blob: c96b46b2c3a8db6452bd68c7750613514102340b [file] [log] [blame]
/*
* SuperH IrDA Driver
*
* Copyright (C) 2010 Renesas Solutions Corp.
* Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>
*
* Based on sh_sir.c
* Copyright (C) 2009 Renesas Solutions Corp.
* Copyright 2006-2009 Analog Devices Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/*
* CAUTION
*
* This driver is very simple.
* So, it doesn't have below support now
* - MIR/FIR support
* - DMA transfer support
* - FIFO mode support
*/
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/clk.h>
#include <net/irda/wrapper.h>
#include <net/irda/irda_device.h>
#define DRIVER_NAME "sh_irda"
#define __IRDARAM_LEN 0x1039
#define IRTMR 0x1F00 /* Transfer mode */
#define IRCFR 0x1F02 /* Configuration */
#define IRCTR 0x1F04 /* IR control */
#define IRTFLR 0x1F20 /* Transmit frame length */
#define IRTCTR 0x1F22 /* Transmit control */
#define IRRFLR 0x1F40 /* Receive frame length */
#define IRRCTR 0x1F42 /* Receive control */
#define SIRISR 0x1F60 /* SIR-UART mode interrupt source */
#define SIRIMR 0x1F62 /* SIR-UART mode interrupt mask */
#define SIRICR 0x1F64 /* SIR-UART mode interrupt clear */
#define SIRBCR 0x1F68 /* SIR-UART mode baud rate count */
#define MFIRISR 0x1F70 /* MIR/FIR mode interrupt source */
#define MFIRIMR 0x1F72 /* MIR/FIR mode interrupt mask */
#define MFIRICR 0x1F74 /* MIR/FIR mode interrupt clear */
#define CRCCTR 0x1F80 /* CRC engine control */
#define CRCIR 0x1F86 /* CRC engine input data */
#define CRCCR 0x1F8A /* CRC engine calculation */
#define CRCOR 0x1F8E /* CRC engine output data */
#define FIFOCP 0x1FC0 /* FIFO current pointer */
#define FIFOFP 0x1FC2 /* FIFO follow pointer */
#define FIFORSMSK 0x1FC4 /* FIFO receive status mask */
#define FIFORSOR 0x1FC6 /* FIFO receive status OR */
#define FIFOSEL 0x1FC8 /* FIFO select */
#define FIFORS 0x1FCA /* FIFO receive status */
#define FIFORFL 0x1FCC /* FIFO receive frame length */
#define FIFORAMCP 0x1FCE /* FIFO RAM current pointer */
#define FIFORAMFP 0x1FD0 /* FIFO RAM follow pointer */
#define BIFCTL 0x1FD2 /* BUS interface control */
#define IRDARAM 0x0000 /* IrDA buffer RAM */
#define IRDARAM_LEN __IRDARAM_LEN /* - 8/16/32 (read-only for 32) */
/* IRTMR */
#define TMD_MASK (0x3 << 14) /* Transfer Mode */
#define TMD_SIR (0x0 << 14)
#define TMD_MIR (0x3 << 14)
#define TMD_FIR (0x2 << 14)
#define FIFORIM (1 << 8) /* FIFO receive interrupt mask */
#define MIM (1 << 4) /* MIR/FIR Interrupt Mask */
#define SIM (1 << 0) /* SIR Interrupt Mask */
#define xIM_MASK (FIFORIM | MIM | SIM)
/* IRCFR */
#define RTO_SHIFT 8 /* shift for Receive Timeout */
#define RTO (0x3 << RTO_SHIFT)
/* IRTCTR */
#define ARMOD (1 << 15) /* Auto-Receive Mode */
#define TE (1 << 0) /* Transmit Enable */
/* IRRFLR */
#define RFL_MASK (0x1FFF) /* mask for Receive Frame Length */
/* IRRCTR */
#define RE (1 << 0) /* Receive Enable */
/*
* SIRISR, SIRIMR, SIRICR,
* MFIRISR, MFIRIMR, MFIRICR
*/
#define FRE (1 << 15) /* Frame Receive End */
#define TROV (1 << 11) /* Transfer Area Overflow */
#define xIR_9 (1 << 9)
#define TOT xIR_9 /* for SIR Timeout */
#define ABTD xIR_9 /* for MIR/FIR Abort Detection */
#define xIR_8 (1 << 8)
#define FER xIR_8 /* for SIR Framing Error */
#define CRCER xIR_8 /* for MIR/FIR CRC error */
#define FTE (1 << 7) /* Frame Transmit End */
#define xIR_MASK (FRE | TROV | xIR_9 | xIR_8 | FTE)
/* SIRBCR */
#define BRC_MASK (0x3F) /* mask for Baud Rate Count */
/* CRCCTR */
#define CRC_RST (1 << 15) /* CRC Engine Reset */
#define CRC_CT_MASK 0x0FFF /* mask for CRC Engine Input Data Count */
/* CRCIR */
#define CRC_IN_MASK 0x0FFF /* mask for CRC Engine Input Data */
/************************************************************************
enum / structure
************************************************************************/
enum sh_irda_mode {
SH_IRDA_NONE = 0,
SH_IRDA_SIR,
SH_IRDA_MIR,
SH_IRDA_FIR,
};
struct sh_irda_self;
struct sh_irda_xir_func {
int (*xir_fre) (struct sh_irda_self *self);
int (*xir_trov) (struct sh_irda_self *self);
int (*xir_9) (struct sh_irda_self *self);
int (*xir_8) (struct sh_irda_self *self);
int (*xir_fte) (struct sh_irda_self *self);
};
struct sh_irda_self {
void __iomem *membase;
unsigned int irq;
struct platform_device *pdev;
struct net_device *ndev;
struct irlap_cb *irlap;
struct qos_info qos;
iobuff_t tx_buff;
iobuff_t rx_buff;
enum sh_irda_mode mode;
spinlock_t lock;
struct sh_irda_xir_func *xir_func;
};
/************************************************************************
common function
************************************************************************/
static void sh_irda_write(struct sh_irda_self *self, u32 offset, u16 data)
{
unsigned long flags;
spin_lock_irqsave(&self->lock, flags);
iowrite16(data, self->membase + offset);
spin_unlock_irqrestore(&self->lock, flags);
}
static u16 sh_irda_read(struct sh_irda_self *self, u32 offset)
{
unsigned long flags;
u16 ret;
spin_lock_irqsave(&self->lock, flags);
ret = ioread16(self->membase + offset);
spin_unlock_irqrestore(&self->lock, flags);
return ret;
}
static void sh_irda_update_bits(struct sh_irda_self *self, u32 offset,
u16 mask, u16 data)
{
unsigned long flags;
u16 old, new;
spin_lock_irqsave(&self->lock, flags);
old = ioread16(self->membase + offset);
new = (old & ~mask) | data;
if (old != new)
iowrite16(data, self->membase + offset);
spin_unlock_irqrestore(&self->lock, flags);
}
/************************************************************************
mode function
************************************************************************/
/*=====================================
*
* common
*
*=====================================*/
static void sh_irda_rcv_ctrl(struct sh_irda_self *self, int enable)
{
struct device *dev = &self->ndev->dev;
sh_irda_update_bits(self, IRRCTR, RE, enable ? RE : 0);
dev_dbg(dev, "recv %s\n", enable ? "enable" : "disable");
}
static int sh_irda_set_timeout(struct sh_irda_self *self, int interval)
{
struct device *dev = &self->ndev->dev;
if (SH_IRDA_SIR != self->mode)
interval = 0;
if (interval < 0 || interval > 2) {
dev_err(dev, "unsupported timeout interval\n");
return -EINVAL;
}
sh_irda_update_bits(self, IRCFR, RTO, interval << RTO_SHIFT);
return 0;
}
static int sh_irda_set_baudrate(struct sh_irda_self *self, int baudrate)
{
struct device *dev = &self->ndev->dev;
u16 val;
if (baudrate < 0)
return 0;
if (SH_IRDA_SIR != self->mode) {
dev_err(dev, "it is not SIR mode\n");
return -EINVAL;
}
/*
* Baud rate (bits/s) =
* (48 MHz / 26) / (baud rate counter value + 1) x 16
*/
val = (48000000 / 26 / 16 / baudrate) - 1;
dev_dbg(dev, "baudrate = %d, val = 0x%02x\n", baudrate, val);
sh_irda_update_bits(self, SIRBCR, BRC_MASK, val);
return 0;
}
static int sh_irda_get_rcv_length(struct sh_irda_self *self)
{
return RFL_MASK & sh_irda_read(self, IRRFLR);
}
/*=====================================
*
* NONE MODE
*
*=====================================*/
static int sh_irda_xir_fre(struct sh_irda_self *self)
{
struct device *dev = &self->ndev->dev;
dev_err(dev, "none mode: frame recv\n");
return 0;
}
static int sh_irda_xir_trov(struct sh_irda_self *self)
{
struct device *dev = &self->ndev->dev;
dev_err(dev, "none mode: buffer ram over\n");
return 0;
}
static int sh_irda_xir_9(struct sh_irda_self *self)
{
struct device *dev = &self->ndev->dev;
dev_err(dev, "none mode: time over\n");
return 0;
}
static int sh_irda_xir_8(struct sh_irda_self *self)
{
struct device *dev = &self->ndev->dev;
dev_err(dev, "none mode: framing error\n");
return 0;
}
static int sh_irda_xir_fte(struct sh_irda_self *self)
{
struct device *dev = &self->ndev->dev;
dev_err(dev, "none mode: frame transmit end\n");
return 0;
}
static struct sh_irda_xir_func sh_irda_xir_func = {
.xir_fre = sh_irda_xir_fre,
.xir_trov = sh_irda_xir_trov,
.xir_9 = sh_irda_xir_9,
.xir_8 = sh_irda_xir_8,
.xir_fte = sh_irda_xir_fte,
};
/*=====================================
*
* MIR/FIR MODE
*
* MIR/FIR are not supported now
*=====================================*/
static struct sh_irda_xir_func sh_irda_mfir_func = {
.xir_fre = sh_irda_xir_fre,
.xir_trov = sh_irda_xir_trov,
.xir_9 = sh_irda_xir_9,
.xir_8 = sh_irda_xir_8,
.xir_fte = sh_irda_xir_fte,
};
/*=====================================
*
* SIR MODE
*
*=====================================*/
static int sh_irda_sir_fre(struct sh_irda_self *self)
{
struct device *dev = &self->ndev->dev;
u16 data16;
u8 *data = (u8 *)&data16;
int len = sh_irda_get_rcv_length(self);
int i, j;
if (len > IRDARAM_LEN)
len = IRDARAM_LEN;
dev_dbg(dev, "frame recv length = %d\n", len);
for (i = 0; i < len; i++) {
j = i % 2;
if (!j)
data16 = sh_irda_read(self, IRDARAM + i);
async_unwrap_char(self->ndev, &self->ndev->stats,
&self->rx_buff, data[j]);
}
self->ndev->last_rx = jiffies;
sh_irda_rcv_ctrl(self, 1);
return 0;
}
static int sh_irda_sir_trov(struct sh_irda_self *self)
{
struct device *dev = &self->ndev->dev;
dev_err(dev, "buffer ram over\n");
sh_irda_rcv_ctrl(self, 1);
return 0;
}
static int sh_irda_sir_tot(struct sh_irda_self *self)
{
struct device *dev = &self->ndev->dev;
dev_err(dev, "time over\n");
sh_irda_set_baudrate(self, 9600);
sh_irda_rcv_ctrl(self, 1);
return 0;
}
static int sh_irda_sir_fer(struct sh_irda_self *self)
{
struct device *dev = &self->ndev->dev;
dev_err(dev, "framing error\n");
sh_irda_rcv_ctrl(self, 1);
return 0;
}
static int sh_irda_sir_fte(struct sh_irda_self *self)
{
struct device *dev = &self->ndev->dev;
dev_dbg(dev, "frame transmit end\n");
netif_wake_queue(self->ndev);
return 0;
}
static struct sh_irda_xir_func sh_irda_sir_func = {
.xir_fre = sh_irda_sir_fre,
.xir_trov = sh_irda_sir_trov,
.xir_9 = sh_irda_sir_tot,
.xir_8 = sh_irda_sir_fer,
.xir_fte = sh_irda_sir_fte,
};
static void sh_irda_set_mode(struct sh_irda_self *self, enum sh_irda_mode mode)
{
struct device *dev = &self->ndev->dev;
struct sh_irda_xir_func *func;
const char *name;
u16 data;
switch (mode) {
case SH_IRDA_SIR:
name = "SIR";
data = TMD_SIR;
func = &sh_irda_sir_func;
break;
case SH_IRDA_MIR:
name = "MIR";
data = TMD_MIR;
func = &sh_irda_mfir_func;
break;
case SH_IRDA_FIR:
name = "FIR";
data = TMD_FIR;
func = &sh_irda_mfir_func;
break;
default:
name = "NONE";
data = 0;
func = &sh_irda_xir_func;
break;
}
self->mode = mode;
self->xir_func = func;
sh_irda_update_bits(self, IRTMR, TMD_MASK, data);
dev_dbg(dev, "switch to %s mode", name);
}
/************************************************************************
irq function
************************************************************************/
static void sh_irda_set_irq_mask(struct sh_irda_self *self)
{
u16 tmr_hole;
u16 xir_reg;
/* set all mask */
sh_irda_update_bits(self, IRTMR, xIM_MASK, xIM_MASK);
sh_irda_update_bits(self, SIRIMR, xIR_MASK, xIR_MASK);
sh_irda_update_bits(self, MFIRIMR, xIR_MASK, xIR_MASK);
/* clear irq */
sh_irda_update_bits(self, SIRICR, xIR_MASK, xIR_MASK);
sh_irda_update_bits(self, MFIRICR, xIR_MASK, xIR_MASK);
switch (self->mode) {
case SH_IRDA_SIR:
tmr_hole = SIM;
xir_reg = SIRIMR;
break;
case SH_IRDA_MIR:
case SH_IRDA_FIR:
tmr_hole = MIM;
xir_reg = MFIRIMR;
break;
default:
tmr_hole = 0;
xir_reg = 0;
break;
}
/* open mask */
if (xir_reg) {
sh_irda_update_bits(self, IRTMR, tmr_hole, 0);
sh_irda_update_bits(self, xir_reg, xIR_MASK, 0);
}
}
static irqreturn_t sh_irda_irq(int irq, void *dev_id)
{
struct sh_irda_self *self = dev_id;
struct sh_irda_xir_func *func = self->xir_func;
u16 isr = sh_irda_read(self, SIRISR);
/* clear irq */
sh_irda_write(self, SIRICR, isr);
if (isr & FRE)
func->xir_fre(self);
if (isr & TROV)
func->xir_trov(self);
if (isr & xIR_9)
func->xir_9(self);
if (isr & xIR_8)
func->xir_8(self);
if (isr & FTE)
func->xir_fte(self);
return IRQ_HANDLED;
}
/************************************************************************
CRC function
************************************************************************/
static void sh_irda_crc_reset(struct sh_irda_self *self)
{
sh_irda_write(self, CRCCTR, CRC_RST);
}
static void sh_irda_crc_add(struct sh_irda_self *self, u16 data)
{
sh_irda_write(self, CRCIR, data & CRC_IN_MASK);
}
static u16 sh_irda_crc_cnt(struct sh_irda_self *self)
{
return CRC_CT_MASK & sh_irda_read(self, CRCCTR);
}
static u16 sh_irda_crc_out(struct sh_irda_self *self)
{
return sh_irda_read(self, CRCOR);
}
static int sh_irda_crc_init(struct sh_irda_self *self)
{
struct device *dev = &self->ndev->dev;
int ret = -EIO;
u16 val;
sh_irda_crc_reset(self);
sh_irda_crc_add(self, 0xCC);
sh_irda_crc_add(self, 0xF5);
sh_irda_crc_add(self, 0xF1);
sh_irda_crc_add(self, 0xA7);
val = sh_irda_crc_cnt(self);
if (4 != val) {
dev_err(dev, "CRC count error %x\n", val);
goto crc_init_out;
}
val = sh_irda_crc_out(self);
if (0x51DF != val) {
dev_err(dev, "CRC result error%x\n", val);
goto crc_init_out;
}
ret = 0;
crc_init_out:
sh_irda_crc_reset(self);
return ret;
}
/************************************************************************
iobuf function
************************************************************************/
static void sh_irda_remove_iobuf(struct sh_irda_self *self)
{
kfree(self->rx_buff.head);
self->tx_buff.head = NULL;
self->tx_buff.data = NULL;
self->rx_buff.head = NULL;
self->rx_buff.data = NULL;
}
static int sh_irda_init_iobuf(struct sh_irda_self *self, int rxsize, int txsize)
{
if (self->rx_buff.head ||
self->tx_buff.head) {
dev_err(&self->ndev->dev, "iobuff has already existed.");
return -EINVAL;
}
/* rx_buff */
self->rx_buff.head = kmalloc(rxsize, GFP_KERNEL);
if (!self->rx_buff.head)
return -ENOMEM;
self->rx_buff.truesize = rxsize;
self->rx_buff.in_frame = FALSE;
self->rx_buff.state = OUTSIDE_FRAME;
self->rx_buff.data = self->rx_buff.head;
/* tx_buff */
self->tx_buff.head = self->membase + IRDARAM;
self->tx_buff.truesize = IRDARAM_LEN;
return 0;
}
/************************************************************************
net_device_ops function
************************************************************************/
static int sh_irda_hard_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct sh_irda_self *self = netdev_priv(ndev);
struct device *dev = &self->ndev->dev;
int speed = irda_get_next_speed(skb);
int ret;
dev_dbg(dev, "hard xmit\n");
netif_stop_queue(ndev);
sh_irda_rcv_ctrl(self, 0);
ret = sh_irda_set_baudrate(self, speed);
if (ret < 0)
goto sh_irda_hard_xmit_end;
self->tx_buff.len = 0;
if (skb->len) {
unsigned long flags;
spin_lock_irqsave(&self->lock, flags);
self->tx_buff.len = async_wrap_skb(skb,
self->tx_buff.head,
self->tx_buff.truesize);
spin_unlock_irqrestore(&self->lock, flags);
if (self->tx_buff.len > self->tx_buff.truesize)
self->tx_buff.len = self->tx_buff.truesize;
sh_irda_write(self, IRTFLR, self->tx_buff.len);
sh_irda_write(self, IRTCTR, ARMOD | TE);
} else
goto sh_irda_hard_xmit_end;
dev_kfree_skb(skb);
return 0;
sh_irda_hard_xmit_end:
sh_irda_set_baudrate(self, 9600);
netif_wake_queue(self->ndev);
sh_irda_rcv_ctrl(self, 1);
dev_kfree_skb(skb);
return ret;
}
static int sh_irda_ioctl(struct net_device *ndev, struct ifreq *ifreq, int cmd)
{
/*
* FIXME
*
* This function is needed for irda framework.
* But nothing to do now
*/
return 0;
}
static struct net_device_stats *sh_irda_stats(struct net_device *ndev)
{
struct sh_irda_self *self = netdev_priv(ndev);
return &self->ndev->stats;
}
static int sh_irda_open(struct net_device *ndev)
{
struct sh_irda_self *self = netdev_priv(ndev);
int err;
pm_runtime_get_sync(&self->pdev->dev);
err = sh_irda_crc_init(self);
if (err)
goto open_err;
sh_irda_set_mode(self, SH_IRDA_SIR);
sh_irda_set_timeout(self, 2);
sh_irda_set_baudrate(self, 9600);
self->irlap = irlap_open(ndev, &self->qos, DRIVER_NAME);
if (!self->irlap) {
err = -ENODEV;
goto open_err;
}
netif_start_queue(ndev);
sh_irda_rcv_ctrl(self, 1);
sh_irda_set_irq_mask(self);
dev_info(&ndev->dev, "opened\n");
return 0;
open_err:
pm_runtime_put_sync(&self->pdev->dev);
return err;
}
static int sh_irda_stop(struct net_device *ndev)
{
struct sh_irda_self *self = netdev_priv(ndev);
/* Stop IrLAP */
if (self->irlap) {
irlap_close(self->irlap);
self->irlap = NULL;
}
netif_stop_queue(ndev);
pm_runtime_put_sync(&self->pdev->dev);
dev_info(&ndev->dev, "stopped\n");
return 0;
}
static const struct net_device_ops sh_irda_ndo = {
.ndo_open = sh_irda_open,
.ndo_stop = sh_irda_stop,
.ndo_start_xmit = sh_irda_hard_xmit,
.ndo_do_ioctl = sh_irda_ioctl,
.ndo_get_stats = sh_irda_stats,
};
/************************************************************************
platform_driver function
************************************************************************/
static int sh_irda_probe(struct platform_device *pdev)
{
struct net_device *ndev;
struct sh_irda_self *self;
struct resource *res;
int irq;
int err = -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
irq = platform_get_irq(pdev, 0);
if (!res || irq < 0) {
dev_err(&pdev->dev, "Not enough platform resources.\n");
goto exit;
}
ndev = alloc_irdadev(sizeof(*self));
if (!ndev)
goto exit;
self = netdev_priv(ndev);
self->membase = ioremap_nocache(res->start, resource_size(res));
if (!self->membase) {
err = -ENXIO;
dev_err(&pdev->dev, "Unable to ioremap.\n");
goto err_mem_1;
}
err = sh_irda_init_iobuf(self, IRDA_SKB_MAX_MTU, IRDA_SIR_MAX_FRAME);
if (err)
goto err_mem_2;
self->pdev = pdev;
pm_runtime_enable(&pdev->dev);
irda_init_max_qos_capabilies(&self->qos);
ndev->netdev_ops = &sh_irda_ndo;
ndev->irq = irq;
self->ndev = ndev;
self->qos.baud_rate.bits &= IR_9600; /* FIXME */
self->qos.min_turn_time.bits = 1; /* 10 ms or more */
spin_lock_init(&self->lock);
irda_qos_bits_to_value(&self->qos);
err = register_netdev(ndev);
if (err)
goto err_mem_4;
platform_set_drvdata(pdev, ndev);
err = devm_request_irq(&pdev->dev, irq, sh_irda_irq, 0, "sh_irda", self);
if (err) {
dev_warn(&pdev->dev, "Unable to attach sh_irda interrupt\n");
goto err_mem_4;
}
dev_info(&pdev->dev, "SuperH IrDA probed\n");
goto exit;
err_mem_4:
pm_runtime_disable(&pdev->dev);
sh_irda_remove_iobuf(self);
err_mem_2:
iounmap(self->membase);
err_mem_1:
free_netdev(ndev);
exit:
return err;
}
static int sh_irda_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct sh_irda_self *self = netdev_priv(ndev);
if (!self)
return 0;
unregister_netdev(ndev);
pm_runtime_disable(&pdev->dev);
sh_irda_remove_iobuf(self);
iounmap(self->membase);
free_netdev(ndev);
return 0;
}
static int sh_irda_runtime_nop(struct device *dev)
{
/* Runtime PM callback shared between ->runtime_suspend()
* and ->runtime_resume(). Simply returns success.
*
* This driver re-initializes all registers after
* pm_runtime_get_sync() anyway so there is no need
* to save and restore registers here.
*/
return 0;
}
static const struct dev_pm_ops sh_irda_pm_ops = {
.runtime_suspend = sh_irda_runtime_nop,
.runtime_resume = sh_irda_runtime_nop,
};
static struct platform_driver sh_irda_driver = {
.probe = sh_irda_probe,
.remove = sh_irda_remove,
.driver = {
.name = DRIVER_NAME,
.pm = &sh_irda_pm_ops,
},
};
module_platform_driver(sh_irda_driver);
MODULE_AUTHOR("Kuninori Morimoto <kuninori.morimoto.gx@renesas.com>");
MODULE_DESCRIPTION("SuperH IrDA driver");
MODULE_LICENSE("GPL");