (u32)(mask & 0xFFFFFFFF)); |
| return; |
| #endif |
| pm80xx_chip_intx_interrupt_enable(pm8001_ha); |
| |
| } |
| |
| /** |
| * pm8001_chip_interrupt_disable- disable PM8001 chip interrupt |
| * @pm8001_ha: our hba card information |
| */ |
| static void |
| pm80xx_chip_interrupt_disable(struct pm8001_hba_info *pm8001_ha, u8 vec) |
| { |
| #ifdef PM8001_USE_MSIX |
| u32 mask; |
| if (vec == 0xFF) |
| mask = 0xFFFFFFFF; |
| else |
| mask = (u32)(1 << vec); |
| pm8001_cw32(pm8001_ha, 0, MSGU_ODMR, (u32)(mask & 0xFFFFFFFF)); |
| return; |
| #endif |
| pm80xx_chip_intx_interrupt_disable(pm8001_ha); |
| } |
| |
| static void pm80xx_send_abort_all(struct pm8001_hba_info *pm8001_ha, |
| struct pm8001_device *pm8001_ha_dev) |
| { |
| int res; |
| u32 ccb_tag; |
| struct pm8001_ccb_info *ccb; |
| struct sas_task *task = NULL; |
| struct task_abort_req task_abort; |
| struct inbound_queue_table *circularQ; |
| u32 opc = OPC_INB_SATA_ABORT; |
| int ret; |
| |
| if (!pm8001_ha_dev) { |
| PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("dev is null\n")); |
| return; |
| } |
| |
| task = sas_alloc_slow_task(GFP_ATOMIC); |
| |
| if (!task) { |
| PM8001_FAIL_DBG(pm8001_ha, pm8001_printk("cannot " |
| "allocate task\n")); |
| return; |
| } |
| |
| task->task_done = pm8001_task_done; |
| |
| res = pm8001_tag_alloc(pm8001_ha, &ccb_tag); |
| if (res) |
| return; |
| |
| ccb = &pm8001_ha->ccb_info[ccb_tag]; |
| ccb->device = pm8001_ha_dev; |
| ccb->ccb_tag = ccb_tag; |
| ccb->task = task; |
| |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| |
| memset(&task_abort, 0, sizeof(task_abort)); |
| task_abort.abort_all = cpu_to_le32(1); |
| task_abort.device_id = cpu_to_le32(pm8001_ha_dev->device_id); |
| task_abort.tag = cpu_to_le32(ccb_tag); |
| |
| ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &task_abort, 0); |
| |
| } |
| |
| static void pm80xx_send_read_log(struct pm8001_hba_info *pm8001_ha, |
| struct pm8001_device *pm8001_ha_dev) |
| { |
| struct sata_start_req sata_cmd; |
| int res; |
| u32 ccb_tag; |
| struct pm8001_ccb_info *ccb; |
| struct sas_task *task = NULL; |
| struct host_to_dev_fis fis; |
| struct domain_device *dev; |
| struct inbound_queue_table *circularQ; |
| u32 opc = OPC_INB_SATA_HOST_OPSTART; |
| |
| task = sas_alloc_slow_task(GFP_ATOMIC); |
| |
| if (!task) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("cannot allocate task !!!\n")); |
| return; |
| } |
| task->task_done = pm8001_task_done; |
| |
| res = pm8001_tag_alloc(pm8001_ha, &ccb_tag); |
| if (res) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("cannot allocate tag !!!\n")); |
| return; |
| } |
| |
| /* allocate domain device by ourselves as libsas |
| * is not going to provide any |
| */ |
| dev = kzalloc(sizeof(struct domain_device), GFP_ATOMIC); |
| if (!dev) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("Domain device cannot be allocated\n")); |
| sas_free_task(task); |
| return; |
| } else { |
| task->dev = dev; |
| task->dev->lldd_dev = pm8001_ha_dev; |
| } |
| |
| ccb = &pm8001_ha->ccb_info[ccb_tag]; |
| ccb->device = pm8001_ha_dev; |
| ccb->ccb_tag = ccb_tag; |
| ccb->task = task; |
| pm8001_ha_dev->id |= NCQ_READ_LOG_FLAG; |
| pm8001_ha_dev->id |= NCQ_2ND_RLE_FLAG; |
| |
| memset(&sata_cmd, 0, sizeof(sata_cmd)); |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| |
| /* construct read log FIS */ |
| memset(&fis, 0, sizeof(struct host_to_dev_fis)); |
| fis.fis_type = 0x27; |
| fis.flags = 0x80; |
| fis.command = ATA_CMD_READ_LOG_EXT; |
| fis.lbal = 0x10; |
| fis.sector_count = 0x1; |
| |
| sata_cmd.tag = cpu_to_le32(ccb_tag); |
| sata_cmd.device_id = cpu_to_le32(pm8001_ha_dev->device_id); |
| sata_cmd.ncqtag_atap_dir_m_dad |= ((0x1 << 7) | (0x5 << 9)); |
| memcpy(&sata_cmd.sata_fis, &fis, sizeof(struct host_to_dev_fis)); |
| |
| res = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &sata_cmd, 0); |
| |
| } |
| |
| /** |
| * mpi_ssp_completion- process the event that FW response to the SSP request. |
| * @pm8001_ha: our hba card information |
| * @piomb: the message contents of this outbound message. |
| * |
| * When FW has completed a ssp request for example a IO request, after it has |
| * filled the SG data with the data, it will trigger this event represent |
| * that he has finished the job,please check the coresponding buffer. |
| * So we will tell the caller who maybe waiting the result to tell upper layer |
| * that the task has been finished. |
| */ |
| static void |
| mpi_ssp_completion(struct pm8001_hba_info *pm8001_ha , void *piomb) |
| { |
| struct sas_task *t; |
| struct pm8001_ccb_info *ccb; |
| unsigned long flags; |
| u32 status; |
| u32 param; |
| u32 tag; |
| struct ssp_completion_resp *psspPayload; |
| struct task_status_struct *ts; |
| struct ssp_response_iu *iu; |
| struct pm8001_device *pm8001_dev; |
| psspPayload = (struct ssp_completion_resp *)(piomb + 4); |
| status = le32_to_cpu(psspPayload->status); |
| tag = le32_to_cpu(psspPayload->tag); |
| ccb = &pm8001_ha->ccb_info[tag]; |
| if ((status == IO_ABORTED) && ccb->open_retry) { |
| /* Being completed by another */ |
| ccb->open_retry = 0; |
| return; |
| } |
| pm8001_dev = ccb->device; |
| param = le32_to_cpu(psspPayload->param); |
| t = ccb->task; |
| |
| if (status && status != IO_UNDERFLOW) |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("sas IO status 0x%x\n", status)); |
| if (unlikely(!t || !t->lldd_task || !t->dev)) |
| return; |
| ts = &t->task_status; |
| /* Print sas address of IO failed device */ |
| if ((status != IO_SUCCESS) && (status != IO_OVERFLOW) && |
| (status != IO_UNDERFLOW)) |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("SAS Address of IO Failure Drive" |
| ":%016llx", SAS_ADDR(t->dev->sas_addr))); |
| |
| switch (status) { |
| case IO_SUCCESS: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_SUCCESS ,param = 0x%x\n", |
| param)); |
| if (param == 0) { |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAM_STAT_GOOD; |
| } else { |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_PROTO_RESPONSE; |
| ts->residual = param; |
| iu = &psspPayload->ssp_resp_iu; |
| sas_ssp_task_response(pm8001_ha->dev, t, iu); |
| } |
| if (pm8001_dev) |
| pm8001_dev->running_req--; |
| break; |
| case IO_ABORTED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_ABORTED IOMB Tag\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_ABORTED_TASK; |
| break; |
| case IO_UNDERFLOW: |
| /* SSP Completion with error */ |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_UNDERFLOW ,param = 0x%x\n", |
| param)); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_UNDERRUN; |
| ts->residual = param; |
| if (pm8001_dev) |
| pm8001_dev->running_req--; |
| break; |
| case IO_NO_DEVICE: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_NO_DEVICE\n")); |
| ts->resp = SAS_TASK_UNDELIVERED; |
| ts->stat = SAS_PHY_DOWN; |
| break; |
| case IO_XFER_ERROR_BREAK: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_BREAK\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| /* Force the midlayer to retry */ |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_XFER_ERROR_PHY_NOT_READY: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_EPROTO; |
| break; |
| case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_UNKNOWN; |
| break; |
| case IO_OPEN_CNX_ERROR_BREAK: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: |
| case IO_XFER_OPEN_RETRY_BACKOFF_THRESHOLD_REACHED: |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_TMO: |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_NO_DEST: |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_COLLIDE: |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_PATHWAY_BLOCKED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_UNKNOWN; |
| if (!t->uldd_task) |
| pm8001_handle_event(pm8001_ha, |
| pm8001_dev, |
| IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); |
| break; |
| case IO_OPEN_CNX_ERROR_BAD_DESTINATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_BAD_DEST; |
| break; |
| case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk( |
| "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_CONN_RATE; |
| break; |
| case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n")); |
| ts->resp = SAS_TASK_UNDELIVERED; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_WRONG_DEST; |
| break; |
| case IO_XFER_ERROR_NAK_RECEIVED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_NAK_RECEIVED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_XFER_ERROR_ACK_NAK_TIMEOUT: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_ACK_NAK_TIMEOUT\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_NAK_R_ERR; |
| break; |
| case IO_XFER_ERROR_DMA: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_DMA\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| break; |
| case IO_XFER_OPEN_RETRY_TIMEOUT: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_XFER_ERROR_OFFSET_MISMATCH: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_OFFSET_MISMATCH\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| break; |
| case IO_PORT_IN_RESET: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_PORT_IN_RESET\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| break; |
| case IO_DS_NON_OPERATIONAL: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_DS_NON_OPERATIONAL\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| if (!t->uldd_task) |
| pm8001_handle_event(pm8001_ha, |
| pm8001_dev, |
| IO_DS_NON_OPERATIONAL); |
| break; |
| case IO_DS_IN_RECOVERY: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_DS_IN_RECOVERY\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| break; |
| case IO_TM_TAG_NOT_FOUND: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_TM_TAG_NOT_FOUND\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| break; |
| case IO_SSP_EXT_IU_ZERO_LEN_ERROR: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_SSP_EXT_IU_ZERO_LEN_ERROR\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| break; |
| case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| default: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("Unknown status 0x%x\n", status)); |
| /* not allowed case. Therefore, return failed status */ |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| break; |
| } |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("scsi_status = 0x%x\n ", |
| psspPayload->ssp_resp_iu.status)); |
| spin_lock_irqsave(&t->task_state_lock, flags); |
| t->task_state_flags &= ~SAS_TASK_STATE_PENDING; |
| t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; |
| t->task_state_flags |= SAS_TASK_STATE_DONE; |
| if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { |
| spin_unlock_irqrestore(&t->task_state_lock, flags); |
| PM8001_FAIL_DBG(pm8001_ha, pm8001_printk( |
| "task 0x%p done with io_status 0x%x resp 0x%x " |
| "stat 0x%x but aborted by upper layer!\n", |
| t, status, ts->resp, ts->stat)); |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| } else { |
| spin_unlock_irqrestore(&t->task_state_lock, flags); |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| mb();/* in order to force CPU ordering */ |
| t->task_done(t); |
| } |
| } |
| |
| /*See the comments for mpi_ssp_completion */ |
| static void mpi_ssp_event(struct pm8001_hba_info *pm8001_ha , void *piomb) |
| { |
| struct sas_task *t; |
| unsigned long flags; |
| struct task_status_struct *ts; |
| struct pm8001_ccb_info *ccb; |
| struct pm8001_device *pm8001_dev; |
| struct ssp_event_resp *psspPayload = |
| (struct ssp_event_resp *)(piomb + 4); |
| u32 event = le32_to_cpu(psspPayload->event); |
| u32 tag = le32_to_cpu(psspPayload->tag); |
| u32 port_id = le32_to_cpu(psspPayload->port_id); |
| |
| ccb = &pm8001_ha->ccb_info[tag]; |
| t = ccb->task; |
| pm8001_dev = ccb->device; |
| if (event) |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("sas IO status 0x%x\n", event)); |
| if (unlikely(!t || !t->lldd_task || !t->dev)) |
| return; |
| ts = &t->task_status; |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("port_id:0x%x, tag:0x%x, event:0x%x\n", |
| port_id, tag, event)); |
| switch (event) { |
| case IO_OVERFLOW: |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_UNDERFLOW\n");) |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_OVERRUN; |
| ts->residual = 0; |
| if (pm8001_dev) |
| pm8001_dev->running_req--; |
| break; |
| case IO_XFER_ERROR_BREAK: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_BREAK\n")); |
| pm8001_handle_event(pm8001_ha, t, IO_XFER_ERROR_BREAK); |
| return; |
| case IO_XFER_ERROR_PHY_NOT_READY: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk( |
| "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_EPROTO; |
| break; |
| case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_UNKNOWN; |
| break; |
| case IO_OPEN_CNX_ERROR_BREAK: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: |
| case IO_XFER_OPEN_RETRY_BACKOFF_THRESHOLD_REACHED: |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_TMO: |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_NO_DEST: |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_COLLIDE: |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_PATHWAY_BLOCKED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_UNKNOWN; |
| if (!t->uldd_task) |
| pm8001_handle_event(pm8001_ha, |
| pm8001_dev, |
| IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); |
| break; |
| case IO_OPEN_CNX_ERROR_BAD_DESTINATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_BAD_DEST; |
| break; |
| case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk( |
| "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_CONN_RATE; |
| break; |
| case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_WRONG_DEST; |
| break; |
| case IO_XFER_ERROR_NAK_RECEIVED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_NAK_RECEIVED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_XFER_ERROR_ACK_NAK_TIMEOUT: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_ACK_NAK_TIMEOUT\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_NAK_R_ERR; |
| break; |
| case IO_XFER_OPEN_RETRY_TIMEOUT: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n")); |
| pm8001_handle_event(pm8001_ha, t, IO_XFER_OPEN_RETRY_TIMEOUT); |
| return; |
| case IO_XFER_ERROR_UNEXPECTED_PHASE: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_UNEXPECTED_PHASE\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_OVERRUN; |
| break; |
| case IO_XFER_ERROR_XFER_RDY_OVERRUN: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_XFER_RDY_OVERRUN\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_OVERRUN; |
| break; |
| case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_OVERRUN; |
| break; |
| case IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_CMD_ISSUE_ACK_NAK_TIMEOUT\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_OVERRUN; |
| break; |
| case IO_XFER_ERROR_OFFSET_MISMATCH: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_OFFSET_MISMATCH\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_OVERRUN; |
| break; |
| case IO_XFER_ERROR_XFER_ZERO_DATA_LEN: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_OVERRUN; |
| break; |
| case IO_XFER_ERROR_INTERNAL_CRC_ERROR: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFR_ERROR_INTERNAL_CRC_ERROR\n")); |
| /* TBC: used default set values */ |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_OVERRUN; |
| break; |
| case IO_XFER_CMD_FRAME_ISSUED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_CMD_FRAME_ISSUED\n")); |
| return; |
| default: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("Unknown status 0x%x\n", event)); |
| /* not allowed case. Therefore, return failed status */ |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_OVERRUN; |
| break; |
| } |
| spin_lock_irqsave(&t->task_state_lock, flags); |
| t->task_state_flags &= ~SAS_TASK_STATE_PENDING; |
| t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; |
| t->task_state_flags |= SAS_TASK_STATE_DONE; |
| if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { |
| spin_unlock_irqrestore(&t->task_state_lock, flags); |
| PM8001_FAIL_DBG(pm8001_ha, pm8001_printk( |
| "task 0x%p done with event 0x%x resp 0x%x " |
| "stat 0x%x but aborted by upper layer!\n", |
| t, event, ts->resp, ts->stat)); |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| } else { |
| spin_unlock_irqrestore(&t->task_state_lock, flags); |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| mb();/* in order to force CPU ordering */ |
| t->task_done(t); |
| } |
| } |
| |
| /*See the comments for mpi_ssp_completion */ |
| static void |
| mpi_sata_completion(struct pm8001_hba_info *pm8001_ha, void *piomb) |
| { |
| struct sas_task *t; |
| struct pm8001_ccb_info *ccb; |
| u32 param; |
| u32 status; |
| u32 tag; |
| int i, j; |
| u8 sata_addr_low[4]; |
| u32 temp_sata_addr_low, temp_sata_addr_hi; |
| u8 sata_addr_hi[4]; |
| struct sata_completion_resp *psataPayload; |
| struct task_status_struct *ts; |
| struct ata_task_resp *resp ; |
| u32 *sata_resp; |
| struct pm8001_device *pm8001_dev; |
| unsigned long flags; |
| |
| psataPayload = (struct sata_completion_resp *)(piomb + 4); |
| status = le32_to_cpu(psataPayload->status); |
| tag = le32_to_cpu(psataPayload->tag); |
| |
| if (!tag) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("tag null\n")); |
| return; |
| } |
| ccb = &pm8001_ha->ccb_info[tag]; |
| param = le32_to_cpu(psataPayload->param); |
| if (ccb) { |
| t = ccb->task; |
| pm8001_dev = ccb->device; |
| } else { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("ccb null\n")); |
| return; |
| } |
| |
| if (t) { |
| if (t->dev && (t->dev->lldd_dev)) |
| pm8001_dev = t->dev->lldd_dev; |
| } else { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("task null\n")); |
| return; |
| } |
| |
| if ((pm8001_dev && !(pm8001_dev->id & NCQ_READ_LOG_FLAG)) |
| && unlikely(!t || !t->lldd_task || !t->dev)) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("task or dev null\n")); |
| return; |
| } |
| |
| ts = &t->task_status; |
| if (!ts) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("ts null\n")); |
| return; |
| } |
| /* Print sas address of IO failed device */ |
| if ((status != IO_SUCCESS) && (status != IO_OVERFLOW) && |
| (status != IO_UNDERFLOW)) { |
| if (!((t->dev->parent) && |
| (DEV_IS_EXPANDER(t->dev->parent->dev_type)))) { |
| for (i = 0 , j = 4; i <= 3 && j <= 7; i++ , j++) |
| sata_addr_low[i] = pm8001_ha->sas_addr[j]; |
| for (i = 0 , j = 0; i <= 3 && j <= 3; i++ , j++) |
| sata_addr_hi[i] = pm8001_ha->sas_addr[j]; |
| memcpy(&temp_sata_addr_low, sata_addr_low, |
| sizeof(sata_addr_low)); |
| memcpy(&temp_sata_addr_hi, sata_addr_hi, |
| sizeof(sata_addr_hi)); |
| temp_sata_addr_hi = (((temp_sata_addr_hi >> 24) & 0xff) |
| |((temp_sata_addr_hi << 8) & |
| 0xff0000) | |
| ((temp_sata_addr_hi >> 8) |
| & 0xff00) | |
| ((temp_sata_addr_hi << 24) & |
| 0xff000000)); |
| temp_sata_addr_low = ((((temp_sata_addr_low >> 24) |
| & 0xff) | |
| ((temp_sata_addr_low << 8) |
| & 0xff0000) | |
| ((temp_sata_addr_low >> 8) |
| & 0xff00) | |
| ((temp_sata_addr_low << 24) |
| & 0xff000000)) + |
| pm8001_dev->attached_phy + |
| 0x10); |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("SAS Address of IO Failure Drive:" |
| "%08x%08x", temp_sata_addr_hi, |
| temp_sata_addr_low)); |
| |
| } else { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("SAS Address of IO Failure Drive:" |
| "%016llx", SAS_ADDR(t->dev->sas_addr))); |
| } |
| } |
| switch (status) { |
| case IO_SUCCESS: |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_SUCCESS\n")); |
| if (param == 0) { |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAM_STAT_GOOD; |
| /* check if response is for SEND READ LOG */ |
| if (pm8001_dev && |
| (pm8001_dev->id & NCQ_READ_LOG_FLAG)) { |
| /* set new bit for abort_all */ |
| pm8001_dev->id |= NCQ_ABORT_ALL_FLAG; |
| /* clear bit for read log */ |
| pm8001_dev->id = pm8001_dev->id & 0x7FFFFFFF; |
| pm80xx_send_abort_all(pm8001_ha, pm8001_dev); |
| /* Free the tag */ |
| pm8001_tag_free(pm8001_ha, tag); |
| sas_free_task(t); |
| return; |
| } |
| } else { |
| u8 len; |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_PROTO_RESPONSE; |
| ts->residual = param; |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("SAS_PROTO_RESPONSE len = %d\n", |
| param)); |
| sata_resp = &psataPayload->sata_resp[0]; |
| resp = (struct ata_task_resp *)ts->buf; |
| if (t->ata_task.dma_xfer == 0 && |
| t->data_dir == PCI_DMA_FROMDEVICE) { |
| len = sizeof(struct pio_setup_fis); |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("PIO read len = %d\n", len)); |
| } else if (t->ata_task.use_ncq) { |
| len = sizeof(struct set_dev_bits_fis); |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("FPDMA len = %d\n", len)); |
| } else { |
| len = sizeof(struct dev_to_host_fis); |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("other len = %d\n", len)); |
| } |
| if (SAS_STATUS_BUF_SIZE >= sizeof(*resp)) { |
| resp->frame_len = len; |
| memcpy(&resp->ending_fis[0], sata_resp, len); |
| ts->buf_valid_size = sizeof(*resp); |
| } else |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("response to large\n")); |
| } |
| if (pm8001_dev) |
| pm8001_dev->running_req--; |
| break; |
| case IO_ABORTED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_ABORTED IOMB Tag\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_ABORTED_TASK; |
| if (pm8001_dev) |
| pm8001_dev->running_req--; |
| break; |
| /* following cases are to do cases */ |
| case IO_UNDERFLOW: |
| /* SATA Completion with error */ |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_UNDERFLOW param = %d\n", param)); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_UNDERRUN; |
| ts->residual = param; |
| if (pm8001_dev) |
| pm8001_dev->running_req--; |
| break; |
| case IO_NO_DEVICE: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_NO_DEVICE\n")); |
| ts->resp = SAS_TASK_UNDELIVERED; |
| ts->stat = SAS_PHY_DOWN; |
| break; |
| case IO_XFER_ERROR_BREAK: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_BREAK\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_INTERRUPTED; |
| break; |
| case IO_XFER_ERROR_PHY_NOT_READY: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk( |
| "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_EPROTO; |
| break; |
| case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_UNKNOWN; |
| break; |
| case IO_OPEN_CNX_ERROR_BREAK: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_CONT0; |
| break; |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: |
| case IO_XFER_OPEN_RETRY_BACKOFF_THRESHOLD_REACHED: |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_TMO: |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_NO_DEST: |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_COLLIDE: |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_PATHWAY_BLOCKED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| if (!t->uldd_task) { |
| pm8001_handle_event(pm8001_ha, |
| pm8001_dev, |
| IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); |
| ts->resp = SAS_TASK_UNDELIVERED; |
| ts->stat = SAS_QUEUE_FULL; |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| mb();/*in order to force CPU ordering*/ |
| spin_unlock_irq(&pm8001_ha->lock); |
| t->task_done(t); |
| spin_lock_irq(&pm8001_ha->lock); |
| return; |
| } |
| break; |
| case IO_OPEN_CNX_ERROR_BAD_DESTINATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n")); |
| ts->resp = SAS_TASK_UNDELIVERED; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_BAD_DEST; |
| if (!t->uldd_task) { |
| pm8001_handle_event(pm8001_ha, |
| pm8001_dev, |
| IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); |
| ts->resp = SAS_TASK_UNDELIVERED; |
| ts->stat = SAS_QUEUE_FULL; |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| mb();/*ditto*/ |
| spin_unlock_irq(&pm8001_ha->lock); |
| t->task_done(t); |
| spin_lock_irq(&pm8001_ha->lock); |
| return; |
| } |
| break; |
| case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk( |
| "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_CONN_RATE; |
| break; |
| case IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY: |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk( |
| "IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| if (!t->uldd_task) { |
| pm8001_handle_event(pm8001_ha, |
| pm8001_dev, |
| IO_OPEN_CNX_ERROR_STP_RESOURCES_BUSY); |
| ts->resp = SAS_TASK_UNDELIVERED; |
| ts->stat = SAS_QUEUE_FULL; |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| mb();/* ditto*/ |
| spin_unlock_irq(&pm8001_ha->lock); |
| t->task_done(t); |
| spin_lock_irq(&pm8001_ha->lock); |
| return; |
| } |
| break; |
| case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_WRONG_DEST; |
| break; |
| case IO_XFER_ERROR_NAK_RECEIVED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_NAK_RECEIVED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_NAK_R_ERR; |
| break; |
| case IO_XFER_ERROR_ACK_NAK_TIMEOUT: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_ACK_NAK_TIMEOUT\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_NAK_R_ERR; |
| break; |
| case IO_XFER_ERROR_DMA: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_DMA\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_ABORTED_TASK; |
| break; |
| case IO_XFER_ERROR_SATA_LINK_TIMEOUT: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_SATA_LINK_TIMEOUT\n")); |
| ts->resp = SAS_TASK_UNDELIVERED; |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| break; |
| case IO_XFER_ERROR_REJECTED_NCQ_MODE: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_REJECTED_NCQ_MODE\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_UNDERRUN; |
| break; |
| case IO_XFER_OPEN_RETRY_TIMEOUT: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_TO; |
| break; |
| case IO_PORT_IN_RESET: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_PORT_IN_RESET\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| break; |
| case IO_DS_NON_OPERATIONAL: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_DS_NON_OPERATIONAL\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| if (!t->uldd_task) { |
| pm8001_handle_event(pm8001_ha, pm8001_dev, |
| IO_DS_NON_OPERATIONAL); |
| ts->resp = SAS_TASK_UNDELIVERED; |
| ts->stat = SAS_QUEUE_FULL; |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| mb();/*ditto*/ |
| spin_unlock_irq(&pm8001_ha->lock); |
| t->task_done(t); |
| spin_lock_irq(&pm8001_ha->lock); |
| return; |
| } |
| break; |
| case IO_DS_IN_RECOVERY: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_DS_IN_RECOVERY\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| break; |
| case IO_DS_IN_ERROR: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_DS_IN_ERROR\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| if (!t->uldd_task) { |
| pm8001_handle_event(pm8001_ha, pm8001_dev, |
| IO_DS_IN_ERROR); |
| ts->resp = SAS_TASK_UNDELIVERED; |
| ts->stat = SAS_QUEUE_FULL; |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| mb();/*ditto*/ |
| spin_unlock_irq(&pm8001_ha->lock); |
| t->task_done(t); |
| spin_lock_irq(&pm8001_ha->lock); |
| return; |
| } |
| break; |
| case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| default: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("Unknown status 0x%x\n", status)); |
| /* not allowed case. Therefore, return failed status */ |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| break; |
| } |
| spin_lock_irqsave(&t->task_state_lock, flags); |
| t->task_state_flags &= ~SAS_TASK_STATE_PENDING; |
| t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; |
| t->task_state_flags |= SAS_TASK_STATE_DONE; |
| if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { |
| spin_unlock_irqrestore(&t->task_state_lock, flags); |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("task 0x%p done with io_status 0x%x" |
| " resp 0x%x stat 0x%x but aborted by upper layer!\n", |
| t, status, ts->resp, ts->stat)); |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| } else if (t->uldd_task) { |
| spin_unlock_irqrestore(&t->task_state_lock, flags); |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| mb();/* ditto */ |
| spin_unlock_irq(&pm8001_ha->lock); |
| t->task_done(t); |
| spin_lock_irq(&pm8001_ha->lock); |
| } else if (!t->uldd_task) { |
| spin_unlock_irqrestore(&t->task_state_lock, flags); |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| mb();/*ditto*/ |
| spin_unlock_irq(&pm8001_ha->lock); |
| t->task_done(t); |
| spin_lock_irq(&pm8001_ha->lock); |
| } |
| } |
| |
| /*See the comments for mpi_ssp_completion */ |
| static void mpi_sata_event(struct pm8001_hba_info *pm8001_ha , void *piomb) |
| { |
| struct sas_task *t; |
| struct task_status_struct *ts; |
| struct pm8001_ccb_info *ccb; |
| struct pm8001_device *pm8001_dev; |
| struct sata_event_resp *psataPayload = |
| (struct sata_event_resp *)(piomb + 4); |
| u32 event = le32_to_cpu(psataPayload->event); |
| u32 tag = le32_to_cpu(psataPayload->tag); |
| u32 port_id = le32_to_cpu(psataPayload->port_id); |
| u32 dev_id = le32_to_cpu(psataPayload->device_id); |
| unsigned long flags; |
| |
| ccb = &pm8001_ha->ccb_info[tag]; |
| |
| if (ccb) { |
| t = ccb->task; |
| pm8001_dev = ccb->device; |
| } else { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("No CCB !!!. returning\n")); |
| return; |
| } |
| if (event) |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("SATA EVENT 0x%x\n", event)); |
| |
| /* Check if this is NCQ error */ |
| if (event == IO_XFER_ERROR_ABORTED_NCQ_MODE) { |
| /* find device using device id */ |
| pm8001_dev = pm8001_find_dev(pm8001_ha, dev_id); |
| /* send read log extension */ |
| if (pm8001_dev) |
| pm80xx_send_read_log(pm8001_ha, pm8001_dev); |
| return; |
| } |
| |
| if (unlikely(!t || !t->lldd_task || !t->dev)) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("task or dev null\n")); |
| return; |
| } |
| |
| ts = &t->task_status; |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("port_id:0x%x, tag:0x%x, event:0x%x\n", |
| port_id, tag, event)); |
| switch (event) { |
| case IO_OVERFLOW: |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_UNDERFLOW\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_OVERRUN; |
| ts->residual = 0; |
| if (pm8001_dev) |
| pm8001_dev->running_req--; |
| break; |
| case IO_XFER_ERROR_BREAK: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_BREAK\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_INTERRUPTED; |
| break; |
| case IO_XFER_ERROR_PHY_NOT_READY: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk( |
| "IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_EPROTO; |
| break; |
| case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_UNKNOWN; |
| break; |
| case IO_OPEN_CNX_ERROR_BREAK: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_CONT0; |
| break; |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: |
| case IO_XFER_OPEN_RETRY_BACKOFF_THRESHOLD_REACHED: |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_TMO: |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_NO_DEST: |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_COLLIDE: |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_PATHWAY_BLOCKED: |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n")); |
| ts->resp = SAS_TASK_UNDELIVERED; |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| if (!t->uldd_task) { |
| pm8001_handle_event(pm8001_ha, |
| pm8001_dev, |
| IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_QUEUE_FULL; |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| mb();/*ditto*/ |
| spin_unlock_irq(&pm8001_ha->lock); |
| t->task_done(t); |
| spin_lock_irq(&pm8001_ha->lock); |
| return; |
| } |
| break; |
| case IO_OPEN_CNX_ERROR_BAD_DESTINATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n")); |
| ts->resp = SAS_TASK_UNDELIVERED; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_BAD_DEST; |
| break; |
| case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk( |
| "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_CONN_RATE; |
| break; |
| case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_WRONG_DEST; |
| break; |
| case IO_XFER_ERROR_NAK_RECEIVED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_NAK_RECEIVED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_NAK_R_ERR; |
| break; |
| case IO_XFER_ERROR_PEER_ABORTED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_PEER_ABORTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_NAK_R_ERR; |
| break; |
| case IO_XFER_ERROR_REJECTED_NCQ_MODE: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_REJECTED_NCQ_MODE\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_UNDERRUN; |
| break; |
| case IO_XFER_OPEN_RETRY_TIMEOUT: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_TO; |
| break; |
| case IO_XFER_ERROR_UNEXPECTED_PHASE: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_UNEXPECTED_PHASE\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_TO; |
| break; |
| case IO_XFER_ERROR_XFER_RDY_OVERRUN: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_XFER_RDY_OVERRUN\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_TO; |
| break; |
| case IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_XFER_RDY_NOT_EXPECTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_TO; |
| break; |
| case IO_XFER_ERROR_OFFSET_MISMATCH: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_OFFSET_MISMATCH\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_TO; |
| break; |
| case IO_XFER_ERROR_XFER_ZERO_DATA_LEN: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_XFER_ZERO_DATA_LEN\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_TO; |
| break; |
| case IO_XFER_CMD_FRAME_ISSUED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_CMD_FRAME_ISSUED\n")); |
| break; |
| case IO_XFER_PIO_SETUP_ERROR: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_PIO_SETUP_ERROR\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_TO; |
| break; |
| case IO_XFER_ERROR_INTERNAL_CRC_ERROR: |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("IO_XFR_ERROR_INTERNAL_CRC_ERROR\n")); |
| /* TBC: used default set values */ |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_TO; |
| break; |
| case IO_XFER_DMA_ACTIVATE_TIMEOUT: |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("IO_XFR_DMA_ACTIVATE_TIMEOUT\n")); |
| /* TBC: used default set values */ |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_TO; |
| break; |
| default: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("Unknown status 0x%x\n", event)); |
| /* not allowed case. Therefore, return failed status */ |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_TO; |
| break; |
| } |
| spin_lock_irqsave(&t->task_state_lock, flags); |
| t->task_state_flags &= ~SAS_TASK_STATE_PENDING; |
| t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; |
| t->task_state_flags |= SAS_TASK_STATE_DONE; |
| if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { |
| spin_unlock_irqrestore(&t->task_state_lock, flags); |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("task 0x%p done with io_status 0x%x" |
| " resp 0x%x stat 0x%x but aborted by upper layer!\n", |
| t, event, ts->resp, ts->stat)); |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| } else if (t->uldd_task) { |
| spin_unlock_irqrestore(&t->task_state_lock, flags); |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| mb();/* ditto */ |
| spin_unlock_irq(&pm8001_ha->lock); |
| t->task_done(t); |
| spin_lock_irq(&pm8001_ha->lock); |
| } else if (!t->uldd_task) { |
| spin_unlock_irqrestore(&t->task_state_lock, flags); |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| mb();/*ditto*/ |
| spin_unlock_irq(&pm8001_ha->lock); |
| t->task_done(t); |
| spin_lock_irq(&pm8001_ha->lock); |
| } |
| } |
| |
| /*See the comments for mpi_ssp_completion */ |
| static void |
| mpi_smp_completion(struct pm8001_hba_info *pm8001_ha, void *piomb) |
| { |
| u32 param, i; |
| struct sas_task *t; |
| struct pm8001_ccb_info *ccb; |
| unsigned long flags; |
| u32 status; |
| u32 tag; |
| struct smp_completion_resp *psmpPayload; |
| struct task_status_struct *ts; |
| struct pm8001_device *pm8001_dev; |
| char *pdma_respaddr = NULL; |
| |
| psmpPayload = (struct smp_completion_resp *)(piomb + 4); |
| status = le32_to_cpu(psmpPayload->status); |
| tag = le32_to_cpu(psmpPayload->tag); |
| |
| ccb = &pm8001_ha->ccb_info[tag]; |
| param = le32_to_cpu(psmpPayload->param); |
| t = ccb->task; |
| ts = &t->task_status; |
| pm8001_dev = ccb->device; |
| if (status) |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("smp IO status 0x%x\n", status)); |
| if (unlikely(!t || !t->lldd_task || !t->dev)) |
| return; |
| |
| switch (status) { |
| |
| case IO_SUCCESS: |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_SUCCESS\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAM_STAT_GOOD; |
| if (pm8001_dev) |
| pm8001_dev->running_req--; |
| if (pm8001_ha->smp_exp_mode == SMP_DIRECT) { |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("DIRECT RESPONSE Length:%d\n", |
| param)); |
| pdma_respaddr = (char *)(phys_to_virt(cpu_to_le64 |
| ((u64)sg_dma_address |
| (&t->smp_task.smp_resp)))); |
| for (i = 0; i < param; i++) { |
| *(pdma_respaddr+i) = psmpPayload->_r_a[i]; |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk( |
| "SMP Byte%d DMA data 0x%x psmp 0x%x\n", |
| i, *(pdma_respaddr+i), |
| psmpPayload->_r_a[i])); |
| } |
| } |
| break; |
| case IO_ABORTED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_ABORTED IOMB\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_ABORTED_TASK; |
| if (pm8001_dev) |
| pm8001_dev->running_req--; |
| break; |
| case IO_OVERFLOW: |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_UNDERFLOW\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DATA_OVERRUN; |
| ts->residual = 0; |
| if (pm8001_dev) |
| pm8001_dev->running_req--; |
| break; |
| case IO_NO_DEVICE: |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk("IO_NO_DEVICE\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_PHY_DOWN; |
| break; |
| case IO_ERROR_HW_TIMEOUT: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_ERROR_HW_TIMEOUT\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAM_STAT_BUSY; |
| break; |
| case IO_XFER_ERROR_BREAK: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_BREAK\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAM_STAT_BUSY; |
| break; |
| case IO_XFER_ERROR_PHY_NOT_READY: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_PHY_NOT_READY\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAM_STAT_BUSY; |
| break; |
| case IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_PROTOCOL_NOT_SUPPORTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_UNKNOWN; |
| break; |
| case IO_OPEN_CNX_ERROR_ZONE_VIOLATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_ZONE_VIOLATION\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_UNKNOWN; |
| break; |
| case IO_OPEN_CNX_ERROR_BREAK: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_BREAK\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_CONT0; |
| break; |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS: |
| case IO_XFER_OPEN_RETRY_BACKOFF_THRESHOLD_REACHED: |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_TMO: |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_NO_DEST: |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_OPEN_COLLIDE: |
| case IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS_PATHWAY_BLOCKED: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_UNKNOWN; |
| pm8001_handle_event(pm8001_ha, |
| pm8001_dev, |
| IO_OPEN_CNX_ERROR_IT_NEXUS_LOSS); |
| break; |
| case IO_OPEN_CNX_ERROR_BAD_DESTINATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_BAD_DESTINATION\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_BAD_DEST; |
| break; |
| case IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED: |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk(\ |
| "IO_OPEN_CNX_ERROR_CONNECTION_RATE_NOT_SUPPORTED\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_CONN_RATE; |
| break; |
| case IO_OPEN_CNX_ERROR_WRONG_DESTINATION: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_WRONG_DESTINATION\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_WRONG_DEST; |
| break; |
| case IO_XFER_ERROR_RX_FRAME: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_ERROR_RX_FRAME\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| break; |
| case IO_XFER_OPEN_RETRY_TIMEOUT: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_XFER_OPEN_RETRY_TIMEOUT\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_ERROR_INTERNAL_SMP_RESOURCE: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_ERROR_INTERNAL_SMP_RESOURCE\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_QUEUE_FULL; |
| break; |
| case IO_PORT_IN_RESET: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_PORT_IN_RESET\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_DS_NON_OPERATIONAL: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_DS_NON_OPERATIONAL\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| break; |
| case IO_DS_IN_RECOVERY: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_DS_IN_RECOVERY\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| case IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("IO_OPEN_CNX_ERROR_HW_RESOURCE_BUSY\n")); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_OPEN_REJECT; |
| ts->open_rej_reason = SAS_OREJ_RSVD_RETRY; |
| break; |
| default: |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("Unknown status 0x%x\n", status)); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAS_DEV_NO_RESPONSE; |
| /* not allowed case. Therefore, return failed status */ |
| break; |
| } |
| spin_lock_irqsave(&t->task_state_lock, flags); |
| t->task_state_flags &= ~SAS_TASK_STATE_PENDING; |
| t->task_state_flags &= ~SAS_TASK_AT_INITIATOR; |
| t->task_state_flags |= SAS_TASK_STATE_DONE; |
| if (unlikely((t->task_state_flags & SAS_TASK_STATE_ABORTED))) { |
| spin_unlock_irqrestore(&t->task_state_lock, flags); |
| PM8001_FAIL_DBG(pm8001_ha, pm8001_printk( |
| "task 0x%p done with io_status 0x%x resp 0x%x" |
| "stat 0x%x but aborted by upper layer!\n", |
| t, status, ts->resp, ts->stat)); |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| } else { |
| spin_unlock_irqrestore(&t->task_state_lock, flags); |
| pm8001_ccb_task_free(pm8001_ha, t, ccb, tag); |
| mb();/* in order to force CPU ordering */ |
| t->task_done(t); |
| } |
| } |
| |
| /** |
| * pm80xx_hw_event_ack_req- For PM8001,some events need to acknowage to FW. |
| * @pm8001_ha: our hba card information |
| * @Qnum: the outbound queue message number. |
| * @SEA: source of event to ack |
| * @port_id: port id. |
| * @phyId: phy id. |
| * @param0: parameter 0. |
| * @param1: parameter 1. |
| */ |
| static void pm80xx_hw_event_ack_req(struct pm8001_hba_info *pm8001_ha, |
| u32 Qnum, u32 SEA, u32 port_id, u32 phyId, u32 param0, u32 param1) |
| { |
| struct hw_event_ack_req payload; |
| u32 opc = OPC_INB_SAS_HW_EVENT_ACK; |
| |
| struct inbound_queue_table *circularQ; |
| |
| memset((u8 *)&payload, 0, sizeof(payload)); |
| circularQ = &pm8001_ha->inbnd_q_tbl[Qnum]; |
| payload.tag = cpu_to_le32(1); |
| payload.phyid_sea_portid = cpu_to_le32(((SEA & 0xFFFF) << 8) | |
| ((phyId & 0xFF) << 24) | (port_id & 0xFF)); |
| payload.param0 = cpu_to_le32(param0); |
| payload.param1 = cpu_to_le32(param1); |
| pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, 0); |
| } |
| |
| static int pm80xx_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha, |
| u32 phyId, u32 phy_op); |
| |
| /** |
| * hw_event_sas_phy_up -FW tells me a SAS phy up event. |
| * @pm8001_ha: our hba card information |
| * @piomb: IO message buffer |
| */ |
| static void |
| hw_event_sas_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb) |
| { |
| struct hw_event_resp *pPayload = |
| (struct hw_event_resp *)(piomb + 4); |
| u32 lr_status_evt_portid = |
| le32_to_cpu(pPayload->lr_status_evt_portid); |
| u32 phyid_npip_portstate = le32_to_cpu(pPayload->phyid_npip_portstate); |
| |
| u8 link_rate = |
| (u8)((lr_status_evt_portid & 0xF0000000) >> 28); |
| u8 port_id = (u8)(lr_status_evt_portid & 0x000000FF); |
| u8 phy_id = |
| (u8)((phyid_npip_portstate & 0xFF0000) >> 16); |
| u8 portstate = (u8)(phyid_npip_portstate & 0x0000000F); |
| |
| struct pm8001_port *port = &pm8001_ha->port[port_id]; |
| struct sas_ha_struct *sas_ha = pm8001_ha->sas; |
| struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; |
| unsigned long flags; |
| u8 deviceType = pPayload->sas_identify.dev_type; |
| port->port_state = portstate; |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk( |
| "portid:%d; phyid:%d; linkrate:%d; " |
| "portstate:%x; devicetype:%x\n", |
| port_id, phy_id, link_rate, portstate, deviceType)); |
| |
| switch (deviceType) { |
| case SAS_PHY_UNUSED: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("device type no device.\n")); |
| break; |
| case SAS_END_DEVICE: |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk("end device.\n")); |
| pm80xx_chip_phy_ctl_req(pm8001_ha, phy_id, |
| PHY_NOTIFY_ENABLE_SPINUP); |
| port->port_attached = 1; |
| pm8001_get_lrate_mode(phy, link_rate); |
| break; |
| case SAS_EDGE_EXPANDER_DEVICE: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("expander device.\n")); |
| port->port_attached = 1; |
| pm8001_get_lrate_mode(phy, link_rate); |
| break; |
| case SAS_FANOUT_EXPANDER_DEVICE: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("fanout expander device.\n")); |
| port->port_attached = 1; |
| pm8001_get_lrate_mode(phy, link_rate); |
| break; |
| default: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("unknown device type(%x)\n", deviceType)); |
| break; |
| } |
| phy->phy_type |= PORT_TYPE_SAS; |
| phy->identify.device_type = deviceType; |
| phy->phy_attached = 1; |
| if (phy->identify.device_type == SAS_END_DEVICE) |
| phy->identify.target_port_protocols = SAS_PROTOCOL_SSP; |
| else if (phy->identify.device_type != SAS_PHY_UNUSED) |
| phy->identify.target_port_protocols = SAS_PROTOCOL_SMP; |
| phy->sas_phy.oob_mode = SAS_OOB_MODE; |
| sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE); |
| spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags); |
| memcpy(phy->frame_rcvd, &pPayload->sas_identify, |
| sizeof(struct sas_identify_frame)-4); |
| phy->frame_rcvd_size = sizeof(struct sas_identify_frame) - 4; |
| pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr); |
| spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags); |
| if (pm8001_ha->flags == PM8001F_RUN_TIME) |
| mdelay(200);/*delay a moment to wait disk to spinup*/ |
| pm8001_bytes_dmaed(pm8001_ha, phy_id); |
| } |
| |
| /** |
| * hw_event_sata_phy_up -FW tells me a SATA phy up event. |
| * @pm8001_ha: our hba card information |
| * @piomb: IO message buffer |
| */ |
| static void |
| hw_event_sata_phy_up(struct pm8001_hba_info *pm8001_ha, void *piomb) |
| { |
| struct hw_event_resp *pPayload = |
| (struct hw_event_resp *)(piomb + 4); |
| u32 phyid_npip_portstate = le32_to_cpu(pPayload->phyid_npip_portstate); |
| u32 lr_status_evt_portid = |
| le32_to_cpu(pPayload->lr_status_evt_portid); |
| u8 link_rate = |
| (u8)((lr_status_evt_portid & 0xF0000000) >> 28); |
| u8 port_id = (u8)(lr_status_evt_portid & 0x000000FF); |
| u8 phy_id = |
| (u8)((phyid_npip_portstate & 0xFF0000) >> 16); |
| |
| u8 portstate = (u8)(phyid_npip_portstate & 0x0000000F); |
| |
| struct pm8001_port *port = &pm8001_ha->port[port_id]; |
| struct sas_ha_struct *sas_ha = pm8001_ha->sas; |
| struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; |
| unsigned long flags; |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk( |
| "port id %d, phy id %d link_rate %d portstate 0x%x\n", |
| port_id, phy_id, link_rate, portstate)); |
| |
| port->port_state = portstate; |
| port->port_attached = 1; |
| pm8001_get_lrate_mode(phy, link_rate); |
| phy->phy_type |= PORT_TYPE_SATA; |
| phy->phy_attached = 1; |
| phy->sas_phy.oob_mode = SATA_OOB_MODE; |
| sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE); |
| spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags); |
| memcpy(phy->frame_rcvd, ((u8 *)&pPayload->sata_fis - 4), |
| sizeof(struct dev_to_host_fis)); |
| phy->frame_rcvd_size = sizeof(struct dev_to_host_fis); |
| phy->identify.target_port_protocols = SAS_PROTOCOL_SATA; |
| phy->identify.device_type = SAS_SATA_DEV; |
| pm8001_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr); |
| spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags); |
| pm8001_bytes_dmaed(pm8001_ha, phy_id); |
| } |
| |
| /** |
| * hw_event_phy_down -we should notify the libsas the phy is down. |
| * @pm8001_ha: our hba card information |
| * @piomb: IO message buffer |
| */ |
| static void |
| hw_event_phy_down(struct pm8001_hba_info *pm8001_ha, void *piomb) |
| { |
| struct hw_event_resp *pPayload = |
| (struct hw_event_resp *)(piomb + 4); |
| |
| u32 lr_status_evt_portid = |
| le32_to_cpu(pPayload->lr_status_evt_portid); |
| u8 port_id = (u8)(lr_status_evt_portid & 0x000000FF); |
| u32 phyid_npip_portstate = le32_to_cpu(pPayload->phyid_npip_portstate); |
| u8 phy_id = |
| (u8)((phyid_npip_portstate & 0xFF0000) >> 16); |
| u8 portstate = (u8)(phyid_npip_portstate & 0x0000000F); |
| |
| struct pm8001_port *port = &pm8001_ha->port[port_id]; |
| struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; |
| port->port_state = portstate; |
| phy->phy_type = 0; |
| phy->identify.device_type = 0; |
| phy->phy_attached = 0; |
| memset(&phy->dev_sas_addr, 0, SAS_ADDR_SIZE); |
| switch (portstate) { |
| case PORT_VALID: |
| break; |
| case PORT_INVALID: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" PortInvalid portID %d\n", port_id)); |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" Last phy Down and port invalid\n")); |
| port->port_attached = 0; |
| pm80xx_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN, |
| port_id, phy_id, 0, 0); |
| break; |
| case PORT_IN_RESET: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" Port In Reset portID %d\n", port_id)); |
| break; |
| case PORT_NOT_ESTABLISHED: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" phy Down and PORT_NOT_ESTABLISHED\n")); |
| port->port_attached = 0; |
| break; |
| case PORT_LOSTCOMM: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" phy Down and PORT_LOSTCOMM\n")); |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" Last phy Down and port invalid\n")); |
| port->port_attached = 0; |
| pm80xx_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_PHY_DOWN, |
| port_id, phy_id, 0, 0); |
| break; |
| default: |
| port->port_attached = 0; |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" phy Down and(default) = 0x%x\n", |
| portstate)); |
| break; |
| |
| } |
| } |
| |
| static int mpi_phy_start_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) |
| { |
| struct phy_start_resp *pPayload = |
| (struct phy_start_resp *)(piomb + 4); |
| u32 status = |
| le32_to_cpu(pPayload->status); |
| u32 phy_id = |
| le32_to_cpu(pPayload->phyid); |
| struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; |
| |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("phy start resp status:0x%x, phyid:0x%x\n", |
| status, phy_id)); |
| if (status == 0) { |
| phy->phy_state = 1; |
| if (pm8001_ha->flags == PM8001F_RUN_TIME) |
| complete(phy->enable_completion); |
| } |
| return 0; |
| |
| } |
| |
| /** |
| * mpi_thermal_hw_event -The hw event has come. |
| * @pm8001_ha: our hba card information |
| * @piomb: IO message buffer |
| */ |
| static int mpi_thermal_hw_event(struct pm8001_hba_info *pm8001_ha, void *piomb) |
| { |
| struct thermal_hw_event *pPayload = |
| (struct thermal_hw_event *)(piomb + 4); |
| |
| u32 thermal_event = le32_to_cpu(pPayload->thermal_event); |
| u32 rht_lht = le32_to_cpu(pPayload->rht_lht); |
| |
| if (thermal_event & 0x40) { |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk( |
| "Thermal Event: Local high temperature violated!\n")); |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk( |
| "Thermal Event: Measured local high temperature %d\n", |
| ((rht_lht & 0xFF00) >> 8))); |
| } |
| if (thermal_event & 0x10) { |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk( |
| "Thermal Event: Remote high temperature violated!\n")); |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk( |
| "Thermal Event: Measured remote high temperature %d\n", |
| ((rht_lht & 0xFF000000) >> 24))); |
| } |
| return 0; |
| } |
| |
| /** |
| * mpi_hw_event -The hw event has come. |
| * @pm8001_ha: our hba card information |
| * @piomb: IO message buffer |
| */ |
| static int mpi_hw_event(struct pm8001_hba_info *pm8001_ha, void *piomb) |
| { |
| unsigned long flags; |
| struct hw_event_resp *pPayload = |
| (struct hw_event_resp *)(piomb + 4); |
| u32 lr_status_evt_portid = |
| le32_to_cpu(pPayload->lr_status_evt_portid); |
| u32 phyid_npip_portstate = le32_to_cpu(pPayload->phyid_npip_portstate); |
| u8 port_id = (u8)(lr_status_evt_portid & 0x000000FF); |
| u8 phy_id = |
| (u8)((phyid_npip_portstate & 0xFF0000) >> 16); |
| u16 eventType = |
| (u16)((lr_status_evt_portid & 0x00FFFF00) >> 8); |
| u8 status = |
| (u8)((lr_status_evt_portid & 0x0F000000) >> 24); |
| |
| struct sas_ha_struct *sas_ha = pm8001_ha->sas; |
| struct pm8001_phy *phy = &pm8001_ha->phy[phy_id]; |
| struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id]; |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("portid:%d phyid:%d event:0x%x status:0x%x\n", |
| port_id, phy_id, eventType, status)); |
| |
| switch (eventType) { |
| |
| case HW_EVENT_SAS_PHY_UP: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_PHY_START_STATUS\n")); |
| hw_event_sas_phy_up(pm8001_ha, piomb); |
| break; |
| case HW_EVENT_SATA_PHY_UP: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_SATA_PHY_UP\n")); |
| hw_event_sata_phy_up(pm8001_ha, piomb); |
| break; |
| case HW_EVENT_SATA_SPINUP_HOLD: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_SATA_SPINUP_HOLD\n")); |
| sas_ha->notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD); |
| break; |
| case HW_EVENT_PHY_DOWN: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_PHY_DOWN\n")); |
| sas_ha->notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL); |
| phy->phy_attached = 0; |
| phy->phy_state = 0; |
| hw_event_phy_down(pm8001_ha, piomb); |
| break; |
| case HW_EVENT_PORT_INVALID: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_PORT_INVALID\n")); |
| sas_phy_disconnected(sas_phy); |
| phy->phy_attached = 0; |
| sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); |
| break; |
| /* the broadcast change primitive received, tell the LIBSAS this event |
| to revalidate the sas domain*/ |
| case HW_EVENT_BROADCAST_CHANGE: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_BROADCAST_CHANGE\n")); |
| pm80xx_hw_event_ack_req(pm8001_ha, 0, HW_EVENT_BROADCAST_CHANGE, |
| port_id, phy_id, 1, 0); |
| spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); |
| sas_phy->sas_prim = HW_EVENT_BROADCAST_CHANGE; |
| spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); |
| sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD); |
| break; |
| case HW_EVENT_PHY_ERROR: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_PHY_ERROR\n")); |
| sas_phy_disconnected(&phy->sas_phy); |
| phy->phy_attached = 0; |
| sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR); |
| break; |
| case HW_EVENT_BROADCAST_EXP: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_BROADCAST_EXP\n")); |
| spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); |
| sas_phy->sas_prim = HW_EVENT_BROADCAST_EXP; |
| spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); |
| sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD); |
| break; |
| case HW_EVENT_LINK_ERR_INVALID_DWORD: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_LINK_ERR_INVALID_DWORD\n")); |
| pm80xx_hw_event_ack_req(pm8001_ha, 0, |
| HW_EVENT_LINK_ERR_INVALID_DWORD, port_id, phy_id, 0, 0); |
| sas_phy_disconnected(sas_phy); |
| phy->phy_attached = 0; |
| sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); |
| break; |
| case HW_EVENT_LINK_ERR_DISPARITY_ERROR: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_LINK_ERR_DISPARITY_ERROR\n")); |
| pm80xx_hw_event_ack_req(pm8001_ha, 0, |
| HW_EVENT_LINK_ERR_DISPARITY_ERROR, |
| port_id, phy_id, 0, 0); |
| sas_phy_disconnected(sas_phy); |
| phy->phy_attached = 0; |
| sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); |
| break; |
| case HW_EVENT_LINK_ERR_CODE_VIOLATION: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_LINK_ERR_CODE_VIOLATION\n")); |
| pm80xx_hw_event_ack_req(pm8001_ha, 0, |
| HW_EVENT_LINK_ERR_CODE_VIOLATION, |
| port_id, phy_id, 0, 0); |
| sas_phy_disconnected(sas_phy); |
| phy->phy_attached = 0; |
| sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); |
| break; |
| case HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH: |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk( |
| "HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH\n")); |
| pm80xx_hw_event_ack_req(pm8001_ha, 0, |
| HW_EVENT_LINK_ERR_LOSS_OF_DWORD_SYNCH, |
| port_id, phy_id, 0, 0); |
| sas_phy_disconnected(sas_phy); |
| phy->phy_attached = 0; |
| sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); |
| break; |
| case HW_EVENT_MALFUNCTION: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_MALFUNCTION\n")); |
| break; |
| case HW_EVENT_BROADCAST_SES: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_BROADCAST_SES\n")); |
| spin_lock_irqsave(&sas_phy->sas_prim_lock, flags); |
| sas_phy->sas_prim = HW_EVENT_BROADCAST_SES; |
| spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags); |
| sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD); |
| break; |
| case HW_EVENT_INBOUND_CRC_ERROR: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_INBOUND_CRC_ERROR\n")); |
| pm80xx_hw_event_ack_req(pm8001_ha, 0, |
| HW_EVENT_INBOUND_CRC_ERROR, |
| port_id, phy_id, 0, 0); |
| break; |
| case HW_EVENT_HARD_RESET_RECEIVED: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_HARD_RESET_RECEIVED\n")); |
| sas_ha->notify_port_event(sas_phy, PORTE_HARD_RESET); |
| break; |
| case HW_EVENT_ID_FRAME_TIMEOUT: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_ID_FRAME_TIMEOUT\n")); |
| sas_phy_disconnected(sas_phy); |
| phy->phy_attached = 0; |
| sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); |
| break; |
| case HW_EVENT_LINK_ERR_PHY_RESET_FAILED: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_LINK_ERR_PHY_RESET_FAILED\n")); |
| pm80xx_hw_event_ack_req(pm8001_ha, 0, |
| HW_EVENT_LINK_ERR_PHY_RESET_FAILED, |
| port_id, phy_id, 0, 0); |
| sas_phy_disconnected(sas_phy); |
| phy->phy_attached = 0; |
| sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); |
| break; |
| case HW_EVENT_PORT_RESET_TIMER_TMO: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_PORT_RESET_TIMER_TMO\n")); |
| sas_phy_disconnected(sas_phy); |
| phy->phy_attached = 0; |
| sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); |
| break; |
| case HW_EVENT_PORT_RECOVERY_TIMER_TMO: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_PORT_RECOVERY_TIMER_TMO\n")); |
| pm80xx_hw_event_ack_req(pm8001_ha, 0, |
| HW_EVENT_PORT_RECOVERY_TIMER_TMO, |
| port_id, phy_id, 0, 0); |
| sas_phy_disconnected(sas_phy); |
| phy->phy_attached = 0; |
| sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR); |
| break; |
| case HW_EVENT_PORT_RECOVER: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_PORT_RECOVER\n")); |
| break; |
| case HW_EVENT_PORT_RESET_COMPLETE: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("HW_EVENT_PORT_RESET_COMPLETE\n")); |
| break; |
| case EVENT_BROADCAST_ASYNCH_EVENT: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("EVENT_BROADCAST_ASYNCH_EVENT\n")); |
| break; |
| default: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("Unknown event type 0x%x\n", eventType)); |
| break; |
| } |
| return 0; |
| } |
| |
| /** |
| * mpi_phy_stop_resp - SPCv specific |
| * @pm8001_ha: our hba card information |
| * @piomb: IO message buffer |
| */ |
| static int mpi_phy_stop_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) |
| { |
| struct phy_stop_resp *pPayload = |
| (struct phy_stop_resp *)(piomb + 4); |
| u32 status = |
| le32_to_cpu(pPayload->status); |
| u32 phyid = |
| le32_to_cpu(pPayload->phyid); |
| struct pm8001_phy *phy = &pm8001_ha->phy[phyid]; |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("phy:0x%x status:0x%x\n", |
| phyid, status)); |
| if (status == 0) |
| phy->phy_state = 0; |
| return 0; |
| } |
| |
| /** |
| * mpi_set_controller_config_resp - SPCv specific |
| * @pm8001_ha: our hba card information |
| * @piomb: IO message buffer |
| */ |
| static int mpi_set_controller_config_resp(struct pm8001_hba_info *pm8001_ha, |
| void *piomb) |
| { |
| struct set_ctrl_cfg_resp *pPayload = |
| (struct set_ctrl_cfg_resp *)(piomb + 4); |
| u32 status = le32_to_cpu(pPayload->status); |
| u32 err_qlfr_pgcd = le32_to_cpu(pPayload->err_qlfr_pgcd); |
| |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk( |
| "SET CONTROLLER RESP: status 0x%x qlfr_pgcd 0x%x\n", |
| status, err_qlfr_pgcd)); |
| |
| return 0; |
| } |
| |
| /** |
| * mpi_get_controller_config_resp - SPCv specific |
| * @pm8001_ha: our hba card information |
| * @piomb: IO message buffer |
| */ |
| static int mpi_get_controller_config_resp(struct pm8001_hba_info *pm8001_ha, |
| void *piomb) |
| { |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" pm80xx_addition_functionality\n")); |
| |
| return 0; |
| } |
| |
| /** |
| * mpi_get_phy_profile_resp - SPCv specific |
| * @pm8001_ha: our hba card information |
| * @piomb: IO message buffer |
| */ |
| static int mpi_get_phy_profile_resp(struct pm8001_hba_info *pm8001_ha, |
| void *piomb) |
| { |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" pm80xx_addition_functionality\n")); |
| |
| return 0; |
| } |
| |
| /** |
| * mpi_flash_op_ext_resp - SPCv specific |
| * @pm8001_ha: our hba card information |
| * @piomb: IO message buffer |
| */ |
| static int mpi_flash_op_ext_resp(struct pm8001_hba_info *pm8001_ha, void *piomb) |
| { |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" pm80xx_addition_functionality\n")); |
| |
| return 0; |
| } |
| |
| /** |
| * mpi_set_phy_profile_resp - SPCv specific |
| * @pm8001_ha: our hba card information |
| * @piomb: IO message buffer |
| */ |
| static int mpi_set_phy_profile_resp(struct pm8001_hba_info *pm8001_ha, |
| void *piomb) |
| { |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" pm80xx_addition_functionality\n")); |
| |
| return 0; |
| } |
| |
| /** |
| * mpi_kek_management_resp - SPCv specific |
| * @pm8001_ha: our hba card information |
| * @piomb: IO message buffer |
| */ |
| static int mpi_kek_management_resp(struct pm8001_hba_info *pm8001_ha, |
| void *piomb) |
| { |
| struct kek_mgmt_resp *pPayload = (struct kek_mgmt_resp *)(piomb + 4); |
| |
| u32 status = le32_to_cpu(pPayload->status); |
| u32 kidx_new_curr_ksop = le32_to_cpu(pPayload->kidx_new_curr_ksop); |
| u32 err_qlfr = le32_to_cpu(pPayload->err_qlfr); |
| |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk( |
| "KEK MGMT RESP. Status 0x%x idx_ksop 0x%x err_qlfr 0x%x\n", |
| status, kidx_new_curr_ksop, err_qlfr)); |
| |
| return 0; |
| } |
| |
| /** |
| * mpi_dek_management_resp - SPCv specific |
| * @pm8001_ha: our hba card information |
| * @piomb: IO message buffer |
| */ |
| static int mpi_dek_management_resp(struct pm8001_hba_info *pm8001_ha, |
| void *piomb) |
| { |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" pm80xx_addition_functionality\n")); |
| |
| return 0; |
| } |
| |
| /** |
| * ssp_coalesced_comp_resp - SPCv specific |
| * @pm8001_ha: our hba card information |
| * @piomb: IO message buffer |
| */ |
| static int ssp_coalesced_comp_resp(struct pm8001_hba_info *pm8001_ha, |
| void *piomb) |
| { |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk(" pm80xx_addition_functionality\n")); |
| |
| return 0; |
| } |
| |
| /** |
| * process_one_iomb - process one outbound Queue memory block |
| * @pm8001_ha: our hba card information |
| * @piomb: IO message buffer |
| */ |
| static void process_one_iomb(struct pm8001_hba_info *pm8001_ha, void *piomb) |
| { |
| __le32 pHeader = *(__le32 *)piomb; |
| u32 opc = (u32)((le32_to_cpu(pHeader)) & 0xFFF); |
| |
| switch (opc) { |
| case OPC_OUB_ECHO: |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk("OPC_OUB_ECHO\n")); |
| break; |
| case OPC_OUB_HW_EVENT: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_HW_EVENT\n")); |
| mpi_hw_event(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_THERM_HW_EVENT: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_THERMAL_EVENT\n")); |
| mpi_thermal_hw_event(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_SSP_COMP: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SSP_COMP\n")); |
| mpi_ssp_completion(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_SMP_COMP: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SMP_COMP\n")); |
| mpi_smp_completion(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_LOCAL_PHY_CNTRL: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_LOCAL_PHY_CNTRL\n")); |
| pm8001_mpi_local_phy_ctl(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_DEV_REGIST: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_DEV_REGIST\n")); |
| pm8001_mpi_reg_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_DEREG_DEV: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("unregister the device\n")); |
| pm8001_mpi_dereg_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_GET_DEV_HANDLE: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_GET_DEV_HANDLE\n")); |
| break; |
| case OPC_OUB_SATA_COMP: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SATA_COMP\n")); |
| mpi_sata_completion(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_SATA_EVENT: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SATA_EVENT\n")); |
| mpi_sata_event(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_SSP_EVENT: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SSP_EVENT\n")); |
| mpi_ssp_event(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_DEV_HANDLE_ARRIV: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_DEV_HANDLE_ARRIV\n")); |
| /*This is for target*/ |
| break; |
| case OPC_OUB_SSP_RECV_EVENT: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SSP_RECV_EVENT\n")); |
| /*This is for target*/ |
| break; |
| case OPC_OUB_FW_FLASH_UPDATE: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_FW_FLASH_UPDATE\n")); |
| pm8001_mpi_fw_flash_update_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_GPIO_RESPONSE: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_GPIO_RESPONSE\n")); |
| break; |
| case OPC_OUB_GPIO_EVENT: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_GPIO_EVENT\n")); |
| break; |
| case OPC_OUB_GENERAL_EVENT: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_GENERAL_EVENT\n")); |
| pm8001_mpi_general_event(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_SSP_ABORT_RSP: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SSP_ABORT_RSP\n")); |
| pm8001_mpi_task_abort_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_SATA_ABORT_RSP: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SATA_ABORT_RSP\n")); |
| pm8001_mpi_task_abort_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_SAS_DIAG_MODE_START_END: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SAS_DIAG_MODE_START_END\n")); |
| break; |
| case OPC_OUB_SAS_DIAG_EXECUTE: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SAS_DIAG_EXECUTE\n")); |
| break; |
| case OPC_OUB_GET_TIME_STAMP: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_GET_TIME_STAMP\n")); |
| break; |
| case OPC_OUB_SAS_HW_EVENT_ACK: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SAS_HW_EVENT_ACK\n")); |
| break; |
| case OPC_OUB_PORT_CONTROL: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_PORT_CONTROL\n")); |
| break; |
| case OPC_OUB_SMP_ABORT_RSP: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SMP_ABORT_RSP\n")); |
| pm8001_mpi_task_abort_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_GET_NVMD_DATA: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_GET_NVMD_DATA\n")); |
| pm8001_mpi_get_nvmd_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_SET_NVMD_DATA: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SET_NVMD_DATA\n")); |
| pm8001_mpi_set_nvmd_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_DEVICE_HANDLE_REMOVAL: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_DEVICE_HANDLE_REMOVAL\n")); |
| break; |
| case OPC_OUB_SET_DEVICE_STATE: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SET_DEVICE_STATE\n")); |
| pm8001_mpi_set_dev_state_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_GET_DEVICE_STATE: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_GET_DEVICE_STATE\n")); |
| break; |
| case OPC_OUB_SET_DEV_INFO: |
| PM8001_MSG_DBG(pm8001_ha, |
| pm8001_printk("OPC_OUB_SET_DEV_INFO\n")); |
| break; |
| /* spcv specifc commands */ |
| case OPC_OUB_PHY_START_RESP: |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk( |
| "OPC_OUB_PHY_START_RESP opcode:%x\n", opc)); |
| mpi_phy_start_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_PHY_STOP_RESP: |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk( |
| "OPC_OUB_PHY_STOP_RESP opcode:%x\n", opc)); |
| mpi_phy_stop_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_SET_CONTROLLER_CONFIG: |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk( |
| "OPC_OUB_SET_CONTROLLER_CONFIG opcode:%x\n", opc)); |
| mpi_set_controller_config_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_GET_CONTROLLER_CONFIG: |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk( |
| "OPC_OUB_GET_CONTROLLER_CONFIG opcode:%x\n", opc)); |
| mpi_get_controller_config_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_GET_PHY_PROFILE: |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk( |
| "OPC_OUB_GET_PHY_PROFILE opcode:%x\n", opc)); |
| mpi_get_phy_profile_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_FLASH_OP_EXT: |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk( |
| "OPC_OUB_FLASH_OP_EXT opcode:%x\n", opc)); |
| mpi_flash_op_ext_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_SET_PHY_PROFILE: |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk( |
| "OPC_OUB_SET_PHY_PROFILE opcode:%x\n", opc)); |
| mpi_set_phy_profile_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_KEK_MANAGEMENT_RESP: |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk( |
| "OPC_OUB_KEK_MANAGEMENT_RESP opcode:%x\n", opc)); |
| mpi_kek_management_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_DEK_MANAGEMENT_RESP: |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk( |
| "OPC_OUB_DEK_MANAGEMENT_RESP opcode:%x\n", opc)); |
| mpi_dek_management_resp(pm8001_ha, piomb); |
| break; |
| case OPC_OUB_SSP_COALESCED_COMP_RESP: |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk( |
| "OPC_OUB_SSP_COALESCED_COMP_RESP opcode:%x\n", opc)); |
| ssp_coalesced_comp_resp(pm8001_ha, piomb); |
| break; |
| default: |
| PM8001_MSG_DBG(pm8001_ha, pm8001_printk( |
| "Unknown outbound Queue IOMB OPC = 0x%x\n", opc)); |
| break; |
| } |
| } |
| |
| static int process_oq(struct pm8001_hba_info *pm8001_ha, u8 vec) |
| { |
| struct outbound_queue_table *circularQ; |
| void *pMsg1 = NULL; |
| u8 uninitialized_var(bc); |
| u32 ret = MPI_IO_STATUS_FAIL; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&pm8001_ha->lock, flags); |
| circularQ = &pm8001_ha->outbnd_q_tbl[vec]; |
| do { |
| ret = pm8001_mpi_msg_consume(pm8001_ha, circularQ, &pMsg1, &bc); |
| if (MPI_IO_STATUS_SUCCESS == ret) { |
| /* process the outbound message */ |
| process_one_iomb(pm8001_ha, (void *)(pMsg1 - 4)); |
| /* free the message from the outbound circular buffer */ |
| pm8001_mpi_msg_free_set(pm8001_ha, pMsg1, |
| circularQ, bc); |
| } |
| if (MPI_IO_STATUS_BUSY == ret) { |
| /* Update the producer index from SPC */ |
| circularQ->producer_index = |
| cpu_to_le32(pm8001_read_32(circularQ->pi_virt)); |
| if (le32_to_cpu(circularQ->producer_index) == |
| circularQ->consumer_idx) |
| /* OQ is empty */ |
| break; |
| } |
| } while (1); |
| spin_unlock_irqrestore(&pm8001_ha->lock, flags); |
| return ret; |
| } |
| |
| /* PCI_DMA_... to our direction translation. */ |
| static const u8 data_dir_flags[] = { |
| [PCI_DMA_BIDIRECTIONAL] = DATA_DIR_BYRECIPIENT,/* UNSPECIFIED */ |
| [PCI_DMA_TODEVICE] = DATA_DIR_OUT,/* OUTBOUND */ |
| [PCI_DMA_FROMDEVICE] = DATA_DIR_IN,/* INBOUND */ |
| [PCI_DMA_NONE] = DATA_DIR_NONE,/* NO TRANSFER */ |
| }; |
| |
| static void build_smp_cmd(u32 deviceID, __le32 hTag, |
| struct smp_req *psmp_cmd, int mode, int length) |
| { |
| psmp_cmd->tag = hTag; |
| psmp_cmd->device_id = cpu_to_le32(deviceID); |
| if (mode == SMP_DIRECT) { |
| length = length - 4; /* subtract crc */ |
| psmp_cmd->len_ip_ir = cpu_to_le32(length << 16); |
| } else { |
| psmp_cmd->len_ip_ir = cpu_to_le32(1|(1 << 1)); |
| } |
| } |
| |
| /** |
| * pm8001_chip_smp_req - send a SMP task to FW |
| * @pm8001_ha: our hba card information. |
| * @ccb: the ccb information this request used. |
| */ |
| static int pm80xx_chip_smp_req(struct pm8001_hba_info *pm8001_ha, |
| struct pm8001_ccb_info *ccb) |
| { |
| int elem, rc; |
| struct sas_task *task = ccb->task; |
| struct domain_device *dev = task->dev; |
| struct pm8001_device *pm8001_dev = dev->lldd_dev; |
| struct scatterlist *sg_req, *sg_resp; |
| u32 req_len, resp_len; |
| struct smp_req smp_cmd; |
| u32 opc; |
| struct inbound_queue_table *circularQ; |
| char *preq_dma_addr = NULL; |
| __le64 tmp_addr; |
| u32 i, length; |
| |
| memset(&smp_cmd, 0, sizeof(smp_cmd)); |
| /* |
| * DMA-map SMP request, response buffers |
| */ |
| sg_req = &task->smp_task.smp_req; |
| elem = dma_map_sg(pm8001_ha->dev, sg_req, 1, PCI_DMA_TODEVICE); |
| if (!elem) |
| return -ENOMEM; |
| req_len = sg_dma_len(sg_req); |
| |
| sg_resp = &task->smp_task.smp_resp; |
| elem = dma_map_sg(pm8001_ha->dev, sg_resp, 1, PCI_DMA_FROMDEVICE); |
| if (!elem) { |
| rc = -ENOMEM; |
| goto err_out; |
| } |
| resp_len = sg_dma_len(sg_resp); |
| /* must be in dwords */ |
| if ((req_len & 0x3) || (resp_len & 0x3)) { |
| rc = -EINVAL; |
| goto err_out_2; |
| } |
| |
| opc = OPC_INB_SMP_REQUEST; |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| smp_cmd.tag = cpu_to_le32(ccb->ccb_tag); |
| |
| length = sg_req->length; |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("SMP Frame Length %d\n", sg_req->length)); |
| if (!(length - 8)) |
| pm8001_ha->smp_exp_mode = SMP_DIRECT; |
| else |
| pm8001_ha->smp_exp_mode = SMP_INDIRECT; |
| |
| |
| tmp_addr = cpu_to_le64((u64)sg_dma_address(&task->smp_task.smp_req)); |
| preq_dma_addr = (char *)phys_to_virt(tmp_addr); |
| |
| /* INDIRECT MODE command settings. Use DMA */ |
| if (pm8001_ha->smp_exp_mode == SMP_INDIRECT) { |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("SMP REQUEST INDIRECT MODE\n")); |
| /* for SPCv indirect mode. Place the top 4 bytes of |
| * SMP Request header here. */ |
| for (i = 0; i < 4; i++) |
| smp_cmd.smp_req16[i] = *(preq_dma_addr + i); |
| /* exclude top 4 bytes for SMP req header */ |
| smp_cmd.long_smp_req.long_req_addr = |
| cpu_to_le64((u64)sg_dma_address |
| (&task->smp_task.smp_req) + 4); |
| /* exclude 4 bytes for SMP req header and CRC */ |
| smp_cmd.long_smp_req.long_req_size = |
| cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_req)-8); |
| smp_cmd.long_smp_req.long_resp_addr = |
| cpu_to_le64((u64)sg_dma_address |
| (&task->smp_task.smp_resp)); |
| smp_cmd.long_smp_req.long_resp_size = |
| cpu_to_le32((u32)sg_dma_len |
| (&task->smp_task.smp_resp)-4); |
| } else { /* DIRECT MODE */ |
| smp_cmd.long_smp_req.long_req_addr = |
| cpu_to_le64((u64)sg_dma_address |
| (&task->smp_task.smp_req)); |
| smp_cmd.long_smp_req.long_req_size = |
| cpu_to_le32((u32)sg_dma_len(&task->smp_task.smp_req)-4); |
| smp_cmd.long_smp_req.long_resp_addr = |
| cpu_to_le64((u64)sg_dma_address |
| (&task->smp_task.smp_resp)); |
| smp_cmd.long_smp_req.long_resp_size = |
| cpu_to_le32 |
| ((u32)sg_dma_len(&task->smp_task.smp_resp)-4); |
| } |
| if (pm8001_ha->smp_exp_mode == SMP_DIRECT) { |
| PM8001_IO_DBG(pm8001_ha, |
| pm8001_printk("SMP REQUEST DIRECT MODE\n")); |
| for (i = 0; i < length; i++) |
| if (i < 16) { |
| smp_cmd.smp_req16[i] = *(preq_dma_addr+i); |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk( |
| "Byte[%d]:%x (DMA data:%x)\n", |
| i, smp_cmd.smp_req16[i], |
| *(preq_dma_addr))); |
| } else { |
| smp_cmd.smp_req[i] = *(preq_dma_addr+i); |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk( |
| "Byte[%d]:%x (DMA data:%x)\n", |
| i, smp_cmd.smp_req[i], |
| *(preq_dma_addr))); |
| } |
| } |
| |
| build_smp_cmd(pm8001_dev->device_id, smp_cmd.tag, |
| &smp_cmd, pm8001_ha->smp_exp_mode, length); |
| pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, (u32 *)&smp_cmd, 0); |
| return 0; |
| |
| err_out_2: |
| dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_resp, 1, |
| PCI_DMA_FROMDEVICE); |
| err_out: |
| dma_unmap_sg(pm8001_ha->dev, &ccb->task->smp_task.smp_req, 1, |
| PCI_DMA_TODEVICE); |
| return rc; |
| } |
| |
| static int check_enc_sas_cmd(struct sas_task *task) |
| { |
| u8 cmd = task->ssp_task.cmd->cmnd[0]; |
| |
| if (cmd == READ_10 || cmd == WRITE_10 || cmd == WRITE_VERIFY) |
| return 1; |
| else |
| return 0; |
| } |
| |
| static int check_enc_sat_cmd(struct sas_task *task) |
| { |
| int ret = 0; |
| switch (task->ata_task.fis.command) { |
| case ATA_CMD_FPDMA_READ: |
| case ATA_CMD_READ_EXT: |
| case ATA_CMD_READ: |
| case ATA_CMD_FPDMA_WRITE: |
| case ATA_CMD_WRITE_EXT: |
| case ATA_CMD_WRITE: |
| case ATA_CMD_PIO_READ: |
| case ATA_CMD_PIO_READ_EXT: |
| case ATA_CMD_PIO_WRITE: |
| case ATA_CMD_PIO_WRITE_EXT: |
| ret = 1; |
| break; |
| default: |
| ret = 0; |
| break; |
| } |
| return ret; |
| } |
| |
| /** |
| * pm80xx_chip_ssp_io_req - send a SSP task to FW |
| * @pm8001_ha: our hba card information. |
| * @ccb: the ccb information this request used. |
| */ |
| static int pm80xx_chip_ssp_io_req(struct pm8001_hba_info *pm8001_ha, |
| struct pm8001_ccb_info *ccb) |
| { |
| struct sas_task *task = ccb->task; |
| struct domain_device *dev = task->dev; |
| struct pm8001_device *pm8001_dev = dev->lldd_dev; |
| struct ssp_ini_io_start_req ssp_cmd; |
| u32 tag = ccb->ccb_tag; |
| int ret; |
| u64 phys_addr, start_addr, end_addr; |
| u32 end_addr_high, end_addr_low; |
| struct inbound_queue_table *circularQ; |
| u32 q_index; |
| u32 opc = OPC_INB_SSPINIIOSTART; |
| memset(&ssp_cmd, 0, sizeof(ssp_cmd)); |
| memcpy(ssp_cmd.ssp_iu.lun, task->ssp_task.LUN, 8); |
| /* data address domain added for spcv; set to 0 by host, |
| * used internally by controller |
| * 0 for SAS 1.1 and SAS 2.0 compatible TLR |
| */ |
| ssp_cmd.dad_dir_m_tlr = |
| cpu_to_le32(data_dir_flags[task->data_dir] << 8 | 0x0); |
| ssp_cmd.data_len = cpu_to_le32(task->total_xfer_len); |
| ssp_cmd.device_id = cpu_to_le32(pm8001_dev->device_id); |
| ssp_cmd.tag = cpu_to_le32(tag); |
| if (task->ssp_task.enable_first_burst) |
| ssp_cmd.ssp_iu.efb_prio_attr |= 0x80; |
| ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_prio << 3); |
| ssp_cmd.ssp_iu.efb_prio_attr |= (task->ssp_task.task_attr & 7); |
| memcpy(ssp_cmd.ssp_iu.cdb, task->ssp_task.cmd->cmnd, |
| task->ssp_task.cmd->cmd_len); |
| q_index = (u32) (pm8001_dev->id & 0x00ffffff) % PM8001_MAX_INB_NUM; |
| circularQ = &pm8001_ha->inbnd_q_tbl[q_index]; |
| |
| /* Check if encryption is set */ |
| if (pm8001_ha->chip->encrypt && |
| !(pm8001_ha->encrypt_info.status) && check_enc_sas_cmd(task)) { |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk( |
| "Encryption enabled.Sending Encrypt SAS command 0x%x\n", |
| task->ssp_task.cmd->cmnd[0])); |
| opc = OPC_INB_SSP_INI_DIF_ENC_IO; |
| /* enable encryption. 0 for SAS 1.1 and SAS 2.0 compatible TLR*/ |
| ssp_cmd.dad_dir_m_tlr = cpu_to_le32 |
| ((data_dir_flags[task->data_dir] << 8) | 0x20 | 0x0); |
| |
| /* fill in PRD (scatter/gather) table, if any */ |
| if (task->num_scatter > 1) { |
| pm8001_chip_make_sg(task->scatter, |
| ccb->n_elem, ccb->buf_prd); |
| phys_addr = ccb->ccb_dma_handle + |
| offsetof(struct pm8001_ccb_info, buf_prd[0]); |
| ssp_cmd.enc_addr_low = |
| cpu_to_le32(lower_32_bits(phys_addr)); |
| ssp_cmd.enc_addr_high = |
| cpu_to_le32(upper_32_bits(phys_addr)); |
| ssp_cmd.enc_esgl = cpu_to_le32(1<<31); |
| } else if (task->num_scatter == 1) { |
| u64 dma_addr = sg_dma_address(task->scatter); |
| ssp_cmd.enc_addr_low = |
| cpu_to_le32(lower_32_bits(dma_addr)); |
| ssp_cmd.enc_addr_high = |
| cpu_to_le32(upper_32_bits(dma_addr)); |
| ssp_cmd.enc_len = cpu_to_le32(task->total_xfer_len); |
| ssp_cmd.enc_esgl = 0; |
| /* Check 4G Boundary */ |
| start_addr = cpu_to_le64(dma_addr); |
| end_addr = (start_addr + ssp_cmd.enc_len) - 1; |
| end_addr_low = cpu_to_le32(lower_32_bits(end_addr)); |
| end_addr_high = cpu_to_le32(upper_32_bits(end_addr)); |
| if (end_addr_high != ssp_cmd.enc_addr_high) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("The sg list address " |
| "start_addr=0x%016llx data_len=0x%x " |
| "end_addr_high=0x%08x end_addr_low=" |
| "0x%08x has crossed 4G boundary\n", |
| start_addr, ssp_cmd.enc_len, |
| end_addr_high, end_addr_low)); |
| pm8001_chip_make_sg(task->scatter, 1, |
| ccb->buf_prd); |
| phys_addr = ccb->ccb_dma_handle + |
| offsetof(struct pm8001_ccb_info, |
| buf_prd[0]); |
| ssp_cmd.enc_addr_low = |
| cpu_to_le32(lower_32_bits(phys_addr)); |
| ssp_cmd.enc_addr_high = |
| cpu_to_le32(upper_32_bits(phys_addr)); |
| ssp_cmd.enc_esgl = cpu_to_le32(1<<31); |
| } |
| } else if (task->num_scatter == 0) { |
| ssp_cmd.enc_addr_low = 0; |
| ssp_cmd.enc_addr_high = 0; |
| ssp_cmd.enc_len = cpu_to_le32(task->total_xfer_len); |
| ssp_cmd.enc_esgl = 0; |
| } |
| /* XTS mode. All other fields are 0 */ |
| ssp_cmd.key_cmode = 0x6 << 4; |
| /* set tweak values. Should be the start lba */ |
| ssp_cmd.twk_val0 = cpu_to_le32((task->ssp_task.cmd->cmnd[2] << 24) | |
| (task->ssp_task.cmd->cmnd[3] << 16) | |
| (task->ssp_task.cmd->cmnd[4] << 8) | |
| (task->ssp_task.cmd->cmnd[5])); |
| } else { |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk( |
| "Sending Normal SAS command 0x%x inb q %x\n", |
| task->ssp_task.cmd->cmnd[0], q_index)); |
| /* fill in PRD (scatter/gather) table, if any */ |
| if (task->num_scatter > 1) { |
| pm8001_chip_make_sg(task->scatter, ccb->n_elem, |
| ccb->buf_prd); |
| phys_addr = ccb->ccb_dma_handle + |
| offsetof(struct pm8001_ccb_info, buf_prd[0]); |
| ssp_cmd.addr_low = |
| cpu_to_le32(lower_32_bits(phys_addr)); |
| ssp_cmd.addr_high = |
| cpu_to_le32(upper_32_bits(phys_addr)); |
| ssp_cmd.esgl = cpu_to_le32(1<<31); |
| } else if (task->num_scatter == 1) { |
| u64 dma_addr = sg_dma_address(task->scatter); |
| ssp_cmd.addr_low = cpu_to_le32(lower_32_bits(dma_addr)); |
| ssp_cmd.addr_high = |
| cpu_to_le32(upper_32_bits(dma_addr)); |
| ssp_cmd.len = cpu_to_le32(task->total_xfer_len); |
| ssp_cmd.esgl = 0; |
| /* Check 4G Boundary */ |
| start_addr = cpu_to_le64(dma_addr); |
| end_addr = (start_addr + ssp_cmd.len) - 1; |
| end_addr_low = cpu_to_le32(lower_32_bits(end_addr)); |
| end_addr_high = cpu_to_le32(upper_32_bits(end_addr)); |
| if (end_addr_high != ssp_cmd.addr_high) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("The sg list address " |
| "start_addr=0x%016llx data_len=0x%x " |
| "end_addr_high=0x%08x end_addr_low=" |
| "0x%08x has crossed 4G boundary\n", |
| start_addr, ssp_cmd.len, |
| end_addr_high, end_addr_low)); |
| pm8001_chip_make_sg(task->scatter, 1, |
| ccb->buf_prd); |
| phys_addr = ccb->ccb_dma_handle + |
| offsetof(struct pm8001_ccb_info, |
| buf_prd[0]); |
| ssp_cmd.addr_low = |
| cpu_to_le32(lower_32_bits(phys_addr)); |
| ssp_cmd.addr_high = |
| cpu_to_le32(upper_32_bits(phys_addr)); |
| ssp_cmd.esgl = cpu_to_le32(1<<31); |
| } |
| } else if (task->num_scatter == 0) { |
| ssp_cmd.addr_low = 0; |
| ssp_cmd.addr_high = 0; |
| ssp_cmd.len = cpu_to_le32(task->total_xfer_len); |
| ssp_cmd.esgl = 0; |
| } |
| } |
| q_index = (u32) (pm8001_dev->id & 0x00ffffff) % PM8001_MAX_OUTB_NUM; |
| ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, |
| &ssp_cmd, q_index); |
| return ret; |
| } |
| |
| static int pm80xx_chip_sata_req(struct pm8001_hba_info *pm8001_ha, |
| struct pm8001_ccb_info *ccb) |
| { |
| struct sas_task *task = ccb->task; |
| struct domain_device *dev = task->dev; |
| struct pm8001_device *pm8001_ha_dev = dev->lldd_dev; |
| u32 tag = ccb->ccb_tag; |
| int ret; |
| u32 q_index; |
| struct sata_start_req sata_cmd; |
| u32 hdr_tag, ncg_tag = 0; |
| u64 phys_addr, start_addr, end_addr; |
| u32 end_addr_high, end_addr_low; |
| u32 ATAP = 0x0; |
| u32 dir; |
| struct inbound_queue_table *circularQ; |
| unsigned long flags; |
| u32 opc = OPC_INB_SATA_HOST_OPSTART; |
| memset(&sata_cmd, 0, sizeof(sata_cmd)); |
| q_index = (u32) (pm8001_ha_dev->id & 0x00ffffff) % PM8001_MAX_INB_NUM; |
| circularQ = &pm8001_ha->inbnd_q_tbl[q_index]; |
| |
| if (task->data_dir == PCI_DMA_NONE) { |
| ATAP = 0x04; /* no data*/ |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk("no data\n")); |
| } else if (likely(!task->ata_task.device_control_reg_update)) { |
| if (task->ata_task.dma_xfer) { |
| ATAP = 0x06; /* DMA */ |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk("DMA\n")); |
| } else { |
| ATAP = 0x05; /* PIO*/ |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk("PIO\n")); |
| } |
| if (task->ata_task.use_ncq && |
| dev->sata_dev.command_set != ATAPI_COMMAND_SET) { |
| ATAP = 0x07; /* FPDMA */ |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk("FPDMA\n")); |
| } |
| } |
| if (task->ata_task.use_ncq && pm8001_get_ncq_tag(task, &hdr_tag)) { |
| task->ata_task.fis.sector_count |= (u8) (hdr_tag << 3); |
| ncg_tag = hdr_tag; |
| } |
| dir = data_dir_flags[task->data_dir] << 8; |
| sata_cmd.tag = cpu_to_le32(tag); |
| sata_cmd.device_id = cpu_to_le32(pm8001_ha_dev->device_id); |
| sata_cmd.data_len = cpu_to_le32(task->total_xfer_len); |
| |
| sata_cmd.sata_fis = task->ata_task.fis; |
| if (likely(!task->ata_task.device_control_reg_update)) |
| sata_cmd.sata_fis.flags |= 0x80;/* C=1: update ATA cmd reg */ |
| sata_cmd.sata_fis.flags &= 0xF0;/* PM_PORT field shall be 0 */ |
| |
| /* Check if encryption is set */ |
| if (pm8001_ha->chip->encrypt && |
| !(pm8001_ha->encrypt_info.status) && check_enc_sat_cmd(task)) { |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk( |
| "Encryption enabled.Sending Encrypt SATA cmd 0x%x\n", |
| sata_cmd.sata_fis.command)); |
| opc = OPC_INB_SATA_DIF_ENC_IO; |
| |
| /* set encryption bit */ |
| sata_cmd.ncqtag_atap_dir_m_dad = |
| cpu_to_le32(((ncg_tag & 0xff)<<16)| |
| ((ATAP & 0x3f) << 10) | 0x20 | dir); |
| /* dad (bit 0-1) is 0 */ |
| /* fill in PRD (scatter/gather) table, if any */ |
| if (task->num_scatter > 1) { |
| pm8001_chip_make_sg(task->scatter, |
| ccb->n_elem, ccb->buf_prd); |
| phys_addr = ccb->ccb_dma_handle + |
| offsetof(struct pm8001_ccb_info, buf_prd[0]); |
| sata_cmd.enc_addr_low = lower_32_bits(phys_addr); |
| sata_cmd.enc_addr_high = upper_32_bits(phys_addr); |
| sata_cmd.enc_esgl = cpu_to_le32(1 << 31); |
| } else if (task->num_scatter == 1) { |
| u64 dma_addr = sg_dma_address(task->scatter); |
| sata_cmd.enc_addr_low = lower_32_bits(dma_addr); |
| sata_cmd.enc_addr_high = upper_32_bits(dma_addr); |
| sata_cmd.enc_len = cpu_to_le32(task->total_xfer_len); |
| sata_cmd.enc_esgl = 0; |
| /* Check 4G Boundary */ |
| start_addr = cpu_to_le64(dma_addr); |
| end_addr = (start_addr + sata_cmd.enc_len) - 1; |
| end_addr_low = cpu_to_le32(lower_32_bits(end_addr)); |
| end_addr_high = cpu_to_le32(upper_32_bits(end_addr)); |
| if (end_addr_high != sata_cmd.enc_addr_high) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("The sg list address " |
| "start_addr=0x%016llx data_len=0x%x " |
| "end_addr_high=0x%08x end_addr_low" |
| "=0x%08x has crossed 4G boundary\n", |
| start_addr, sata_cmd.enc_len, |
| end_addr_high, end_addr_low)); |
| pm8001_chip_make_sg(task->scatter, 1, |
| ccb->buf_prd); |
| phys_addr = ccb->ccb_dma_handle + |
| offsetof(struct pm8001_ccb_info, |
| buf_prd[0]); |
| sata_cmd.enc_addr_low = |
| lower_32_bits(phys_addr); |
| sata_cmd.enc_addr_high = |
| upper_32_bits(phys_addr); |
| sata_cmd.enc_esgl = |
| cpu_to_le32(1 << 31); |
| } |
| } else if (task->num_scatter == 0) { |
| sata_cmd.enc_addr_low = 0; |
| sata_cmd.enc_addr_high = 0; |
| sata_cmd.enc_len = cpu_to_le32(task->total_xfer_len); |
| sata_cmd.enc_esgl = 0; |
| } |
| /* XTS mode. All other fields are 0 */ |
| sata_cmd.key_index_mode = 0x6 << 4; |
| /* set tweak values. Should be the start lba */ |
| sata_cmd.twk_val0 = |
| cpu_to_le32((sata_cmd.sata_fis.lbal_exp << 24) | |
| (sata_cmd.sata_fis.lbah << 16) | |
| (sata_cmd.sata_fis.lbam << 8) | |
| (sata_cmd.sata_fis.lbal)); |
| sata_cmd.twk_val1 = |
| cpu_to_le32((sata_cmd.sata_fis.lbah_exp << 8) | |
| (sata_cmd.sata_fis.lbam_exp)); |
| } else { |
| PM8001_IO_DBG(pm8001_ha, pm8001_printk( |
| "Sending Normal SATA command 0x%x inb %x\n", |
| sata_cmd.sata_fis.command, q_index)); |
| /* dad (bit 0-1) is 0 */ |
| sata_cmd.ncqtag_atap_dir_m_dad = |
| cpu_to_le32(((ncg_tag & 0xff)<<16) | |
| ((ATAP & 0x3f) << 10) | dir); |
| |
| /* fill in PRD (scatter/gather) table, if any */ |
| if (task->num_scatter > 1) { |
| pm8001_chip_make_sg(task->scatter, |
| ccb->n_elem, ccb->buf_prd); |
| phys_addr = ccb->ccb_dma_handle + |
| offsetof(struct pm8001_ccb_info, buf_prd[0]); |
| sata_cmd.addr_low = lower_32_bits(phys_addr); |
| sata_cmd.addr_high = upper_32_bits(phys_addr); |
| sata_cmd.esgl = cpu_to_le32(1 << 31); |
| } else if (task->num_scatter == 1) { |
| u64 dma_addr = sg_dma_address(task->scatter); |
| sata_cmd.addr_low = lower_32_bits(dma_addr); |
| sata_cmd.addr_high = upper_32_bits(dma_addr); |
| sata_cmd.len = cpu_to_le32(task->total_xfer_len); |
| sata_cmd.esgl = 0; |
| /* Check 4G Boundary */ |
| start_addr = cpu_to_le64(dma_addr); |
| end_addr = (start_addr + sata_cmd.len) - 1; |
| end_addr_low = cpu_to_le32(lower_32_bits(end_addr)); |
| end_addr_high = cpu_to_le32(upper_32_bits(end_addr)); |
| if (end_addr_high != sata_cmd.addr_high) { |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("The sg list address " |
| "start_addr=0x%016llx data_len=0x%x" |
| "end_addr_high=0x%08x end_addr_low=" |
| "0x%08x has crossed 4G boundary\n", |
| start_addr, sata_cmd.len, |
| end_addr_high, end_addr_low)); |
| pm8001_chip_make_sg(task->scatter, 1, |
| ccb->buf_prd); |
| phys_addr = ccb->ccb_dma_handle + |
| offsetof(struct pm8001_ccb_info, |
| buf_prd[0]); |
| sata_cmd.addr_low = |
| lower_32_bits(phys_addr); |
| sata_cmd.addr_high = |
| upper_32_bits(phys_addr); |
| sata_cmd.esgl = cpu_to_le32(1 << 31); |
| } |
| } else if (task->num_scatter == 0) { |
| sata_cmd.addr_low = 0; |
| sata_cmd.addr_high = 0; |
| sata_cmd.len = cpu_to_le32(task->total_xfer_len); |
| sata_cmd.esgl = 0; |
| } |
| /* scsi cdb */ |
| sata_cmd.atapi_scsi_cdb[0] = |
| cpu_to_le32(((task->ata_task.atapi_packet[0]) | |
| (task->ata_task.atapi_packet[1] << 8) | |
| (task->ata_task.atapi_packet[2] << 16) | |
| (task->ata_task.atapi_packet[3] << 24))); |
| sata_cmd.atapi_scsi_cdb[1] = |
| cpu_to_le32(((task->ata_task.atapi_packet[4]) | |
| (task->ata_task.atapi_packet[5] << 8) | |
| (task->ata_task.atapi_packet[6] << 16) | |
| (task->ata_task.atapi_packet[7] << 24))); |
| sata_cmd.atapi_scsi_cdb[2] = |
| cpu_to_le32(((task->ata_task.atapi_packet[8]) | |
| (task->ata_task.atapi_packet[9] << 8) | |
| (task->ata_task.atapi_packet[10] << 16) | |
| (task->ata_task.atapi_packet[11] << 24))); |
| sata_cmd.atapi_scsi_cdb[3] = |
| cpu_to_le32(((task->ata_task.atapi_packet[12]) | |
| (task->ata_task.atapi_packet[13] << 8) | |
| (task->ata_task.atapi_packet[14] << 16) | |
| (task->ata_task.atapi_packet[15] << 24))); |
| } |
| |
| /* Check for read log for failed drive and return */ |
| if (sata_cmd.sata_fis.command == 0x2f) { |
| if (pm8001_ha_dev && ((pm8001_ha_dev->id & NCQ_READ_LOG_FLAG) || |
| (pm8001_ha_dev->id & NCQ_ABORT_ALL_FLAG) || |
| (pm8001_ha_dev->id & NCQ_2ND_RLE_FLAG))) { |
| struct task_status_struct *ts; |
| |
| pm8001_ha_dev->id &= 0xDFFFFFFF; |
| ts = &task->task_status; |
| |
| spin_lock_irqsave(&task->task_state_lock, flags); |
| ts->resp = SAS_TASK_COMPLETE; |
| ts->stat = SAM_STAT_GOOD; |
| task->task_state_flags &= ~SAS_TASK_STATE_PENDING; |
| task->task_state_flags &= ~SAS_TASK_AT_INITIATOR; |
| task->task_state_flags |= SAS_TASK_STATE_DONE; |
| if (unlikely((task->task_state_flags & |
| SAS_TASK_STATE_ABORTED))) { |
| spin_unlock_irqrestore(&task->task_state_lock, |
| flags); |
| PM8001_FAIL_DBG(pm8001_ha, |
| pm8001_printk("task 0x%p resp 0x%x " |
| " stat 0x%x but aborted by upper layer " |
| "\n", task, ts->resp, ts->stat)); |
| pm8001_ccb_task_free(pm8001_ha, task, ccb, tag); |
| return 0; |
| } else if (task->uldd_task) { |
| spin_unlock_irqrestore(&task->task_state_lock, |
| flags); |
| pm8001_ccb_task_free(pm8001_ha, task, ccb, tag); |
| mb();/* ditto */ |
| spin_unlock_irq(&pm8001_ha->lock); |
| task->task_done(task); |
| spin_lock_irq(&pm8001_ha->lock); |
| return 0; |
| } else if (!task->uldd_task) { |
| spin_unlock_irqrestore(&task->task_state_lock, |
| flags); |
| pm8001_ccb_task_free(pm8001_ha, task, ccb, tag); |
| mb();/*ditto*/ |
| spin_unlock_irq(&pm8001_ha->lock); |
| task->task_done(task); |
| spin_lock_irq(&pm8001_ha->lock); |
| return 0; |
| } |
| } |
| } |
| q_index = (u32) (pm8001_ha_dev->id & 0x00ffffff) % PM8001_MAX_OUTB_NUM; |
| ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, |
| &sata_cmd, q_index); |
| return ret; |
| } |
| |
| /** |
| * pm80xx_chip_phy_start_req - start phy via PHY_START COMMAND |
| * @pm8001_ha: our hba card information. |
| * @num: the inbound queue number |
| * @phy_id: the phy id which we wanted to start up. |
| */ |
| static int |
| pm80xx_chip_phy_start_req(struct pm8001_hba_info *pm8001_ha, u8 phy_id) |
| { |
| struct phy_start_req payload; |
| struct inbound_queue_table *circularQ; |
| int ret; |
| u32 tag = 0x01; |
| u32 opcode = OPC_INB_PHYSTART; |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| memset(&payload, 0, sizeof(payload)); |
| payload.tag = cpu_to_le32(tag); |
| |
| PM8001_INIT_DBG(pm8001_ha, |
| pm8001_printk("PHY START REQ for phy_id %d\n", phy_id)); |
| /* |
| ** [0:7] PHY Identifier |
| ** [8:11] link rate 1.5G, 3G, 6G |
| ** [12:13] link mode 01b SAS mode; 10b SATA mode; 11b Auto mode |
| ** [14] 0b disable spin up hold; 1b enable spin up hold |
| ** [15] ob no change in current PHY analig setup 1b enable using SPAST |
| */ |
| if (!IS_SPCV_12G(pm8001_ha->pdev)) |
| payload.ase_sh_lm_slr_phyid = cpu_to_le32(SPINHOLD_DISABLE | |
| LINKMODE_AUTO | LINKRATE_15 | |
| LINKRATE_30 | LINKRATE_60 | phy_id); |
| else |
| payload.ase_sh_lm_slr_phyid = cpu_to_le32(SPINHOLD_DISABLE | |
| LINKMODE_AUTO | LINKRATE_15 | |
| LINKRATE_30 | LINKRATE_60 | LINKRATE_120 | |
| phy_id); |
| |
| /* SSC Disable and SAS Analog ST configuration */ |
| /** |
| payload.ase_sh_lm_slr_phyid = |
| cpu_to_le32(SSC_DISABLE_30 | SAS_ASE | SPINHOLD_DISABLE | |
| LINKMODE_AUTO | LINKRATE_15 | LINKRATE_30 | LINKRATE_60 | |
| phy_id); |
| Have to add "SAS PHY Analog Setup SPASTI 1 Byte" Based on need |
| **/ |
| |
| payload.sas_identify.dev_type = SAS_END_DEVICE; |
| payload.sas_identify.initiator_bits = SAS_PROTOCOL_ALL; |
| memcpy(payload.sas_identify.sas_addr, |
| pm8001_ha->sas_addr, SAS_ADDR_SIZE); |
| payload.sas_identify.phy_id = phy_id; |
| ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opcode, &payload, 0); |
| return ret; |
| } |
| |
| /** |
| * pm8001_chip_phy_stop_req - start phy via PHY_STOP COMMAND |
| * @pm8001_ha: our hba card information. |
| * @num: the inbound queue number |
| * @phy_id: the phy id which we wanted to start up. |
| */ |
| static int pm80xx_chip_phy_stop_req(struct pm8001_hba_info *pm8001_ha, |
| u8 phy_id) |
| { |
| struct phy_stop_req payload; |
| struct inbound_queue_table *circularQ; |
| int ret; |
| u32 tag = 0x01; |
| u32 opcode = OPC_INB_PHYSTOP; |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| memset(&payload, 0, sizeof(payload)); |
| payload.tag = cpu_to_le32(tag); |
| payload.phy_id = cpu_to_le32(phy_id); |
| ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opcode, &payload, 0); |
| return ret; |
| } |
| |
| /** |
| * see comments on pm8001_mpi_reg_resp. |
| */ |
| static int pm80xx_chip_reg_dev_req(struct pm8001_hba_info *pm8001_ha, |
| struct pm8001_device *pm8001_dev, u32 flag) |
| { |
| struct reg_dev_req payload; |
| u32 opc; |
| u32 stp_sspsmp_sata = 0x4; |
| struct inbound_queue_table *circularQ; |
| u32 linkrate, phy_id; |
| int rc, tag = 0xdeadbeef; |
| struct pm8001_ccb_info *ccb; |
| u8 retryFlag = 0x1; |
| u16 firstBurstSize = 0; |
| u16 ITNT = 2000; |
| struct domain_device *dev = pm8001_dev->sas_device; |
| struct domain_device *parent_dev = dev->parent; |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| |
| memset(&payload, 0, sizeof(payload)); |
| rc = pm8001_tag_alloc(pm8001_ha, &tag); |
| if (rc) |
| return rc; |
| ccb = &pm8001_ha->ccb_info[tag]; |
| ccb->device = pm8001_dev; |
| ccb->ccb_tag = tag; |
| payload.tag = cpu_to_le32(tag); |
| |
| if (flag == 1) { |
| stp_sspsmp_sata = 0x02; /*direct attached sata */ |
| } else { |
| if (pm8001_dev->dev_type == SAS_SATA_DEV) |
| stp_sspsmp_sata = 0x00; /* stp*/ |
| else if (pm8001_dev->dev_type == SAS_END_DEVICE || |
| pm8001_dev->dev_type == SAS_EDGE_EXPANDER_DEVICE || |
| pm8001_dev->dev_type == SAS_FANOUT_EXPANDER_DEVICE) |
| stp_sspsmp_sata = 0x01; /*ssp or smp*/ |
| } |
| if (parent_dev && DEV_IS_EXPANDER(parent_dev->dev_type)) |
| phy_id = parent_dev->ex_dev.ex_phy->phy_id; |
| else |
| phy_id = pm8001_dev->attached_phy; |
| |
| opc = OPC_INB_REG_DEV; |
| |
| linkrate = (pm8001_dev->sas_device->linkrate < dev->port->linkrate) ? |
| pm8001_dev->sas_device->linkrate : dev->port->linkrate; |
| |
| payload.phyid_portid = |
| cpu_to_le32(((pm8001_dev->sas_device->port->id) & 0xFF) | |
| ((phy_id & 0xFF) << 8)); |
| |
| payload.dtype_dlr_mcn_ir_retry = cpu_to_le32((retryFlag & 0x01) | |
| ((linkrate & 0x0F) << 24) | |
| ((stp_sspsmp_sata & 0x03) << 28)); |
| payload.firstburstsize_ITNexustimeout = |
| cpu_to_le32(ITNT | (firstBurstSize * 0x10000)); |
| |
| memcpy(payload.sas_addr, pm8001_dev->sas_device->sas_addr, |
| SAS_ADDR_SIZE); |
| |
| rc = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, 0); |
| |
| return rc; |
| } |
| |
| /** |
| * pm80xx_chip_phy_ctl_req - support the local phy operation |
| * @pm8001_ha: our hba card information. |
| * @num: the inbound queue number |
| * @phy_id: the phy id which we wanted to operate |
| * @phy_op: |
| */ |
| static int pm80xx_chip_phy_ctl_req(struct pm8001_hba_info *pm8001_ha, |
| u32 phyId, u32 phy_op) |
| { |
| struct local_phy_ctl_req payload; |
| struct inbound_queue_table *circularQ; |
| int ret; |
| u32 opc = OPC_INB_LOCAL_PHY_CONTROL; |
| memset(&payload, 0, sizeof(payload)); |
| circularQ = &pm8001_ha->inbnd_q_tbl[0]; |
| payload.tag = cpu_to_le32(1); |
| payload.phyop_phyid = |
| cpu_to_le32(((phy_op & 0xFF) << 8) | (phyId & 0xFF)); |
| ret = pm8001_mpi_build_cmd(pm8001_ha, circularQ, opc, &payload, 0); |
| return ret; |
| } |
| |
| static u32 pm80xx_chip_is_our_interupt(struct pm8001_hba_info *pm8001_ha) |
| { |
| u32 value; |
| #ifdef PM8001_USE_MSIX |
| return 1; |
| #endif |
| value = pm8001_cr32(pm8001_ha, 0, MSGU_ODR); |
| if (value) |
| return 1; |
| return 0; |
| |
| } |
| |
| /** |
| * pm8001_chip_isr - PM8001 isr handler. |
| * @pm8001_ha: our hba card information. |
| * @irq: irq number. |
| * @stat: stat. |
| */ |
| static irqreturn_t |
| pm80xx_chip_isr(struct pm8001_hba_info *pm8001_ha, u8 vec) |
| { |
| pm80xx_chip_interrupt_disable(pm8001_ha, vec); |
| process_oq(pm8001_ha, vec); |
| pm80xx_chip_interrupt_enable(pm8001_ha, vec); |
| return IRQ_HANDLED; |
| } |
| |
| const struct pm8001_dispatch pm8001_80xx_dispatch = { |
| .name = "pmc80xx", |
| .chip_init = pm80xx_chip_init, |
| .chip_soft_rst = pm80xx_chip_soft_rst, |
| .chip_rst = pm80xx_hw_chip_rst, |
| .chip_iounmap = pm8001_chip_iounmap, |
| .isr = pm80xx_chip_isr, |
| .is_our_interupt = pm80xx_chip_is_our_interupt, |
| .isr_process_oq = process_oq, |
| .interrupt_enable = pm80xx_chip_interrupt_enable, |
| .interrupt_disable = pm80xx_chip_interrupt_disable, |
| .make_prd = pm8001_chip_make_sg, |
| .smp_req = pm80xx_chip_smp_req, |
| .ssp_io_req = pm80xx_chip_ssp_io_req, |
| .sata_req = pm80xx_chip_sata_req, |
| .phy_start_req = pm80xx_chip_phy_start_req, |
| .phy_stop_req = pm80xx_chip_phy_stop_req, |
| .reg_dev_req = pm80xx_chip_reg_dev_req, |
| .dereg_dev_req = pm8001_chip_dereg_dev_req, |
| .phy_ctl_req = pm80xx_chip_phy_ctl_req, |
| .task_abort = pm8001_chip_abort_task, |
| .ssp_tm_req = pm8001_chip_ssp_tm_req, |
| .get_nvmd_req = pm8001_chip_get_nvmd_req, |
| .set_nvmd_req = pm8001_chip_set_nvmd_req, |
| .fw_flash_update_req = pm8001_chip_fw_flash_update_req, |
| .set_dev_state_req = pm8001_chip_set_dev_state_req, |
| }; |