| /* |
| * GPL HEADER START |
| * |
| * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 only, |
| * as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License version 2 for more details (a copy is included |
| * in the LICENSE file that accompanied this code). |
| * |
| * You should have received a copy of the GNU General Public License |
| * version 2 along with this program; If not, see |
| * http://www.gnu.org/licenses/gpl-2.0.html |
| * |
| * GPL HEADER END |
| */ |
| /* |
| * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved. |
| * Use is subject to license terms. |
| * |
| * Copyright (c) 2011, 2012, Intel Corporation. |
| */ |
| /* |
| * This file is part of Lustre, http://www.lustre.org/ |
| * Lustre is a trademark of Sun Microsystems, Inc. |
| * |
| * lustre/lustre/llite/rw26.c |
| * |
| * Lustre Lite I/O page cache routines for the 2.5/2.6 kernel version |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/string.h> |
| #include <linux/stat.h> |
| #include <linux/errno.h> |
| #include <linux/unistd.h> |
| #include <linux/uaccess.h> |
| |
| #include <linux/migrate.h> |
| #include <linux/fs.h> |
| #include <linux/buffer_head.h> |
| #include <linux/mpage.h> |
| #include <linux/writeback.h> |
| #include <linux/pagemap.h> |
| |
| #define DEBUG_SUBSYSTEM S_LLITE |
| |
| #include "llite_internal.h" |
| |
| /** |
| * Implements Linux VM address_space::invalidatepage() method. This method is |
| * called when the page is truncate from a file, either as a result of |
| * explicit truncate, or when inode is removed from memory (as a result of |
| * final iput(), umount, or memory pressure induced icache shrinking). |
| * |
| * [0, offset] bytes of the page remain valid (this is for a case of not-page |
| * aligned truncate). Lustre leaves partially truncated page in the cache, |
| * relying on struct inode::i_size to limit further accesses. |
| */ |
| static void ll_invalidatepage(struct page *vmpage, unsigned int offset, |
| unsigned int length) |
| { |
| struct inode *inode; |
| struct lu_env *env; |
| struct cl_page *page; |
| struct cl_object *obj; |
| |
| LASSERT(PageLocked(vmpage)); |
| LASSERT(!PageWriteback(vmpage)); |
| |
| /* |
| * It is safe to not check anything in invalidatepage/releasepage |
| * below because they are run with page locked and all our io is |
| * happening with locked page too |
| */ |
| if (offset == 0 && length == PAGE_SIZE) { |
| /* See the comment in ll_releasepage() */ |
| env = cl_env_percpu_get(); |
| LASSERT(!IS_ERR(env)); |
| inode = vmpage->mapping->host; |
| obj = ll_i2info(inode)->lli_clob; |
| if (obj) { |
| page = cl_vmpage_page(vmpage, obj); |
| if (page) { |
| cl_page_delete(env, page); |
| cl_page_put(env, page); |
| } |
| } else { |
| LASSERT(vmpage->private == 0); |
| } |
| cl_env_percpu_put(env); |
| } |
| } |
| |
| static int ll_releasepage(struct page *vmpage, gfp_t gfp_mask) |
| { |
| struct lu_env *env; |
| struct cl_object *obj; |
| struct cl_page *page; |
| struct address_space *mapping; |
| int result = 0; |
| |
| LASSERT(PageLocked(vmpage)); |
| if (PageWriteback(vmpage) || PageDirty(vmpage)) |
| return 0; |
| |
| mapping = vmpage->mapping; |
| if (!mapping) |
| return 1; |
| |
| obj = ll_i2info(mapping->host)->lli_clob; |
| if (!obj) |
| return 1; |
| |
| /* 1 for caller, 1 for cl_page and 1 for page cache */ |
| if (page_count(vmpage) > 3) |
| return 0; |
| |
| page = cl_vmpage_page(vmpage, obj); |
| if (!page) |
| return 1; |
| |
| env = cl_env_percpu_get(); |
| LASSERT(!IS_ERR(env)); |
| |
| if (!cl_page_in_use(page)) { |
| result = 1; |
| cl_page_delete(env, page); |
| } |
| |
| /* To use percpu env array, the call path can not be rescheduled; |
| * otherwise percpu array will be messed if ll_releaspage() called |
| * again on the same CPU. |
| * |
| * If this page holds the last refc of cl_object, the following |
| * call path may cause reschedule: |
| * cl_page_put -> cl_page_free -> cl_object_put -> |
| * lu_object_put -> lu_object_free -> lov_delete_raid0. |
| * |
| * However, the kernel can't get rid of this inode until all pages have |
| * been cleaned up. Now that we hold page lock here, it's pretty safe |
| * that we won't get into object delete path. |
| */ |
| LASSERT(cl_object_refc(obj) > 1); |
| cl_page_put(env, page); |
| |
| cl_env_percpu_put(env); |
| return result; |
| } |
| |
| #define MAX_DIRECTIO_SIZE (2 * 1024 * 1024 * 1024UL) |
| |
| /* ll_free_user_pages - tear down page struct array |
| * @pages: array of page struct pointers underlying target buffer |
| */ |
| static void ll_free_user_pages(struct page **pages, int npages, int do_dirty) |
| { |
| int i; |
| |
| for (i = 0; i < npages; i++) { |
| if (do_dirty) |
| set_page_dirty_lock(pages[i]); |
| put_page(pages[i]); |
| } |
| kvfree(pages); |
| } |
| |
| ssize_t ll_direct_rw_pages(const struct lu_env *env, struct cl_io *io, |
| int rw, struct inode *inode, |
| struct ll_dio_pages *pv) |
| { |
| struct cl_page *clp; |
| struct cl_2queue *queue; |
| struct cl_object *obj = io->ci_obj; |
| int i; |
| ssize_t rc = 0; |
| loff_t file_offset = pv->ldp_start_offset; |
| size_t size = pv->ldp_size; |
| int page_count = pv->ldp_nr; |
| struct page **pages = pv->ldp_pages; |
| size_t page_size = cl_page_size(obj); |
| bool do_io; |
| int io_pages = 0; |
| |
| queue = &io->ci_queue; |
| cl_2queue_init(queue); |
| for (i = 0; i < page_count; i++) { |
| if (pv->ldp_offsets) |
| file_offset = pv->ldp_offsets[i]; |
| |
| LASSERT(!(file_offset & (page_size - 1))); |
| clp = cl_page_find(env, obj, cl_index(obj, file_offset), |
| pv->ldp_pages[i], CPT_TRANSIENT); |
| if (IS_ERR(clp)) { |
| rc = PTR_ERR(clp); |
| break; |
| } |
| |
| rc = cl_page_own(env, io, clp); |
| if (rc) { |
| LASSERT(clp->cp_state == CPS_FREEING); |
| cl_page_put(env, clp); |
| break; |
| } |
| |
| do_io = true; |
| |
| /* check the page type: if the page is a host page, then do |
| * write directly |
| */ |
| if (clp->cp_type == CPT_CACHEABLE) { |
| struct page *vmpage = cl_page_vmpage(clp); |
| struct page *src_page; |
| struct page *dst_page; |
| void *src; |
| void *dst; |
| |
| src_page = (rw == WRITE) ? pages[i] : vmpage; |
| dst_page = (rw == WRITE) ? vmpage : pages[i]; |
| |
| src = kmap_atomic(src_page); |
| dst = kmap_atomic(dst_page); |
| memcpy(dst, src, min(page_size, size)); |
| kunmap_atomic(dst); |
| kunmap_atomic(src); |
| |
| /* make sure page will be added to the transfer by |
| * cl_io_submit()->...->vvp_page_prep_write(). |
| */ |
| if (rw == WRITE) |
| set_page_dirty(vmpage); |
| |
| if (rw == READ) { |
| /* do not issue the page for read, since it |
| * may reread a ra page which has NOT uptodate |
| * bit set. |
| */ |
| cl_page_disown(env, io, clp); |
| do_io = false; |
| } |
| } |
| |
| if (likely(do_io)) { |
| /* |
| * Add a page to the incoming page list of 2-queue. |
| */ |
| cl_page_list_add(&queue->c2_qin, clp); |
| |
| /* |
| * Set page clip to tell transfer formation engine |
| * that page has to be sent even if it is beyond KMS. |
| */ |
| cl_page_clip(env, clp, 0, min(size, page_size)); |
| |
| ++io_pages; |
| } |
| |
| /* drop the reference count for cl_page_find */ |
| cl_page_put(env, clp); |
| size -= page_size; |
| file_offset += page_size; |
| } |
| |
| if (rc == 0 && io_pages) { |
| rc = cl_io_submit_sync(env, io, |
| rw == READ ? CRT_READ : CRT_WRITE, |
| queue, 0); |
| } |
| if (rc == 0) |
| rc = pv->ldp_size; |
| |
| cl_2queue_discard(env, io, queue); |
| cl_2queue_disown(env, io, queue); |
| cl_2queue_fini(env, queue); |
| return rc; |
| } |
| EXPORT_SYMBOL(ll_direct_rw_pages); |
| |
| static ssize_t ll_direct_IO_26_seg(const struct lu_env *env, struct cl_io *io, |
| int rw, struct inode *inode, |
| struct address_space *mapping, |
| size_t size, loff_t file_offset, |
| struct page **pages, int page_count) |
| { |
| struct ll_dio_pages pvec = { |
| .ldp_pages = pages, |
| .ldp_nr = page_count, |
| .ldp_size = size, |
| .ldp_offsets = NULL, |
| .ldp_start_offset = file_offset |
| }; |
| |
| return ll_direct_rw_pages(env, io, rw, inode, &pvec); |
| } |
| |
| /* This is the maximum size of a single O_DIRECT request, based on the |
| * kmalloc limit. We need to fit all of the brw_page structs, each one |
| * representing PAGE_SIZE worth of user data, into a single buffer, and |
| * then truncate this to be a full-sized RPC. For 4kB PAGE_SIZE this is |
| * up to 22MB for 128kB kmalloc and up to 682MB for 4MB kmalloc. |
| */ |
| #define MAX_DIO_SIZE ((KMALLOC_MAX_SIZE / sizeof(struct brw_page) * \ |
| PAGE_SIZE) & ~(DT_MAX_BRW_SIZE - 1)) |
| static ssize_t ll_direct_IO_26(struct kiocb *iocb, struct iov_iter *iter) |
| { |
| struct ll_cl_context *lcc; |
| const struct lu_env *env; |
| struct cl_io *io; |
| struct file *file = iocb->ki_filp; |
| struct inode *inode = file->f_mapping->host; |
| loff_t file_offset = iocb->ki_pos; |
| ssize_t count = iov_iter_count(iter); |
| ssize_t tot_bytes = 0, result = 0; |
| long size = MAX_DIO_SIZE; |
| |
| /* Check EOF by ourselves */ |
| if (iov_iter_rw(iter) == READ && file_offset >= i_size_read(inode)) |
| return 0; |
| |
| /* FIXME: io smaller than PAGE_SIZE is broken on ia64 ??? */ |
| if ((file_offset & ~PAGE_MASK) || (count & ~PAGE_MASK)) |
| return -EINVAL; |
| |
| CDEBUG(D_VFSTRACE, "VFS Op:inode=" DFID "(%p), size=%zd (max %lu), offset=%lld=%llx, pages %zd (max %lu)\n", |
| PFID(ll_inode2fid(inode)), inode, count, MAX_DIO_SIZE, |
| file_offset, file_offset, count >> PAGE_SHIFT, |
| MAX_DIO_SIZE >> PAGE_SHIFT); |
| |
| /* Check that all user buffers are aligned as well */ |
| if (iov_iter_alignment(iter) & ~PAGE_MASK) |
| return -EINVAL; |
| |
| lcc = ll_cl_find(file); |
| if (!lcc) |
| return -EIO; |
| |
| env = lcc->lcc_env; |
| LASSERT(!IS_ERR(env)); |
| io = lcc->lcc_io; |
| LASSERT(io); |
| |
| while (iov_iter_count(iter)) { |
| struct page **pages; |
| size_t offs; |
| |
| count = min_t(size_t, iov_iter_count(iter), size); |
| if (iov_iter_rw(iter) == READ) { |
| if (file_offset >= i_size_read(inode)) |
| break; |
| if (file_offset + count > i_size_read(inode)) |
| count = i_size_read(inode) - file_offset; |
| } |
| |
| result = iov_iter_get_pages_alloc(iter, &pages, count, &offs); |
| if (likely(result > 0)) { |
| int n = DIV_ROUND_UP(result + offs, PAGE_SIZE); |
| |
| result = ll_direct_IO_26_seg(env, io, iov_iter_rw(iter), |
| inode, file->f_mapping, |
| result, file_offset, pages, |
| n); |
| ll_free_user_pages(pages, n, iov_iter_rw(iter) == READ); |
| } |
| if (unlikely(result <= 0)) { |
| /* If we can't allocate a large enough buffer |
| * for the request, shrink it to a smaller |
| * PAGE_SIZE multiple and try again. |
| * We should always be able to kmalloc for a |
| * page worth of page pointers = 4MB on i386. |
| */ |
| if (result == -ENOMEM && |
| size > (PAGE_SIZE / sizeof(*pages)) * |
| PAGE_SIZE) { |
| size = ((((size / 2) - 1) | |
| ~PAGE_MASK) + 1) & |
| PAGE_MASK; |
| CDEBUG(D_VFSTRACE, "DIO size now %lu\n", |
| size); |
| continue; |
| } |
| |
| goto out; |
| } |
| iov_iter_advance(iter, result); |
| tot_bytes += result; |
| file_offset += result; |
| } |
| out: |
| if (tot_bytes > 0) { |
| struct vvp_io *vio = vvp_env_io(env); |
| |
| /* no commit async for direct IO */ |
| vio->u.write.vui_written += tot_bytes; |
| } |
| |
| return tot_bytes ? tot_bytes : result; |
| } |
| |
| /** |
| * Prepare partially written-to page for a write. |
| */ |
| static int ll_prepare_partial_page(const struct lu_env *env, struct cl_io *io, |
| struct cl_page *pg) |
| { |
| struct cl_attr *attr = vvp_env_thread_attr(env); |
| struct cl_object *obj = io->ci_obj; |
| struct vvp_page *vpg = cl_object_page_slice(obj, pg); |
| loff_t offset = cl_offset(obj, vvp_index(vpg)); |
| int result; |
| |
| cl_object_attr_lock(obj); |
| result = cl_object_attr_get(env, obj, attr); |
| cl_object_attr_unlock(obj); |
| if (result == 0) { |
| /* |
| * If are writing to a new page, no need to read old data. |
| * The extent locking will have updated the KMS, and for our |
| * purposes here we can treat it like i_size. |
| */ |
| if (attr->cat_kms <= offset) { |
| char *kaddr = kmap_atomic(vpg->vpg_page); |
| |
| memset(kaddr, 0, cl_page_size(obj)); |
| kunmap_atomic(kaddr); |
| } else if (vpg->vpg_defer_uptodate) { |
| vpg->vpg_ra_used = 1; |
| } else { |
| result = ll_page_sync_io(env, io, pg, CRT_READ); |
| } |
| } |
| return result; |
| } |
| |
| static int ll_write_begin(struct file *file, struct address_space *mapping, |
| loff_t pos, unsigned int len, unsigned int flags, |
| struct page **pagep, void **fsdata) |
| { |
| struct ll_cl_context *lcc; |
| const struct lu_env *env = NULL; |
| struct cl_io *io; |
| struct cl_page *page = NULL; |
| struct cl_object *clob = ll_i2info(mapping->host)->lli_clob; |
| pgoff_t index = pos >> PAGE_SHIFT; |
| struct page *vmpage = NULL; |
| unsigned int from = pos & (PAGE_SIZE - 1); |
| unsigned int to = from + len; |
| int result = 0; |
| |
| CDEBUG(D_VFSTRACE, "Writing %lu of %d to %d bytes\n", index, from, len); |
| |
| lcc = ll_cl_find(file); |
| if (!lcc) { |
| io = NULL; |
| result = -EIO; |
| goto out; |
| } |
| |
| env = lcc->lcc_env; |
| io = lcc->lcc_io; |
| |
| /* To avoid deadlock, try to lock page first. */ |
| vmpage = grab_cache_page_nowait(mapping, index); |
| if (unlikely(!vmpage || PageDirty(vmpage) || PageWriteback(vmpage))) { |
| struct vvp_io *vio = vvp_env_io(env); |
| struct cl_page_list *plist = &vio->u.write.vui_queue; |
| |
| /* if the page is already in dirty cache, we have to commit |
| * the pages right now; otherwise, it may cause deadlock |
| * because it holds page lock of a dirty page and request for |
| * more grants. It's okay for the dirty page to be the first |
| * one in commit page list, though. |
| */ |
| if (vmpage && plist->pl_nr > 0) { |
| unlock_page(vmpage); |
| put_page(vmpage); |
| vmpage = NULL; |
| } |
| |
| /* commit pages and then wait for page lock */ |
| result = vvp_io_write_commit(env, io); |
| if (result < 0) |
| goto out; |
| |
| if (!vmpage) { |
| vmpage = grab_cache_page_write_begin(mapping, index, |
| flags); |
| if (!vmpage) { |
| result = -ENOMEM; |
| goto out; |
| } |
| } |
| } |
| |
| page = cl_page_find(env, clob, vmpage->index, vmpage, CPT_CACHEABLE); |
| if (IS_ERR(page)) { |
| result = PTR_ERR(page); |
| goto out; |
| } |
| |
| lcc->lcc_page = page; |
| lu_ref_add(&page->cp_reference, "cl_io", io); |
| |
| cl_page_assume(env, io, page); |
| if (!PageUptodate(vmpage)) { |
| /* |
| * We're completely overwriting an existing page, |
| * so _don't_ set it up to date until commit_write |
| */ |
| if (from == 0 && to == PAGE_SIZE) { |
| CL_PAGE_HEADER(D_PAGE, env, page, "full page write\n"); |
| POISON_PAGE(vmpage, 0x11); |
| } else { |
| /* TODO: can be optimized at OSC layer to check if it |
| * is a lockless IO. In that case, it's not necessary |
| * to read the data. |
| */ |
| result = ll_prepare_partial_page(env, io, page); |
| if (result == 0) |
| SetPageUptodate(vmpage); |
| } |
| } |
| if (result < 0) |
| cl_page_unassume(env, io, page); |
| out: |
| if (result < 0) { |
| if (vmpage) { |
| unlock_page(vmpage); |
| put_page(vmpage); |
| } |
| if (!IS_ERR_OR_NULL(page)) { |
| lu_ref_del(&page->cp_reference, "cl_io", io); |
| cl_page_put(env, page); |
| } |
| if (io) |
| io->ci_result = result; |
| } else { |
| *pagep = vmpage; |
| *fsdata = lcc; |
| } |
| return result; |
| } |
| |
| static int ll_write_end(struct file *file, struct address_space *mapping, |
| loff_t pos, unsigned int len, unsigned int copied, |
| struct page *vmpage, void *fsdata) |
| { |
| struct ll_cl_context *lcc = fsdata; |
| const struct lu_env *env; |
| struct cl_io *io; |
| struct vvp_io *vio; |
| struct cl_page *page; |
| unsigned int from = pos & (PAGE_SIZE - 1); |
| bool unplug = false; |
| int result = 0; |
| |
| put_page(vmpage); |
| |
| env = lcc->lcc_env; |
| page = lcc->lcc_page; |
| io = lcc->lcc_io; |
| vio = vvp_env_io(env); |
| |
| LASSERT(cl_page_is_owned(page, io)); |
| if (copied > 0) { |
| struct cl_page_list *plist = &vio->u.write.vui_queue; |
| |
| lcc->lcc_page = NULL; /* page will be queued */ |
| |
| /* Add it into write queue */ |
| cl_page_list_add(plist, page); |
| if (plist->pl_nr == 1) /* first page */ |
| vio->u.write.vui_from = from; |
| else |
| LASSERT(from == 0); |
| vio->u.write.vui_to = from + copied; |
| |
| /* |
| * To address the deadlock in balance_dirty_pages() where |
| * this dirty page may be written back in the same thread. |
| */ |
| if (PageDirty(vmpage)) |
| unplug = true; |
| |
| /* We may have one full RPC, commit it soon */ |
| if (plist->pl_nr >= PTLRPC_MAX_BRW_PAGES) |
| unplug = true; |
| |
| CL_PAGE_DEBUG(D_VFSTRACE, env, page, |
| "queued page: %d.\n", plist->pl_nr); |
| } else { |
| cl_page_disown(env, io, page); |
| |
| lcc->lcc_page = NULL; |
| lu_ref_del(&page->cp_reference, "cl_io", io); |
| cl_page_put(env, page); |
| |
| /* page list is not contiguous now, commit it now */ |
| unplug = true; |
| } |
| |
| if (unplug || |
| file->f_flags & O_SYNC || IS_SYNC(file_inode(file))) |
| result = vvp_io_write_commit(env, io); |
| |
| if (result < 0) |
| io->ci_result = result; |
| return result >= 0 ? copied : result; |
| } |
| |
| #ifdef CONFIG_MIGRATION |
| static int ll_migratepage(struct address_space *mapping, |
| struct page *newpage, struct page *page, |
| enum migrate_mode mode |
| ) |
| { |
| /* Always fail page migration until we have a proper implementation */ |
| return -EIO; |
| } |
| #endif |
| |
| const struct address_space_operations ll_aops = { |
| .readpage = ll_readpage, |
| .direct_IO = ll_direct_IO_26, |
| .writepage = ll_writepage, |
| .writepages = ll_writepages, |
| .set_page_dirty = __set_page_dirty_nobuffers, |
| .write_begin = ll_write_begin, |
| .write_end = ll_write_end, |
| .invalidatepage = ll_invalidatepage, |
| .releasepage = (void *)ll_releasepage, |
| #ifdef CONFIG_MIGRATION |
| .migratepage = ll_migratepage, |
| #endif |
| }; |