| /* |
| * GPL HEADER START |
| * |
| * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 only, |
| * as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License version 2 for more details (a copy is included |
| * in the LICENSE file that accompanied this code). |
| * |
| * You should have received a copy of the GNU General Public License |
| * version 2 along with this program; If not, see |
| * http://www.gnu.org/licenses/gpl-2.0.html |
| * |
| * GPL HEADER END |
| */ |
| /* |
| * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved. |
| * Use is subject to license terms. |
| * |
| * Copyright (c) 2011, 2015, Intel Corporation. |
| */ |
| /* |
| * This file is part of Lustre, http://www.lustre.org/ |
| * Lustre is a trademark of Sun Microsystems, Inc. |
| */ |
| |
| /** Implementation of client-side PortalRPC interfaces */ |
| |
| #define DEBUG_SUBSYSTEM S_RPC |
| |
| #include <obd_support.h> |
| #include <obd_class.h> |
| #include <lustre_lib.h> |
| #include <lustre_ha.h> |
| #include <lustre_import.h> |
| #include <lustre_req_layout.h> |
| |
| #include "ptlrpc_internal.h" |
| |
| const struct ptlrpc_bulk_frag_ops ptlrpc_bulk_kiov_pin_ops = { |
| .add_kiov_frag = ptlrpc_prep_bulk_page_pin, |
| .release_frags = ptlrpc_release_bulk_page_pin, |
| }; |
| EXPORT_SYMBOL(ptlrpc_bulk_kiov_pin_ops); |
| |
| const struct ptlrpc_bulk_frag_ops ptlrpc_bulk_kiov_nopin_ops = { |
| .add_kiov_frag = ptlrpc_prep_bulk_page_nopin, |
| .release_frags = NULL, |
| }; |
| EXPORT_SYMBOL(ptlrpc_bulk_kiov_nopin_ops); |
| |
| static int ptlrpc_send_new_req(struct ptlrpc_request *req); |
| static int ptlrpcd_check_work(struct ptlrpc_request *req); |
| static int ptlrpc_unregister_reply(struct ptlrpc_request *request, int async); |
| |
| /** |
| * Initialize passed in client structure \a cl. |
| */ |
| void ptlrpc_init_client(int req_portal, int rep_portal, char *name, |
| struct ptlrpc_client *cl) |
| { |
| cl->cli_request_portal = req_portal; |
| cl->cli_reply_portal = rep_portal; |
| cl->cli_name = name; |
| } |
| EXPORT_SYMBOL(ptlrpc_init_client); |
| |
| /** |
| * Return PortalRPC connection for remote uud \a uuid |
| */ |
| struct ptlrpc_connection *ptlrpc_uuid_to_connection(struct obd_uuid *uuid) |
| { |
| struct ptlrpc_connection *c; |
| lnet_nid_t self; |
| struct lnet_process_id peer; |
| int err; |
| |
| /* |
| * ptlrpc_uuid_to_peer() initializes its 2nd parameter |
| * before accessing its values. |
| * coverity[uninit_use_in_call] |
| */ |
| err = ptlrpc_uuid_to_peer(uuid, &peer, &self); |
| if (err != 0) { |
| CNETERR("cannot find peer %s!\n", uuid->uuid); |
| return NULL; |
| } |
| |
| c = ptlrpc_connection_get(peer, self, uuid); |
| if (c) { |
| memcpy(c->c_remote_uuid.uuid, |
| uuid->uuid, sizeof(c->c_remote_uuid.uuid)); |
| } |
| |
| CDEBUG(D_INFO, "%s -> %p\n", uuid->uuid, c); |
| |
| return c; |
| } |
| |
| /** |
| * Allocate and initialize new bulk descriptor on the sender. |
| * Returns pointer to the descriptor or NULL on error. |
| */ |
| struct ptlrpc_bulk_desc *ptlrpc_new_bulk(unsigned int nfrags, |
| unsigned int max_brw, |
| enum ptlrpc_bulk_op_type type, |
| unsigned int portal, |
| const struct ptlrpc_bulk_frag_ops *ops) |
| { |
| struct ptlrpc_bulk_desc *desc; |
| int i; |
| |
| /* ensure that only one of KIOV or IOVEC is set but not both */ |
| LASSERT((ptlrpc_is_bulk_desc_kiov(type) && ops->add_kiov_frag) || |
| (ptlrpc_is_bulk_desc_kvec(type) && ops->add_iov_frag)); |
| |
| desc = kzalloc(sizeof(*desc), GFP_NOFS); |
| if (!desc) |
| return NULL; |
| |
| if (type & PTLRPC_BULK_BUF_KIOV) { |
| GET_KIOV(desc) = kcalloc(nfrags, sizeof(*GET_KIOV(desc)), |
| GFP_NOFS); |
| if (!GET_KIOV(desc)) |
| goto free_desc; |
| } else { |
| GET_KVEC(desc) = kcalloc(nfrags, sizeof(*GET_KVEC(desc)), |
| GFP_NOFS); |
| if (!GET_KVEC(desc)) |
| goto free_desc; |
| } |
| |
| spin_lock_init(&desc->bd_lock); |
| init_waitqueue_head(&desc->bd_waitq); |
| desc->bd_max_iov = nfrags; |
| desc->bd_iov_count = 0; |
| desc->bd_portal = portal; |
| desc->bd_type = type; |
| desc->bd_md_count = 0; |
| desc->bd_frag_ops = (struct ptlrpc_bulk_frag_ops *)ops; |
| LASSERT(max_brw > 0); |
| desc->bd_md_max_brw = min(max_brw, PTLRPC_BULK_OPS_COUNT); |
| /* |
| * PTLRPC_BULK_OPS_COUNT is the compile-time transfer limit for this |
| * node. Negotiated ocd_brw_size will always be <= this number. |
| */ |
| for (i = 0; i < PTLRPC_BULK_OPS_COUNT; i++) |
| LNetInvalidateMDHandle(&desc->bd_mds[i]); |
| |
| return desc; |
| free_desc: |
| kfree(desc); |
| return NULL; |
| } |
| |
| /** |
| * Prepare bulk descriptor for specified outgoing request \a req that |
| * can fit \a nfrags * pages. \a type is bulk type. \a portal is where |
| * the bulk to be sent. Used on client-side. |
| * Returns pointer to newly allocated initialized bulk descriptor or NULL on |
| * error. |
| */ |
| struct ptlrpc_bulk_desc *ptlrpc_prep_bulk_imp(struct ptlrpc_request *req, |
| unsigned int nfrags, |
| unsigned int max_brw, |
| unsigned int type, |
| unsigned int portal, |
| const struct ptlrpc_bulk_frag_ops *ops) |
| { |
| struct obd_import *imp = req->rq_import; |
| struct ptlrpc_bulk_desc *desc; |
| |
| LASSERT(ptlrpc_is_bulk_op_passive(type)); |
| |
| desc = ptlrpc_new_bulk(nfrags, max_brw, type, portal, ops); |
| if (!desc) |
| return NULL; |
| |
| desc->bd_import_generation = req->rq_import_generation; |
| desc->bd_import = class_import_get(imp); |
| desc->bd_req = req; |
| |
| desc->bd_cbid.cbid_fn = client_bulk_callback; |
| desc->bd_cbid.cbid_arg = desc; |
| |
| /* This makes req own desc, and free it when she frees herself */ |
| req->rq_bulk = desc; |
| |
| return desc; |
| } |
| EXPORT_SYMBOL(ptlrpc_prep_bulk_imp); |
| |
| void __ptlrpc_prep_bulk_page(struct ptlrpc_bulk_desc *desc, |
| struct page *page, int pageoffset, int len, int pin) |
| { |
| struct bio_vec *kiov; |
| |
| LASSERT(desc->bd_iov_count < desc->bd_max_iov); |
| LASSERT(page); |
| LASSERT(pageoffset >= 0); |
| LASSERT(len > 0); |
| LASSERT(pageoffset + len <= PAGE_SIZE); |
| LASSERT(ptlrpc_is_bulk_desc_kiov(desc->bd_type)); |
| |
| kiov = &BD_GET_KIOV(desc, desc->bd_iov_count); |
| |
| desc->bd_nob += len; |
| |
| if (pin) |
| get_page(page); |
| |
| kiov->bv_page = page; |
| kiov->bv_offset = pageoffset; |
| kiov->bv_len = len; |
| |
| desc->bd_iov_count++; |
| } |
| EXPORT_SYMBOL(__ptlrpc_prep_bulk_page); |
| |
| int ptlrpc_prep_bulk_frag(struct ptlrpc_bulk_desc *desc, |
| void *frag, int len) |
| { |
| struct kvec *iovec; |
| |
| LASSERT(desc->bd_iov_count < desc->bd_max_iov); |
| LASSERT(frag); |
| LASSERT(len > 0); |
| LASSERT(ptlrpc_is_bulk_desc_kvec(desc->bd_type)); |
| |
| iovec = &BD_GET_KVEC(desc, desc->bd_iov_count); |
| |
| desc->bd_nob += len; |
| |
| iovec->iov_base = frag; |
| iovec->iov_len = len; |
| |
| desc->bd_iov_count++; |
| |
| return desc->bd_nob; |
| } |
| EXPORT_SYMBOL(ptlrpc_prep_bulk_frag); |
| |
| void ptlrpc_free_bulk(struct ptlrpc_bulk_desc *desc) |
| { |
| LASSERT(desc->bd_iov_count != LI_POISON); /* not freed already */ |
| LASSERT(desc->bd_md_count == 0); /* network hands off */ |
| LASSERT((desc->bd_export != NULL) ^ (desc->bd_import != NULL)); |
| LASSERT(desc->bd_frag_ops); |
| |
| if (ptlrpc_is_bulk_desc_kiov(desc->bd_type)) |
| sptlrpc_enc_pool_put_pages(desc); |
| |
| if (desc->bd_export) |
| class_export_put(desc->bd_export); |
| else |
| class_import_put(desc->bd_import); |
| |
| if (desc->bd_frag_ops->release_frags) |
| desc->bd_frag_ops->release_frags(desc); |
| |
| if (ptlrpc_is_bulk_desc_kiov(desc->bd_type)) |
| kfree(GET_KIOV(desc)); |
| else |
| kfree(GET_KVEC(desc)); |
| |
| kfree(desc); |
| } |
| EXPORT_SYMBOL(ptlrpc_free_bulk); |
| |
| /** |
| * Set server timelimit for this req, i.e. how long are we willing to wait |
| * for reply before timing out this request. |
| */ |
| void ptlrpc_at_set_req_timeout(struct ptlrpc_request *req) |
| { |
| __u32 serv_est; |
| int idx; |
| struct imp_at *at; |
| |
| LASSERT(req->rq_import); |
| |
| if (AT_OFF) { |
| /* |
| * non-AT settings |
| * |
| * \a imp_server_timeout means this is reverse import and |
| * we send (currently only) ASTs to the client and cannot afford |
| * to wait too long for the reply, otherwise the other client |
| * (because of which we are sending this request) would |
| * timeout waiting for us |
| */ |
| req->rq_timeout = req->rq_import->imp_server_timeout ? |
| obd_timeout / 2 : obd_timeout; |
| } else { |
| at = &req->rq_import->imp_at; |
| idx = import_at_get_index(req->rq_import, |
| req->rq_request_portal); |
| serv_est = at_get(&at->iat_service_estimate[idx]); |
| req->rq_timeout = at_est2timeout(serv_est); |
| } |
| /* |
| * We could get even fancier here, using history to predict increased |
| * loading... |
| */ |
| |
| /* |
| * Let the server know what this RPC timeout is by putting it in the |
| * reqmsg |
| */ |
| lustre_msg_set_timeout(req->rq_reqmsg, req->rq_timeout); |
| } |
| EXPORT_SYMBOL(ptlrpc_at_set_req_timeout); |
| |
| /* Adjust max service estimate based on server value */ |
| static void ptlrpc_at_adj_service(struct ptlrpc_request *req, |
| unsigned int serv_est) |
| { |
| int idx; |
| unsigned int oldse; |
| struct imp_at *at; |
| |
| LASSERT(req->rq_import); |
| at = &req->rq_import->imp_at; |
| |
| idx = import_at_get_index(req->rq_import, req->rq_request_portal); |
| /* |
| * max service estimates are tracked on the server side, |
| * so just keep minimal history here |
| */ |
| oldse = at_measured(&at->iat_service_estimate[idx], serv_est); |
| if (oldse != 0) |
| CDEBUG(D_ADAPTTO, "The RPC service estimate for %s ptl %d has changed from %d to %d\n", |
| req->rq_import->imp_obd->obd_name, req->rq_request_portal, |
| oldse, at_get(&at->iat_service_estimate[idx])); |
| } |
| |
| /* Expected network latency per remote node (secs) */ |
| int ptlrpc_at_get_net_latency(struct ptlrpc_request *req) |
| { |
| return AT_OFF ? 0 : at_get(&req->rq_import->imp_at.iat_net_latency); |
| } |
| |
| /* Adjust expected network latency */ |
| void ptlrpc_at_adj_net_latency(struct ptlrpc_request *req, |
| unsigned int service_time) |
| { |
| unsigned int nl, oldnl; |
| struct imp_at *at; |
| time64_t now = ktime_get_real_seconds(); |
| |
| LASSERT(req->rq_import); |
| |
| if (service_time > now - req->rq_sent + 3) { |
| /* |
| * bz16408, however, this can also happen if early reply |
| * is lost and client RPC is expired and resent, early reply |
| * or reply of original RPC can still be fit in reply buffer |
| * of resent RPC, now client is measuring time from the |
| * resent time, but server sent back service time of original |
| * RPC. |
| */ |
| CDEBUG((lustre_msg_get_flags(req->rq_reqmsg) & MSG_RESENT) ? |
| D_ADAPTTO : D_WARNING, |
| "Reported service time %u > total measured time %lld\n", |
| service_time, now - req->rq_sent); |
| return; |
| } |
| |
| /* Network latency is total time less server processing time */ |
| nl = max_t(int, now - req->rq_sent - |
| service_time, 0) + 1; /* st rounding */ |
| at = &req->rq_import->imp_at; |
| |
| oldnl = at_measured(&at->iat_net_latency, nl); |
| if (oldnl != 0) |
| CDEBUG(D_ADAPTTO, "The network latency for %s (nid %s) has changed from %d to %d\n", |
| req->rq_import->imp_obd->obd_name, |
| obd_uuid2str( |
| &req->rq_import->imp_connection->c_remote_uuid), |
| oldnl, at_get(&at->iat_net_latency)); |
| } |
| |
| static int unpack_reply(struct ptlrpc_request *req) |
| { |
| int rc; |
| |
| if (SPTLRPC_FLVR_POLICY(req->rq_flvr.sf_rpc) != SPTLRPC_POLICY_NULL) { |
| rc = ptlrpc_unpack_rep_msg(req, req->rq_replen); |
| if (rc) { |
| DEBUG_REQ(D_ERROR, req, "unpack_rep failed: %d", rc); |
| return -EPROTO; |
| } |
| } |
| |
| rc = lustre_unpack_rep_ptlrpc_body(req, MSG_PTLRPC_BODY_OFF); |
| if (rc) { |
| DEBUG_REQ(D_ERROR, req, "unpack ptlrpc body failed: %d", rc); |
| return -EPROTO; |
| } |
| return 0; |
| } |
| |
| /** |
| * Handle an early reply message, called with the rq_lock held. |
| * If anything goes wrong just ignore it - same as if it never happened |
| */ |
| static int ptlrpc_at_recv_early_reply(struct ptlrpc_request *req) |
| __must_hold(&req->rq_lock) |
| { |
| struct ptlrpc_request *early_req; |
| time64_t olddl; |
| int rc; |
| |
| req->rq_early = 0; |
| spin_unlock(&req->rq_lock); |
| |
| rc = sptlrpc_cli_unwrap_early_reply(req, &early_req); |
| if (rc) { |
| spin_lock(&req->rq_lock); |
| return rc; |
| } |
| |
| rc = unpack_reply(early_req); |
| if (rc) { |
| sptlrpc_cli_finish_early_reply(early_req); |
| spin_lock(&req->rq_lock); |
| return rc; |
| } |
| |
| /* |
| * Use new timeout value just to adjust the local value for this |
| * request, don't include it into at_history. It is unclear yet why |
| * service time increased and should it be counted or skipped, e.g. |
| * that can be recovery case or some error or server, the real reply |
| * will add all new data if it is worth to add. |
| */ |
| req->rq_timeout = lustre_msg_get_timeout(early_req->rq_repmsg); |
| lustre_msg_set_timeout(req->rq_reqmsg, req->rq_timeout); |
| |
| /* Network latency can be adjusted, it is pure network delays */ |
| ptlrpc_at_adj_net_latency(req, |
| lustre_msg_get_service_time(early_req->rq_repmsg)); |
| |
| sptlrpc_cli_finish_early_reply(early_req); |
| |
| spin_lock(&req->rq_lock); |
| olddl = req->rq_deadline; |
| /* |
| * server assumes it now has rq_timeout from when the request |
| * arrived, so the client should give it at least that long. |
| * since we don't know the arrival time we'll use the original |
| * sent time |
| */ |
| req->rq_deadline = req->rq_sent + req->rq_timeout + |
| ptlrpc_at_get_net_latency(req); |
| |
| DEBUG_REQ(D_ADAPTTO, req, |
| "Early reply #%d, new deadline in %lds (%lds)", |
| req->rq_early_count, |
| (long)(req->rq_deadline - ktime_get_real_seconds()), |
| (long)(req->rq_deadline - olddl)); |
| |
| return rc; |
| } |
| |
| static struct kmem_cache *request_cache; |
| |
| int ptlrpc_request_cache_init(void) |
| { |
| request_cache = kmem_cache_create("ptlrpc_cache", |
| sizeof(struct ptlrpc_request), |
| 0, SLAB_HWCACHE_ALIGN, NULL); |
| return !request_cache ? -ENOMEM : 0; |
| } |
| |
| void ptlrpc_request_cache_fini(void) |
| { |
| kmem_cache_destroy(request_cache); |
| } |
| |
| struct ptlrpc_request *ptlrpc_request_cache_alloc(gfp_t flags) |
| { |
| struct ptlrpc_request *req; |
| |
| req = kmem_cache_zalloc(request_cache, flags); |
| return req; |
| } |
| |
| void ptlrpc_request_cache_free(struct ptlrpc_request *req) |
| { |
| kmem_cache_free(request_cache, req); |
| } |
| |
| /** |
| * Wind down request pool \a pool. |
| * Frees all requests from the pool too |
| */ |
| void ptlrpc_free_rq_pool(struct ptlrpc_request_pool *pool) |
| { |
| struct list_head *l, *tmp; |
| struct ptlrpc_request *req; |
| |
| spin_lock(&pool->prp_lock); |
| list_for_each_safe(l, tmp, &pool->prp_req_list) { |
| req = list_entry(l, struct ptlrpc_request, rq_list); |
| list_del(&req->rq_list); |
| LASSERT(req->rq_reqbuf); |
| LASSERT(req->rq_reqbuf_len == pool->prp_rq_size); |
| kvfree(req->rq_reqbuf); |
| ptlrpc_request_cache_free(req); |
| } |
| spin_unlock(&pool->prp_lock); |
| kfree(pool); |
| } |
| EXPORT_SYMBOL(ptlrpc_free_rq_pool); |
| |
| /** |
| * Allocates, initializes and adds \a num_rq requests to the pool \a pool |
| */ |
| int ptlrpc_add_rqs_to_pool(struct ptlrpc_request_pool *pool, int num_rq) |
| { |
| int i; |
| int size = 1; |
| |
| while (size < pool->prp_rq_size) |
| size <<= 1; |
| |
| LASSERTF(list_empty(&pool->prp_req_list) || |
| size == pool->prp_rq_size, |
| "Trying to change pool size with nonempty pool from %d to %d bytes\n", |
| pool->prp_rq_size, size); |
| |
| spin_lock(&pool->prp_lock); |
| pool->prp_rq_size = size; |
| for (i = 0; i < num_rq; i++) { |
| struct ptlrpc_request *req; |
| struct lustre_msg *msg; |
| |
| spin_unlock(&pool->prp_lock); |
| req = ptlrpc_request_cache_alloc(GFP_NOFS); |
| if (!req) |
| return i; |
| msg = libcfs_kvzalloc(size, GFP_NOFS); |
| if (!msg) { |
| ptlrpc_request_cache_free(req); |
| return i; |
| } |
| req->rq_reqbuf = msg; |
| req->rq_reqbuf_len = size; |
| req->rq_pool = pool; |
| spin_lock(&pool->prp_lock); |
| list_add_tail(&req->rq_list, &pool->prp_req_list); |
| } |
| spin_unlock(&pool->prp_lock); |
| return num_rq; |
| } |
| EXPORT_SYMBOL(ptlrpc_add_rqs_to_pool); |
| |
| /** |
| * Create and initialize new request pool with given attributes: |
| * \a num_rq - initial number of requests to create for the pool |
| * \a msgsize - maximum message size possible for requests in thid pool |
| * \a populate_pool - function to be called when more requests need to be added |
| * to the pool |
| * Returns pointer to newly created pool or NULL on error. |
| */ |
| struct ptlrpc_request_pool * |
| ptlrpc_init_rq_pool(int num_rq, int msgsize, |
| int (*populate_pool)(struct ptlrpc_request_pool *, int)) |
| { |
| struct ptlrpc_request_pool *pool; |
| |
| pool = kzalloc(sizeof(struct ptlrpc_request_pool), GFP_NOFS); |
| if (!pool) |
| return NULL; |
| |
| /* |
| * Request next power of two for the allocation, because internally |
| * kernel would do exactly this |
| */ |
| |
| spin_lock_init(&pool->prp_lock); |
| INIT_LIST_HEAD(&pool->prp_req_list); |
| pool->prp_rq_size = msgsize + SPTLRPC_MAX_PAYLOAD; |
| pool->prp_populate = populate_pool; |
| |
| populate_pool(pool, num_rq); |
| |
| return pool; |
| } |
| EXPORT_SYMBOL(ptlrpc_init_rq_pool); |
| |
| /** |
| * Fetches one request from pool \a pool |
| */ |
| static struct ptlrpc_request * |
| ptlrpc_prep_req_from_pool(struct ptlrpc_request_pool *pool) |
| { |
| struct ptlrpc_request *request; |
| struct lustre_msg *reqbuf; |
| |
| if (!pool) |
| return NULL; |
| |
| spin_lock(&pool->prp_lock); |
| |
| /* |
| * See if we have anything in a pool, and bail out if nothing, |
| * in writeout path, where this matters, this is safe to do, because |
| * nothing is lost in this case, and when some in-flight requests |
| * complete, this code will be called again. |
| */ |
| if (unlikely(list_empty(&pool->prp_req_list))) { |
| spin_unlock(&pool->prp_lock); |
| return NULL; |
| } |
| |
| request = list_entry(pool->prp_req_list.next, struct ptlrpc_request, |
| rq_list); |
| list_del_init(&request->rq_list); |
| spin_unlock(&pool->prp_lock); |
| |
| LASSERT(request->rq_reqbuf); |
| LASSERT(request->rq_pool); |
| |
| reqbuf = request->rq_reqbuf; |
| memset(request, 0, sizeof(*request)); |
| request->rq_reqbuf = reqbuf; |
| request->rq_reqbuf_len = pool->prp_rq_size; |
| request->rq_pool = pool; |
| |
| return request; |
| } |
| |
| /** |
| * Returns freed \a request to pool. |
| */ |
| static void __ptlrpc_free_req_to_pool(struct ptlrpc_request *request) |
| { |
| struct ptlrpc_request_pool *pool = request->rq_pool; |
| |
| spin_lock(&pool->prp_lock); |
| LASSERT(list_empty(&request->rq_list)); |
| LASSERT(!request->rq_receiving_reply); |
| list_add_tail(&request->rq_list, &pool->prp_req_list); |
| spin_unlock(&pool->prp_lock); |
| } |
| |
| void ptlrpc_add_unreplied(struct ptlrpc_request *req) |
| { |
| struct obd_import *imp = req->rq_import; |
| struct list_head *tmp; |
| struct ptlrpc_request *iter; |
| |
| assert_spin_locked(&imp->imp_lock); |
| LASSERT(list_empty(&req->rq_unreplied_list)); |
| |
| /* unreplied list is sorted by xid in ascending order */ |
| list_for_each_prev(tmp, &imp->imp_unreplied_list) { |
| iter = list_entry(tmp, struct ptlrpc_request, |
| rq_unreplied_list); |
| |
| LASSERT(req->rq_xid != iter->rq_xid); |
| if (req->rq_xid < iter->rq_xid) |
| continue; |
| list_add(&req->rq_unreplied_list, &iter->rq_unreplied_list); |
| return; |
| } |
| list_add(&req->rq_unreplied_list, &imp->imp_unreplied_list); |
| } |
| |
| void ptlrpc_assign_next_xid_nolock(struct ptlrpc_request *req) |
| { |
| req->rq_xid = ptlrpc_next_xid(); |
| ptlrpc_add_unreplied(req); |
| } |
| |
| static inline void ptlrpc_assign_next_xid(struct ptlrpc_request *req) |
| { |
| spin_lock(&req->rq_import->imp_lock); |
| ptlrpc_assign_next_xid_nolock(req); |
| spin_unlock(&req->rq_import->imp_lock); |
| } |
| |
| int ptlrpc_request_bufs_pack(struct ptlrpc_request *request, |
| __u32 version, int opcode, char **bufs, |
| struct ptlrpc_cli_ctx *ctx) |
| { |
| int count; |
| struct obd_import *imp; |
| __u32 *lengths; |
| int rc; |
| |
| count = req_capsule_filled_sizes(&request->rq_pill, RCL_CLIENT); |
| imp = request->rq_import; |
| lengths = request->rq_pill.rc_area[RCL_CLIENT]; |
| |
| if (unlikely(ctx)) { |
| request->rq_cli_ctx = sptlrpc_cli_ctx_get(ctx); |
| } else { |
| rc = sptlrpc_req_get_ctx(request); |
| if (rc) |
| goto out_free; |
| } |
| sptlrpc_req_set_flavor(request, opcode); |
| |
| rc = lustre_pack_request(request, imp->imp_msg_magic, count, |
| lengths, bufs); |
| if (rc) |
| goto out_ctx; |
| |
| lustre_msg_add_version(request->rq_reqmsg, version); |
| request->rq_send_state = LUSTRE_IMP_FULL; |
| request->rq_type = PTL_RPC_MSG_REQUEST; |
| |
| request->rq_req_cbid.cbid_fn = request_out_callback; |
| request->rq_req_cbid.cbid_arg = request; |
| |
| request->rq_reply_cbid.cbid_fn = reply_in_callback; |
| request->rq_reply_cbid.cbid_arg = request; |
| |
| request->rq_reply_deadline = 0; |
| request->rq_bulk_deadline = 0; |
| request->rq_req_deadline = 0; |
| request->rq_phase = RQ_PHASE_NEW; |
| request->rq_next_phase = RQ_PHASE_UNDEFINED; |
| |
| request->rq_request_portal = imp->imp_client->cli_request_portal; |
| request->rq_reply_portal = imp->imp_client->cli_reply_portal; |
| |
| ptlrpc_at_set_req_timeout(request); |
| |
| lustre_msg_set_opc(request->rq_reqmsg, opcode); |
| ptlrpc_assign_next_xid(request); |
| |
| /* Let's setup deadline for req/reply/bulk unlink for opcode. */ |
| if (cfs_fail_val == opcode) { |
| time64_t *fail_t = NULL, *fail2_t = NULL; |
| |
| if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK)) { |
| fail_t = &request->rq_bulk_deadline; |
| } else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK)) { |
| fail_t = &request->rq_reply_deadline; |
| } else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REQ_UNLINK)) { |
| fail_t = &request->rq_req_deadline; |
| } else if (CFS_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BOTH_UNLINK)) { |
| fail_t = &request->rq_reply_deadline; |
| fail2_t = &request->rq_bulk_deadline; |
| } |
| |
| if (fail_t) { |
| *fail_t = ktime_get_real_seconds() + LONG_UNLINK; |
| |
| if (fail2_t) |
| *fail2_t = ktime_get_real_seconds() + |
| LONG_UNLINK; |
| |
| /* The RPC is infected, let the test change the |
| * fail_loc |
| */ |
| set_current_state(TASK_UNINTERRUPTIBLE); |
| schedule_timeout(cfs_time_seconds(2)); |
| set_current_state(TASK_RUNNING); |
| } |
| } |
| |
| return 0; |
| |
| out_ctx: |
| LASSERT(!request->rq_pool); |
| sptlrpc_cli_ctx_put(request->rq_cli_ctx, 1); |
| out_free: |
| class_import_put(imp); |
| return rc; |
| } |
| EXPORT_SYMBOL(ptlrpc_request_bufs_pack); |
| |
| /** |
| * Pack request buffers for network transfer, performing necessary encryption |
| * steps if necessary. |
| */ |
| int ptlrpc_request_pack(struct ptlrpc_request *request, |
| __u32 version, int opcode) |
| { |
| int rc; |
| |
| rc = ptlrpc_request_bufs_pack(request, version, opcode, NULL, NULL); |
| if (rc) |
| return rc; |
| |
| /* |
| * For some old 1.8 clients (< 1.8.7), they will LASSERT the size of |
| * ptlrpc_body sent from server equal to local ptlrpc_body size, so we |
| * have to send old ptlrpc_body to keep interoperability with these |
| * clients. |
| * |
| * Only three kinds of server->client RPCs so far: |
| * - LDLM_BL_CALLBACK |
| * - LDLM_CP_CALLBACK |
| * - LDLM_GL_CALLBACK |
| * |
| * XXX This should be removed whenever we drop the interoperability with |
| * the these old clients. |
| */ |
| if (opcode == LDLM_BL_CALLBACK || opcode == LDLM_CP_CALLBACK || |
| opcode == LDLM_GL_CALLBACK) |
| req_capsule_shrink(&request->rq_pill, &RMF_PTLRPC_BODY, |
| sizeof(struct ptlrpc_body_v2), RCL_CLIENT); |
| |
| return rc; |
| } |
| EXPORT_SYMBOL(ptlrpc_request_pack); |
| |
| /** |
| * Helper function to allocate new request on import \a imp |
| * and possibly using existing request from pool \a pool if provided. |
| * Returns allocated request structure with import field filled or |
| * NULL on error. |
| */ |
| static inline |
| struct ptlrpc_request *__ptlrpc_request_alloc(struct obd_import *imp, |
| struct ptlrpc_request_pool *pool) |
| { |
| struct ptlrpc_request *request; |
| |
| request = ptlrpc_request_cache_alloc(GFP_NOFS); |
| |
| if (!request && pool) |
| request = ptlrpc_prep_req_from_pool(pool); |
| |
| if (request) { |
| ptlrpc_cli_req_init(request); |
| |
| LASSERTF((unsigned long)imp > 0x1000, "%p", imp); |
| LASSERT(imp != LP_POISON); |
| LASSERTF((unsigned long)imp->imp_client > 0x1000, "%p\n", |
| imp->imp_client); |
| LASSERT(imp->imp_client != LP_POISON); |
| |
| request->rq_import = class_import_get(imp); |
| } else { |
| CERROR("request allocation out of memory\n"); |
| } |
| |
| return request; |
| } |
| |
| /** |
| * Helper function for creating a request. |
| * Calls __ptlrpc_request_alloc to allocate new request structure and inits |
| * buffer structures according to capsule template \a format. |
| * Returns allocated request structure pointer or NULL on error. |
| */ |
| static struct ptlrpc_request * |
| ptlrpc_request_alloc_internal(struct obd_import *imp, |
| struct ptlrpc_request_pool *pool, |
| const struct req_format *format) |
| { |
| struct ptlrpc_request *request; |
| |
| request = __ptlrpc_request_alloc(imp, pool); |
| if (!request) |
| return NULL; |
| |
| req_capsule_init(&request->rq_pill, request, RCL_CLIENT); |
| req_capsule_set(&request->rq_pill, format); |
| return request; |
| } |
| |
| /** |
| * Allocate new request structure for import \a imp and initialize its |
| * buffer structure according to capsule template \a format. |
| */ |
| struct ptlrpc_request *ptlrpc_request_alloc(struct obd_import *imp, |
| const struct req_format *format) |
| { |
| return ptlrpc_request_alloc_internal(imp, NULL, format); |
| } |
| EXPORT_SYMBOL(ptlrpc_request_alloc); |
| |
| /** |
| * Allocate new request structure for import \a imp from pool \a pool and |
| * initialize its buffer structure according to capsule template \a format. |
| */ |
| struct ptlrpc_request *ptlrpc_request_alloc_pool(struct obd_import *imp, |
| struct ptlrpc_request_pool *pool, |
| const struct req_format *format) |
| { |
| return ptlrpc_request_alloc_internal(imp, pool, format); |
| } |
| EXPORT_SYMBOL(ptlrpc_request_alloc_pool); |
| |
| /** |
| * For requests not from pool, free memory of the request structure. |
| * For requests obtained from a pool earlier, return request back to pool. |
| */ |
| void ptlrpc_request_free(struct ptlrpc_request *request) |
| { |
| if (request->rq_pool) |
| __ptlrpc_free_req_to_pool(request); |
| else |
| ptlrpc_request_cache_free(request); |
| } |
| EXPORT_SYMBOL(ptlrpc_request_free); |
| |
| /** |
| * Allocate new request for operation \a opcode and immediately pack it for |
| * network transfer. |
| * Only used for simple requests like OBD_PING where the only important |
| * part of the request is operation itself. |
| * Returns allocated request or NULL on error. |
| */ |
| struct ptlrpc_request *ptlrpc_request_alloc_pack(struct obd_import *imp, |
| const struct req_format *format, |
| __u32 version, int opcode) |
| { |
| struct ptlrpc_request *req = ptlrpc_request_alloc(imp, format); |
| int rc; |
| |
| if (req) { |
| rc = ptlrpc_request_pack(req, version, opcode); |
| if (rc) { |
| ptlrpc_request_free(req); |
| req = NULL; |
| } |
| } |
| return req; |
| } |
| EXPORT_SYMBOL(ptlrpc_request_alloc_pack); |
| |
| /** |
| * Allocate and initialize new request set structure on the current CPT. |
| * Returns a pointer to the newly allocated set structure or NULL on error. |
| */ |
| struct ptlrpc_request_set *ptlrpc_prep_set(void) |
| { |
| struct ptlrpc_request_set *set; |
| int cpt; |
| |
| cpt = cfs_cpt_current(cfs_cpt_table, 0); |
| set = kzalloc_node(sizeof(*set), GFP_NOFS, |
| cfs_cpt_spread_node(cfs_cpt_table, cpt)); |
| if (!set) |
| return NULL; |
| atomic_set(&set->set_refcount, 1); |
| INIT_LIST_HEAD(&set->set_requests); |
| init_waitqueue_head(&set->set_waitq); |
| atomic_set(&set->set_new_count, 0); |
| atomic_set(&set->set_remaining, 0); |
| spin_lock_init(&set->set_new_req_lock); |
| INIT_LIST_HEAD(&set->set_new_requests); |
| INIT_LIST_HEAD(&set->set_cblist); |
| set->set_max_inflight = UINT_MAX; |
| set->set_producer = NULL; |
| set->set_producer_arg = NULL; |
| set->set_rc = 0; |
| |
| return set; |
| } |
| EXPORT_SYMBOL(ptlrpc_prep_set); |
| |
| /** |
| * Allocate and initialize new request set structure with flow control |
| * extension. This extension allows to control the number of requests in-flight |
| * for the whole set. A callback function to generate requests must be provided |
| * and the request set will keep the number of requests sent over the wire to |
| * @max_inflight. |
| * Returns a pointer to the newly allocated set structure or NULL on error. |
| */ |
| struct ptlrpc_request_set *ptlrpc_prep_fcset(int max, set_producer_func func, |
| void *arg) |
| |
| { |
| struct ptlrpc_request_set *set; |
| |
| set = ptlrpc_prep_set(); |
| if (!set) |
| return NULL; |
| |
| set->set_max_inflight = max; |
| set->set_producer = func; |
| set->set_producer_arg = arg; |
| |
| return set; |
| } |
| |
| /** |
| * Wind down and free request set structure previously allocated with |
| * ptlrpc_prep_set. |
| * Ensures that all requests on the set have completed and removes |
| * all requests from the request list in a set. |
| * If any unsent request happen to be on the list, pretends that they got |
| * an error in flight and calls their completion handler. |
| */ |
| void ptlrpc_set_destroy(struct ptlrpc_request_set *set) |
| { |
| struct list_head *tmp; |
| struct list_head *next; |
| int expected_phase; |
| int n = 0; |
| |
| /* Requests on the set should either all be completed, or all be new */ |
| expected_phase = (atomic_read(&set->set_remaining) == 0) ? |
| RQ_PHASE_COMPLETE : RQ_PHASE_NEW; |
| list_for_each(tmp, &set->set_requests) { |
| struct ptlrpc_request *req = |
| list_entry(tmp, struct ptlrpc_request, rq_set_chain); |
| |
| LASSERT(req->rq_phase == expected_phase); |
| n++; |
| } |
| |
| LASSERTF(atomic_read(&set->set_remaining) == 0 || |
| atomic_read(&set->set_remaining) == n, "%d / %d\n", |
| atomic_read(&set->set_remaining), n); |
| |
| list_for_each_safe(tmp, next, &set->set_requests) { |
| struct ptlrpc_request *req = |
| list_entry(tmp, struct ptlrpc_request, rq_set_chain); |
| list_del_init(&req->rq_set_chain); |
| |
| LASSERT(req->rq_phase == expected_phase); |
| |
| if (req->rq_phase == RQ_PHASE_NEW) { |
| ptlrpc_req_interpret(NULL, req, -EBADR); |
| atomic_dec(&set->set_remaining); |
| } |
| |
| spin_lock(&req->rq_lock); |
| req->rq_set = NULL; |
| req->rq_invalid_rqset = 0; |
| spin_unlock(&req->rq_lock); |
| |
| ptlrpc_req_finished(req); |
| } |
| |
| LASSERT(atomic_read(&set->set_remaining) == 0); |
| |
| ptlrpc_reqset_put(set); |
| } |
| EXPORT_SYMBOL(ptlrpc_set_destroy); |
| |
| /** |
| * Add a new request to the general purpose request set. |
| * Assumes request reference from the caller. |
| */ |
| void ptlrpc_set_add_req(struct ptlrpc_request_set *set, |
| struct ptlrpc_request *req) |
| { |
| LASSERT(list_empty(&req->rq_set_chain)); |
| |
| /* The set takes over the caller's request reference */ |
| list_add_tail(&req->rq_set_chain, &set->set_requests); |
| req->rq_set = set; |
| atomic_inc(&set->set_remaining); |
| req->rq_queued_time = cfs_time_current(); |
| |
| if (req->rq_reqmsg) |
| lustre_msg_set_jobid(req->rq_reqmsg, NULL); |
| |
| if (set->set_producer) |
| /* |
| * If the request set has a producer callback, the RPC must be |
| * sent straight away |
| */ |
| ptlrpc_send_new_req(req); |
| } |
| EXPORT_SYMBOL(ptlrpc_set_add_req); |
| |
| /** |
| * Add a request to a request with dedicated server thread |
| * and wake the thread to make any necessary processing. |
| * Currently only used for ptlrpcd. |
| */ |
| void ptlrpc_set_add_new_req(struct ptlrpcd_ctl *pc, |
| struct ptlrpc_request *req) |
| { |
| struct ptlrpc_request_set *set = pc->pc_set; |
| int count, i; |
| |
| LASSERT(!req->rq_set); |
| LASSERT(test_bit(LIOD_STOP, &pc->pc_flags) == 0); |
| |
| spin_lock(&set->set_new_req_lock); |
| /* The set takes over the caller's request reference. */ |
| req->rq_set = set; |
| req->rq_queued_time = cfs_time_current(); |
| list_add_tail(&req->rq_set_chain, &set->set_new_requests); |
| count = atomic_inc_return(&set->set_new_count); |
| spin_unlock(&set->set_new_req_lock); |
| |
| /* Only need to call wakeup once for the first entry. */ |
| if (count == 1) { |
| wake_up(&set->set_waitq); |
| |
| /* |
| * XXX: It maybe unnecessary to wakeup all the partners. But to |
| * guarantee the async RPC can be processed ASAP, we have |
| * no other better choice. It maybe fixed in future. |
| */ |
| for (i = 0; i < pc->pc_npartners; i++) |
| wake_up(&pc->pc_partners[i]->pc_set->set_waitq); |
| } |
| } |
| |
| /** |
| * Based on the current state of the import, determine if the request |
| * can be sent, is an error, or should be delayed. |
| * |
| * Returns true if this request should be delayed. If false, and |
| * *status is set, then the request can not be sent and *status is the |
| * error code. If false and status is 0, then request can be sent. |
| * |
| * The imp->imp_lock must be held. |
| */ |
| static int ptlrpc_import_delay_req(struct obd_import *imp, |
| struct ptlrpc_request *req, int *status) |
| { |
| int delay = 0; |
| |
| *status = 0; |
| |
| if (req->rq_ctx_init || req->rq_ctx_fini) { |
| /* always allow ctx init/fini rpc go through */ |
| } else if (imp->imp_state == LUSTRE_IMP_NEW) { |
| DEBUG_REQ(D_ERROR, req, "Uninitialized import."); |
| *status = -EIO; |
| } else if (imp->imp_state == LUSTRE_IMP_CLOSED) { |
| /* pings may safely race with umount */ |
| DEBUG_REQ(lustre_msg_get_opc(req->rq_reqmsg) == OBD_PING ? |
| D_HA : D_ERROR, req, "IMP_CLOSED "); |
| *status = -EIO; |
| } else if (ptlrpc_send_limit_expired(req)) { |
| /* probably doesn't need to be a D_ERROR after initial testing */ |
| DEBUG_REQ(D_HA, req, "send limit expired "); |
| *status = -ETIMEDOUT; |
| } else if (req->rq_send_state == LUSTRE_IMP_CONNECTING && |
| imp->imp_state == LUSTRE_IMP_CONNECTING) { |
| /* allow CONNECT even if import is invalid */ |
| if (atomic_read(&imp->imp_inval_count) != 0) { |
| DEBUG_REQ(D_ERROR, req, "invalidate in flight"); |
| *status = -EIO; |
| } |
| } else if (imp->imp_invalid || imp->imp_obd->obd_no_recov) { |
| if (!imp->imp_deactive) |
| DEBUG_REQ(D_NET, req, "IMP_INVALID"); |
| *status = -ESHUTDOWN; /* bz 12940 */ |
| } else if (req->rq_import_generation != imp->imp_generation) { |
| DEBUG_REQ(D_ERROR, req, "req wrong generation:"); |
| *status = -EIO; |
| } else if (req->rq_send_state != imp->imp_state) { |
| /* invalidate in progress - any requests should be drop */ |
| if (atomic_read(&imp->imp_inval_count) != 0) { |
| DEBUG_REQ(D_ERROR, req, "invalidate in flight"); |
| *status = -EIO; |
| } else if (req->rq_no_delay) { |
| *status = -EWOULDBLOCK; |
| } else if (req->rq_allow_replay && |
| (imp->imp_state == LUSTRE_IMP_REPLAY || |
| imp->imp_state == LUSTRE_IMP_REPLAY_LOCKS || |
| imp->imp_state == LUSTRE_IMP_REPLAY_WAIT || |
| imp->imp_state == LUSTRE_IMP_RECOVER)) { |
| DEBUG_REQ(D_HA, req, "allow during recovery.\n"); |
| } else { |
| delay = 1; |
| } |
| } |
| |
| return delay; |
| } |
| |
| /** |
| * Decide if the error message should be printed to the console or not. |
| * Makes its decision based on request type, status, and failure frequency. |
| * |
| * \param[in] req request that failed and may need a console message |
| * |
| * \retval false if no message should be printed |
| * \retval true if console message should be printed |
| */ |
| static bool ptlrpc_console_allow(struct ptlrpc_request *req) |
| { |
| __u32 opc; |
| |
| LASSERT(req->rq_reqmsg); |
| opc = lustre_msg_get_opc(req->rq_reqmsg); |
| |
| /* Suppress particular reconnect errors which are to be expected. */ |
| if (opc == OST_CONNECT || opc == MDS_CONNECT || opc == MGS_CONNECT) { |
| int err; |
| |
| /* Suppress timed out reconnect requests */ |
| if (lustre_handle_is_used(&req->rq_import->imp_remote_handle) || |
| req->rq_timedout) |
| return false; |
| |
| /* |
| * Suppress most unavailable/again reconnect requests, but |
| * print occasionally so it is clear client is trying to |
| * connect to a server where no target is running. |
| */ |
| err = lustre_msg_get_status(req->rq_repmsg); |
| if ((err == -ENODEV || err == -EAGAIN) && |
| req->rq_import->imp_conn_cnt % 30 != 20) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /** |
| * Check request processing status. |
| * Returns the status. |
| */ |
| static int ptlrpc_check_status(struct ptlrpc_request *req) |
| { |
| int err; |
| |
| err = lustre_msg_get_status(req->rq_repmsg); |
| if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR) { |
| struct obd_import *imp = req->rq_import; |
| lnet_nid_t nid = imp->imp_connection->c_peer.nid; |
| __u32 opc = lustre_msg_get_opc(req->rq_reqmsg); |
| |
| /* -EAGAIN is normal when using POSIX flocks */ |
| if (ptlrpc_console_allow(req) && |
| !(opc == LDLM_ENQUEUE && err == -EAGAIN)) |
| LCONSOLE_ERROR_MSG(0x011, "%s: operation %s to node %s failed: rc = %d\n", |
| imp->imp_obd->obd_name, |
| ll_opcode2str(opc), |
| libcfs_nid2str(nid), err); |
| return err < 0 ? err : -EINVAL; |
| } |
| |
| if (err < 0) |
| DEBUG_REQ(D_INFO, req, "status is %d", err); |
| else if (err > 0) |
| /* XXX: translate this error from net to host */ |
| DEBUG_REQ(D_INFO, req, "status is %d", err); |
| |
| return err; |
| } |
| |
| /** |
| * save pre-versions of objects into request for replay. |
| * Versions are obtained from server reply. |
| * used for VBR. |
| */ |
| static void ptlrpc_save_versions(struct ptlrpc_request *req) |
| { |
| struct lustre_msg *repmsg = req->rq_repmsg; |
| struct lustre_msg *reqmsg = req->rq_reqmsg; |
| __u64 *versions = lustre_msg_get_versions(repmsg); |
| |
| if (lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY) |
| return; |
| |
| LASSERT(versions); |
| lustre_msg_set_versions(reqmsg, versions); |
| CDEBUG(D_INFO, "Client save versions [%#llx/%#llx]\n", |
| versions[0], versions[1]); |
| } |
| |
| __u64 ptlrpc_known_replied_xid(struct obd_import *imp) |
| { |
| struct ptlrpc_request *req; |
| |
| assert_spin_locked(&imp->imp_lock); |
| if (list_empty(&imp->imp_unreplied_list)) |
| return 0; |
| |
| req = list_entry(imp->imp_unreplied_list.next, struct ptlrpc_request, |
| rq_unreplied_list); |
| LASSERTF(req->rq_xid >= 1, "XID:%llu\n", req->rq_xid); |
| |
| if (imp->imp_known_replied_xid < req->rq_xid - 1) |
| imp->imp_known_replied_xid = req->rq_xid - 1; |
| |
| return req->rq_xid - 1; |
| } |
| |
| /** |
| * Callback function called when client receives RPC reply for \a req. |
| * Returns 0 on success or error code. |
| * The return value would be assigned to req->rq_status by the caller |
| * as request processing status. |
| * This function also decides if the request needs to be saved for later replay. |
| */ |
| static int after_reply(struct ptlrpc_request *req) |
| { |
| struct obd_import *imp = req->rq_import; |
| struct obd_device *obd = req->rq_import->imp_obd; |
| int rc; |
| struct timespec64 work_start; |
| long timediff; |
| u64 committed; |
| |
| LASSERT(obd); |
| /* repbuf must be unlinked */ |
| LASSERT(!req->rq_receiving_reply && req->rq_reply_unlinked); |
| |
| if (req->rq_reply_truncated) { |
| if (ptlrpc_no_resend(req)) { |
| DEBUG_REQ(D_ERROR, req, "reply buffer overflow, expected: %d, actual size: %d", |
| req->rq_nob_received, req->rq_repbuf_len); |
| return -EOVERFLOW; |
| } |
| |
| sptlrpc_cli_free_repbuf(req); |
| /* |
| * Pass the required reply buffer size (include space for early |
| * reply). NB: no need to round up because alloc_repbuf will |
| * round it up |
| */ |
| req->rq_replen = req->rq_nob_received; |
| req->rq_nob_received = 0; |
| spin_lock(&req->rq_lock); |
| req->rq_resend = 1; |
| spin_unlock(&req->rq_lock); |
| return 0; |
| } |
| |
| ktime_get_real_ts64(&work_start); |
| timediff = (work_start.tv_sec - req->rq_sent_tv.tv_sec) * USEC_PER_SEC + |
| (work_start.tv_nsec - req->rq_sent_tv.tv_nsec) / |
| NSEC_PER_USEC; |
| /* |
| * NB Until this point, the whole of the incoming message, |
| * including buflens, status etc is in the sender's byte order. |
| */ |
| rc = sptlrpc_cli_unwrap_reply(req); |
| if (rc) { |
| DEBUG_REQ(D_ERROR, req, "unwrap reply failed (%d):", rc); |
| return rc; |
| } |
| |
| /* Security layer unwrap might ask resend this request. */ |
| if (req->rq_resend) |
| return 0; |
| |
| rc = unpack_reply(req); |
| if (rc) |
| return rc; |
| |
| /* retry indefinitely on EINPROGRESS */ |
| if (lustre_msg_get_status(req->rq_repmsg) == -EINPROGRESS && |
| ptlrpc_no_resend(req) == 0 && !req->rq_no_retry_einprogress) { |
| time64_t now = ktime_get_real_seconds(); |
| |
| DEBUG_REQ(D_RPCTRACE, req, "Resending request on EINPROGRESS"); |
| spin_lock(&req->rq_lock); |
| req->rq_resend = 1; |
| spin_unlock(&req->rq_lock); |
| req->rq_nr_resend++; |
| |
| /* Readjust the timeout for current conditions */ |
| ptlrpc_at_set_req_timeout(req); |
| /* |
| * delay resend to give a chance to the server to get ready. |
| * The delay is increased by 1s on every resend and is capped to |
| * the current request timeout (i.e. obd_timeout if AT is off, |
| * or AT service time x 125% + 5s, see at_est2timeout) |
| */ |
| if (req->rq_nr_resend > req->rq_timeout) |
| req->rq_sent = now + req->rq_timeout; |
| else |
| req->rq_sent = now + req->rq_nr_resend; |
| |
| /* Resend for EINPROGRESS will use a new XID */ |
| spin_lock(&imp->imp_lock); |
| list_del_init(&req->rq_unreplied_list); |
| spin_unlock(&imp->imp_lock); |
| |
| return 0; |
| } |
| |
| if (obd->obd_svc_stats) { |
| lprocfs_counter_add(obd->obd_svc_stats, PTLRPC_REQWAIT_CNTR, |
| timediff); |
| ptlrpc_lprocfs_rpc_sent(req, timediff); |
| } |
| |
| if (lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_REPLY && |
| lustre_msg_get_type(req->rq_repmsg) != PTL_RPC_MSG_ERR) { |
| DEBUG_REQ(D_ERROR, req, "invalid packet received (type=%u)", |
| lustre_msg_get_type(req->rq_repmsg)); |
| return -EPROTO; |
| } |
| |
| if (lustre_msg_get_opc(req->rq_reqmsg) != OBD_PING) |
| CFS_FAIL_TIMEOUT(OBD_FAIL_PTLRPC_PAUSE_REP, cfs_fail_val); |
| ptlrpc_at_adj_service(req, lustre_msg_get_timeout(req->rq_repmsg)); |
| ptlrpc_at_adj_net_latency(req, |
| lustre_msg_get_service_time(req->rq_repmsg)); |
| |
| rc = ptlrpc_check_status(req); |
| imp->imp_connect_error = rc; |
| |
| if (rc) { |
| /* |
| * Either we've been evicted, or the server has failed for |
| * some reason. Try to reconnect, and if that fails, punt to |
| * the upcall. |
| */ |
| if (ptlrpc_recoverable_error(rc)) { |
| if (req->rq_send_state != LUSTRE_IMP_FULL || |
| imp->imp_obd->obd_no_recov || imp->imp_dlm_fake) { |
| return rc; |
| } |
| ptlrpc_request_handle_notconn(req); |
| return rc; |
| } |
| } else { |
| /* |
| * Let's look if server sent slv. Do it only for RPC with |
| * rc == 0. |
| */ |
| ldlm_cli_update_pool(req); |
| } |
| |
| /* Store transno in reqmsg for replay. */ |
| if (!(lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)) { |
| req->rq_transno = lustre_msg_get_transno(req->rq_repmsg); |
| lustre_msg_set_transno(req->rq_reqmsg, req->rq_transno); |
| } |
| |
| if (imp->imp_replayable) { |
| spin_lock(&imp->imp_lock); |
| /* |
| * No point in adding already-committed requests to the replay |
| * list, we will just remove them immediately. b=9829 |
| */ |
| if (req->rq_transno != 0 && |
| (req->rq_transno > |
| lustre_msg_get_last_committed(req->rq_repmsg) || |
| req->rq_replay)) { |
| /* version recovery */ |
| ptlrpc_save_versions(req); |
| ptlrpc_retain_replayable_request(req, imp); |
| } else if (req->rq_commit_cb && |
| list_empty(&req->rq_replay_list)) { |
| /* |
| * NB: don't call rq_commit_cb if it's already on |
| * rq_replay_list, ptlrpc_free_committed() will call |
| * it later, see LU-3618 for details |
| */ |
| spin_unlock(&imp->imp_lock); |
| req->rq_commit_cb(req); |
| spin_lock(&imp->imp_lock); |
| } |
| |
| /* Replay-enabled imports return commit-status information. */ |
| committed = lustre_msg_get_last_committed(req->rq_repmsg); |
| if (likely(committed > imp->imp_peer_committed_transno)) |
| imp->imp_peer_committed_transno = committed; |
| |
| ptlrpc_free_committed(imp); |
| |
| if (!list_empty(&imp->imp_replay_list)) { |
| struct ptlrpc_request *last; |
| |
| last = list_entry(imp->imp_replay_list.prev, |
| struct ptlrpc_request, |
| rq_replay_list); |
| /* |
| * Requests with rq_replay stay on the list even if no |
| * commit is expected. |
| */ |
| if (last->rq_transno > imp->imp_peer_committed_transno) |
| ptlrpc_pinger_commit_expected(imp); |
| } |
| |
| spin_unlock(&imp->imp_lock); |
| } |
| |
| return rc; |
| } |
| |
| /** |
| * Helper function to send request \a req over the network for the first time |
| * Also adjusts request phase. |
| * Returns 0 on success or error code. |
| */ |
| static int ptlrpc_send_new_req(struct ptlrpc_request *req) |
| { |
| struct obd_import *imp = req->rq_import; |
| u64 min_xid = 0; |
| int rc; |
| |
| LASSERT(req->rq_phase == RQ_PHASE_NEW); |
| |
| /* do not try to go further if there is not enough memory in enc_pool */ |
| if (req->rq_sent && req->rq_bulk) |
| if (req->rq_bulk->bd_iov_count > get_free_pages_in_pool() && |
| pool_is_at_full_capacity()) |
| return -ENOMEM; |
| |
| if (req->rq_sent && (req->rq_sent > ktime_get_real_seconds()) && |
| (!req->rq_generation_set || |
| req->rq_import_generation == imp->imp_generation)) |
| return 0; |
| |
| ptlrpc_rqphase_move(req, RQ_PHASE_RPC); |
| |
| spin_lock(&imp->imp_lock); |
| |
| LASSERT(req->rq_xid); |
| LASSERT(!list_empty(&req->rq_unreplied_list)); |
| |
| if (!req->rq_generation_set) |
| req->rq_import_generation = imp->imp_generation; |
| |
| if (ptlrpc_import_delay_req(imp, req, &rc)) { |
| spin_lock(&req->rq_lock); |
| req->rq_waiting = 1; |
| spin_unlock(&req->rq_lock); |
| |
| DEBUG_REQ(D_HA, req, "req from PID %d waiting for recovery: (%s != %s)", |
| lustre_msg_get_status(req->rq_reqmsg), |
| ptlrpc_import_state_name(req->rq_send_state), |
| ptlrpc_import_state_name(imp->imp_state)); |
| LASSERT(list_empty(&req->rq_list)); |
| list_add_tail(&req->rq_list, &imp->imp_delayed_list); |
| atomic_inc(&req->rq_import->imp_inflight); |
| spin_unlock(&imp->imp_lock); |
| return 0; |
| } |
| |
| if (rc != 0) { |
| spin_unlock(&imp->imp_lock); |
| req->rq_status = rc; |
| ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET); |
| return rc; |
| } |
| |
| LASSERT(list_empty(&req->rq_list)); |
| list_add_tail(&req->rq_list, &imp->imp_sending_list); |
| atomic_inc(&req->rq_import->imp_inflight); |
| |
| /* find the known replied XID from the unreplied list, CONNECT |
| * and DISCONNECT requests are skipped to make the sanity check |
| * on server side happy. see process_req_last_xid(). |
| * |
| * For CONNECT: Because replay requests have lower XID, it'll |
| * break the sanity check if CONNECT bump the exp_last_xid on |
| * server. |
| * |
| * For DISCONNECT: Since client will abort inflight RPC before |
| * sending DISCONNECT, DISCONNECT may carry an XID which higher |
| * than the inflight RPC. |
| */ |
| if (!ptlrpc_req_is_connect(req) && !ptlrpc_req_is_disconnect(req)) |
| min_xid = ptlrpc_known_replied_xid(imp); |
| spin_unlock(&imp->imp_lock); |
| |
| lustre_msg_set_last_xid(req->rq_reqmsg, min_xid); |
| |
| lustre_msg_set_status(req->rq_reqmsg, current_pid()); |
| |
| rc = sptlrpc_req_refresh_ctx(req, -1); |
| if (rc) { |
| if (req->rq_err) { |
| req->rq_status = rc; |
| return 1; |
| } |
| spin_lock(&req->rq_lock); |
| req->rq_wait_ctx = 1; |
| spin_unlock(&req->rq_lock); |
| return 0; |
| } |
| |
| CDEBUG(D_RPCTRACE, "Sending RPC pname:cluuid:pid:xid:nid:opc %s:%s:%d:%llu:%s:%d\n", |
| current_comm(), |
| imp->imp_obd->obd_uuid.uuid, |
| lustre_msg_get_status(req->rq_reqmsg), req->rq_xid, |
| libcfs_nid2str(imp->imp_connection->c_peer.nid), |
| lustre_msg_get_opc(req->rq_reqmsg)); |
| |
| rc = ptl_send_rpc(req, 0); |
| if (rc == -ENOMEM) { |
| spin_lock(&imp->imp_lock); |
| if (!list_empty(&req->rq_list)) { |
| list_del_init(&req->rq_list); |
| atomic_dec(&req->rq_import->imp_inflight); |
| } |
| spin_unlock(&imp->imp_lock); |
| ptlrpc_rqphase_move(req, RQ_PHASE_NEW); |
| return rc; |
| } |
| if (rc) { |
| DEBUG_REQ(D_HA, req, "send failed (%d); expect timeout", rc); |
| spin_lock(&req->rq_lock); |
| req->rq_net_err = 1; |
| spin_unlock(&req->rq_lock); |
| return rc; |
| } |
| return 0; |
| } |
| |
| static inline int ptlrpc_set_producer(struct ptlrpc_request_set *set) |
| { |
| int remaining, rc; |
| |
| LASSERT(set->set_producer); |
| |
| remaining = atomic_read(&set->set_remaining); |
| |
| /* |
| * populate the ->set_requests list with requests until we |
| * reach the maximum number of RPCs in flight for this set |
| */ |
| while (atomic_read(&set->set_remaining) < set->set_max_inflight) { |
| rc = set->set_producer(set, set->set_producer_arg); |
| if (rc == -ENOENT) { |
| /* no more RPC to produce */ |
| set->set_producer = NULL; |
| set->set_producer_arg = NULL; |
| return 0; |
| } |
| } |
| |
| return (atomic_read(&set->set_remaining) - remaining); |
| } |
| |
| /** |
| * this sends any unsent RPCs in \a set and returns 1 if all are sent |
| * and no more replies are expected. |
| * (it is possible to get less replies than requests sent e.g. due to timed out |
| * requests or requests that we had trouble to send out) |
| * |
| * NOTE: This function contains a potential schedule point (cond_resched()). |
| */ |
| int ptlrpc_check_set(const struct lu_env *env, struct ptlrpc_request_set *set) |
| { |
| struct list_head *tmp, *next; |
| struct list_head comp_reqs; |
| int force_timer_recalc = 0; |
| |
| if (atomic_read(&set->set_remaining) == 0) |
| return 1; |
| |
| INIT_LIST_HEAD(&comp_reqs); |
| list_for_each_safe(tmp, next, &set->set_requests) { |
| struct ptlrpc_request *req = |
| list_entry(tmp, struct ptlrpc_request, rq_set_chain); |
| struct obd_import *imp = req->rq_import; |
| int unregistered = 0; |
| int rc = 0; |
| |
| /* |
| * This schedule point is mainly for the ptlrpcd caller of this |
| * function. Most ptlrpc sets are not long-lived and unbounded |
| * in length, but at the least the set used by the ptlrpcd is. |
| * Since the processing time is unbounded, we need to insert an |
| * explicit schedule point to make the thread well-behaved. |
| */ |
| cond_resched(); |
| |
| if (req->rq_phase == RQ_PHASE_NEW && |
| ptlrpc_send_new_req(req)) { |
| force_timer_recalc = 1; |
| } |
| |
| /* delayed send - skip */ |
| if (req->rq_phase == RQ_PHASE_NEW && req->rq_sent) |
| continue; |
| |
| /* delayed resend - skip */ |
| if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend && |
| req->rq_sent > ktime_get_real_seconds()) |
| continue; |
| |
| if (!(req->rq_phase == RQ_PHASE_RPC || |
| req->rq_phase == RQ_PHASE_BULK || |
| req->rq_phase == RQ_PHASE_INTERPRET || |
| req->rq_phase == RQ_PHASE_UNREG_RPC || |
| req->rq_phase == RQ_PHASE_UNREG_BULK || |
| req->rq_phase == RQ_PHASE_COMPLETE)) { |
| DEBUG_REQ(D_ERROR, req, "bad phase %x", req->rq_phase); |
| LBUG(); |
| } |
| |
| if (req->rq_phase == RQ_PHASE_UNREG_RPC || |
| req->rq_phase == RQ_PHASE_UNREG_BULK) { |
| LASSERT(req->rq_next_phase != req->rq_phase); |
| LASSERT(req->rq_next_phase != RQ_PHASE_UNDEFINED); |
| |
| if (req->rq_req_deadline && |
| !OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REQ_UNLINK)) |
| req->rq_req_deadline = 0; |
| if (req->rq_reply_deadline && |
| !OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK)) |
| req->rq_reply_deadline = 0; |
| if (req->rq_bulk_deadline && |
| !OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK)) |
| req->rq_bulk_deadline = 0; |
| |
| /* |
| * Skip processing until reply is unlinked. We |
| * can't return to pool before that and we can't |
| * call interpret before that. We need to make |
| * sure that all rdma transfers finished and will |
| * not corrupt any data. |
| */ |
| if (req->rq_phase == RQ_PHASE_UNREG_RPC && |
| ptlrpc_client_recv_or_unlink(req)) |
| continue; |
| if (req->rq_phase == RQ_PHASE_UNREG_BULK && |
| ptlrpc_client_bulk_active(req)) |
| continue; |
| |
| /* |
| * Turn fail_loc off to prevent it from looping |
| * forever. |
| */ |
| if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK)) { |
| OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK, |
| OBD_FAIL_ONCE); |
| } |
| if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK)) { |
| OBD_FAIL_CHECK_ORSET(OBD_FAIL_PTLRPC_LONG_BULK_UNLINK, |
| OBD_FAIL_ONCE); |
| } |
| |
| /* Move to next phase if reply was successfully |
| * unlinked. |
| */ |
| ptlrpc_rqphase_move(req, req->rq_next_phase); |
| } |
| |
| if (req->rq_phase == RQ_PHASE_COMPLETE) { |
| list_move_tail(&req->rq_set_chain, &comp_reqs); |
| continue; |
| } |
| |
| if (req->rq_phase == RQ_PHASE_INTERPRET) |
| goto interpret; |
| |
| /* Note that this also will start async reply unlink. */ |
| if (req->rq_net_err && !req->rq_timedout) { |
| ptlrpc_expire_one_request(req, 1); |
| |
| /* Check if we still need to wait for unlink. */ |
| if (ptlrpc_client_recv_or_unlink(req) || |
| ptlrpc_client_bulk_active(req)) |
| continue; |
| /* If there is no need to resend, fail it now. */ |
| if (req->rq_no_resend) { |
| if (req->rq_status == 0) |
| req->rq_status = -EIO; |
| ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET); |
| goto interpret; |
| } else { |
| continue; |
| } |
| } |
| |
| if (req->rq_err) { |
| spin_lock(&req->rq_lock); |
| req->rq_replied = 0; |
| spin_unlock(&req->rq_lock); |
| if (req->rq_status == 0) |
| req->rq_status = -EIO; |
| ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET); |
| goto interpret; |
| } |
| |
| /* |
| * ptlrpc_set_wait->l_wait_event sets lwi_allow_intr |
| * so it sets rq_intr regardless of individual rpc |
| * timeouts. The synchronous IO waiting path sets |
| * rq_intr irrespective of whether ptlrpcd |
| * has seen a timeout. Our policy is to only interpret |
| * interrupted rpcs after they have timed out, so we |
| * need to enforce that here. |
| */ |
| |
| if (req->rq_intr && (req->rq_timedout || req->rq_waiting || |
| req->rq_wait_ctx)) { |
| req->rq_status = -EINTR; |
| ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET); |
| goto interpret; |
| } |
| |
| if (req->rq_phase == RQ_PHASE_RPC) { |
| if (req->rq_timedout || req->rq_resend || |
| req->rq_waiting || req->rq_wait_ctx) { |
| int status; |
| |
| if (!ptlrpc_unregister_reply(req, 1)) { |
| ptlrpc_unregister_bulk(req, 1); |
| continue; |
| } |
| |
| spin_lock(&imp->imp_lock); |
| if (ptlrpc_import_delay_req(imp, req, |
| &status)) { |
| /* |
| * put on delay list - only if we wait |
| * recovery finished - before send |
| */ |
| list_del_init(&req->rq_list); |
| list_add_tail(&req->rq_list, |
| &imp->imp_delayed_list); |
| spin_unlock(&imp->imp_lock); |
| continue; |
| } |
| |
| if (status != 0) { |
| req->rq_status = status; |
| ptlrpc_rqphase_move(req, |
| RQ_PHASE_INTERPRET); |
| spin_unlock(&imp->imp_lock); |
| goto interpret; |
| } |
| if (ptlrpc_no_resend(req) && |
| !req->rq_wait_ctx) { |
| req->rq_status = -ENOTCONN; |
| ptlrpc_rqphase_move(req, |
| RQ_PHASE_INTERPRET); |
| spin_unlock(&imp->imp_lock); |
| goto interpret; |
| } |
| |
| list_del_init(&req->rq_list); |
| list_add_tail(&req->rq_list, |
| &imp->imp_sending_list); |
| |
| spin_unlock(&imp->imp_lock); |
| |
| spin_lock(&req->rq_lock); |
| req->rq_waiting = 0; |
| spin_unlock(&req->rq_lock); |
| |
| if (req->rq_timedout || req->rq_resend) { |
| /* This is re-sending anyway, let's mark req as resend. */ |
| spin_lock(&req->rq_lock); |
| req->rq_resend = 1; |
| spin_unlock(&req->rq_lock); |
| if (req->rq_bulk && |
| !ptlrpc_unregister_bulk(req, 1)) |
| continue; |
| } |
| /* |
| * rq_wait_ctx is only touched by ptlrpcd, |
| * so no lock is needed here. |
| */ |
| status = sptlrpc_req_refresh_ctx(req, -1); |
| if (status) { |
| if (req->rq_err) { |
| req->rq_status = status; |
| spin_lock(&req->rq_lock); |
| req->rq_wait_ctx = 0; |
| spin_unlock(&req->rq_lock); |
| force_timer_recalc = 1; |
| } else { |
| spin_lock(&req->rq_lock); |
| req->rq_wait_ctx = 1; |
| spin_unlock(&req->rq_lock); |
| } |
| |
| continue; |
| } else { |
| spin_lock(&req->rq_lock); |
| req->rq_wait_ctx = 0; |
| spin_unlock(&req->rq_lock); |
| } |
| |
| rc = ptl_send_rpc(req, 0); |
| if (rc == -ENOMEM) { |
| spin_lock(&imp->imp_lock); |
| if (!list_empty(&req->rq_list)) |
| list_del_init(&req->rq_list); |
| spin_unlock(&imp->imp_lock); |
| ptlrpc_rqphase_move(req, RQ_PHASE_NEW); |
| continue; |
| } |
| if (rc) { |
| DEBUG_REQ(D_HA, req, |
| "send failed: rc = %d", rc); |
| force_timer_recalc = 1; |
| spin_lock(&req->rq_lock); |
| req->rq_net_err = 1; |
| spin_unlock(&req->rq_lock); |
| continue; |
| } |
| /* need to reset the timeout */ |
| force_timer_recalc = 1; |
| } |
| |
| spin_lock(&req->rq_lock); |
| |
| if (ptlrpc_client_early(req)) { |
| ptlrpc_at_recv_early_reply(req); |
| spin_unlock(&req->rq_lock); |
| continue; |
| } |
| |
| /* Still waiting for a reply? */ |
| if (ptlrpc_client_recv(req)) { |
| spin_unlock(&req->rq_lock); |
| continue; |
| } |
| |
| /* Did we actually receive a reply? */ |
| if (!ptlrpc_client_replied(req)) { |
| spin_unlock(&req->rq_lock); |
| continue; |
| } |
| |
| spin_unlock(&req->rq_lock); |
| |
| /* |
| * unlink from net because we are going to |
| * swab in-place of reply buffer |
| */ |
| unregistered = ptlrpc_unregister_reply(req, 1); |
| if (!unregistered) |
| continue; |
| |
| req->rq_status = after_reply(req); |
| if (req->rq_resend) |
| continue; |
| |
| /* |
| * If there is no bulk associated with this request, |
| * then we're done and should let the interpreter |
| * process the reply. Similarly if the RPC returned |
| * an error, and therefore the bulk will never arrive. |
| */ |
| if (!req->rq_bulk || req->rq_status < 0) { |
| ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET); |
| goto interpret; |
| } |
| |
| ptlrpc_rqphase_move(req, RQ_PHASE_BULK); |
| } |
| |
| LASSERT(req->rq_phase == RQ_PHASE_BULK); |
| if (ptlrpc_client_bulk_active(req)) |
| continue; |
| |
| if (req->rq_bulk->bd_failure) { |
| /* |
| * The RPC reply arrived OK, but the bulk screwed |
| * up! Dead weird since the server told us the RPC |
| * was good after getting the REPLY for her GET or |
| * the ACK for her PUT. |
| */ |
| DEBUG_REQ(D_ERROR, req, "bulk transfer failed"); |
| req->rq_status = -EIO; |
| } |
| |
| ptlrpc_rqphase_move(req, RQ_PHASE_INTERPRET); |
| |
| interpret: |
| LASSERT(req->rq_phase == RQ_PHASE_INTERPRET); |
| |
| /* |
| * This moves to "unregistering" phase we need to wait for |
| * reply unlink. |
| */ |
| if (!unregistered && !ptlrpc_unregister_reply(req, 1)) { |
| /* start async bulk unlink too */ |
| ptlrpc_unregister_bulk(req, 1); |
| continue; |
| } |
| |
| if (!ptlrpc_unregister_bulk(req, 1)) |
| continue; |
| |
| /* When calling interpret receive should already be finished. */ |
| LASSERT(!req->rq_receiving_reply); |
| |
| ptlrpc_req_interpret(env, req, req->rq_status); |
| |
| if (ptlrpcd_check_work(req)) { |
| atomic_dec(&set->set_remaining); |
| continue; |
| } |
| ptlrpc_rqphase_move(req, RQ_PHASE_COMPLETE); |
| |
| CDEBUG(req->rq_reqmsg ? D_RPCTRACE : 0, |
| "Completed RPC pname:cluuid:pid:xid:nid:opc %s:%s:%d:%llu:%s:%d\n", |
| current_comm(), imp->imp_obd->obd_uuid.uuid, |
| lustre_msg_get_status(req->rq_reqmsg), req->rq_xid, |
| libcfs_nid2str(imp->imp_connection->c_peer.nid), |
| lustre_msg_get_opc(req->rq_reqmsg)); |
| |
| spin_lock(&imp->imp_lock); |
| /* |
| * Request already may be not on sending or delaying list. This |
| * may happen in the case of marking it erroneous for the case |
| * ptlrpc_import_delay_req(req, status) find it impossible to |
| * allow sending this rpc and returns *status != 0. |
| */ |
| if (!list_empty(&req->rq_list)) { |
| list_del_init(&req->rq_list); |
| atomic_dec(&imp->imp_inflight); |
| } |
| list_del_init(&req->rq_unreplied_list); |
| spin_unlock(&imp->imp_lock); |
| |
| atomic_dec(&set->set_remaining); |
| wake_up_all(&imp->imp_recovery_waitq); |
| |
| if (set->set_producer) { |
| /* produce a new request if possible */ |
| if (ptlrpc_set_producer(set) > 0) |
| force_timer_recalc = 1; |
| |
| /* |
| * free the request that has just been completed |
| * in order not to pollute set->set_requests |
| */ |
| list_del_init(&req->rq_set_chain); |
| spin_lock(&req->rq_lock); |
| req->rq_set = NULL; |
| req->rq_invalid_rqset = 0; |
| spin_unlock(&req->rq_lock); |
| |
| /* record rq_status to compute the final status later */ |
| if (req->rq_status != 0) |
| set->set_rc = req->rq_status; |
| ptlrpc_req_finished(req); |
| } else { |
| list_move_tail(&req->rq_set_chain, &comp_reqs); |
| } |
| } |
| |
| /* |
| * move completed request at the head of list so it's easier for |
| * caller to find them |
| */ |
| list_splice(&comp_reqs, &set->set_requests); |
| |
| /* If we hit an error, we want to recover promptly. */ |
| return atomic_read(&set->set_remaining) == 0 || force_timer_recalc; |
| } |
| EXPORT_SYMBOL(ptlrpc_check_set); |
| |
| /** |
| * Time out request \a req. is \a async_unlink is set, that means do not wait |
| * until LNet actually confirms network buffer unlinking. |
| * Return 1 if we should give up further retrying attempts or 0 otherwise. |
| */ |
| int ptlrpc_expire_one_request(struct ptlrpc_request *req, int async_unlink) |
| { |
| struct obd_import *imp = req->rq_import; |
| int rc = 0; |
| |
| spin_lock(&req->rq_lock); |
| req->rq_timedout = 1; |
| spin_unlock(&req->rq_lock); |
| |
| DEBUG_REQ(D_WARNING, req, "Request sent has %s: [sent %lld/real %lld]", |
| req->rq_net_err ? "failed due to network error" : |
| ((req->rq_real_sent == 0 || |
| req->rq_real_sent < req->rq_sent || |
| req->rq_real_sent >= req->rq_deadline) ? |
| "timed out for sent delay" : "timed out for slow reply"), |
| (s64)req->rq_sent, (s64)req->rq_real_sent); |
| |
| if (imp && obd_debug_peer_on_timeout) |
| LNetDebugPeer(imp->imp_connection->c_peer); |
| |
| ptlrpc_unregister_reply(req, async_unlink); |
| ptlrpc_unregister_bulk(req, async_unlink); |
| |
| if (obd_dump_on_timeout) |
| libcfs_debug_dumplog(); |
| |
| if (!imp) { |
| DEBUG_REQ(D_HA, req, "NULL import: already cleaned up?"); |
| return 1; |
| } |
| |
| atomic_inc(&imp->imp_timeouts); |
| |
| /* The DLM server doesn't want recovery run on its imports. */ |
| if (imp->imp_dlm_fake) |
| return 1; |
| |
| /* |
| * If this request is for recovery or other primordial tasks, |
| * then error it out here. |
| */ |
| if (req->rq_ctx_init || req->rq_ctx_fini || |
| req->rq_send_state != LUSTRE_IMP_FULL || |
| imp->imp_obd->obd_no_recov) { |
| DEBUG_REQ(D_RPCTRACE, req, "err -110, sent_state=%s (now=%s)", |
| ptlrpc_import_state_name(req->rq_send_state), |
| ptlrpc_import_state_name(imp->imp_state)); |
| spin_lock(&req->rq_lock); |
| req->rq_status = -ETIMEDOUT; |
| req->rq_err = 1; |
| spin_unlock(&req->rq_lock); |
| return 1; |
| } |
| |
| /* |
| * if a request can't be resent we can't wait for an answer after |
| * the timeout |
| */ |
| if (ptlrpc_no_resend(req)) { |
| DEBUG_REQ(D_RPCTRACE, req, "TIMEOUT-NORESEND:"); |
| rc = 1; |
| } |
| |
| ptlrpc_fail_import(imp, lustre_msg_get_conn_cnt(req->rq_reqmsg)); |
| |
| return rc; |
| } |
| |
| /** |
| * Time out all uncompleted requests in request set pointed by \a data |
| * Callback used when waiting on sets with l_wait_event. |
| * Always returns 1. |
| */ |
| int ptlrpc_expired_set(void *data) |
| { |
| struct ptlrpc_request_set *set = data; |
| struct list_head *tmp; |
| time64_t now = ktime_get_real_seconds(); |
| |
| /* A timeout expired. See which reqs it applies to... */ |
| list_for_each(tmp, &set->set_requests) { |
| struct ptlrpc_request *req = |
| list_entry(tmp, struct ptlrpc_request, rq_set_chain); |
| |
| /* don't expire request waiting for context */ |
| if (req->rq_wait_ctx) |
| continue; |
| |
| /* Request in-flight? */ |
| if (!((req->rq_phase == RQ_PHASE_RPC && |
| !req->rq_waiting && !req->rq_resend) || |
| (req->rq_phase == RQ_PHASE_BULK))) |
| continue; |
| |
| if (req->rq_timedout || /* already dealt with */ |
| req->rq_deadline > now) /* not expired */ |
| continue; |
| |
| /* |
| * Deal with this guy. Do it asynchronously to not block |
| * ptlrpcd thread. |
| */ |
| ptlrpc_expire_one_request(req, 1); |
| } |
| |
| /* |
| * When waiting for a whole set, we always break out of the |
| * sleep so we can recalculate the timeout, or enable interrupts |
| * if everyone's timed out. |
| */ |
| return 1; |
| } |
| |
| /** |
| * Sets rq_intr flag in \a req under spinlock. |
| */ |
| void ptlrpc_mark_interrupted(struct ptlrpc_request *req) |
| { |
| spin_lock(&req->rq_lock); |
| req->rq_intr = 1; |
| spin_unlock(&req->rq_lock); |
| } |
| EXPORT_SYMBOL(ptlrpc_mark_interrupted); |
| |
| /** |
| * Interrupts (sets interrupted flag) all uncompleted requests in |
| * a set \a data. Callback for l_wait_event for interruptible waits. |
| */ |
| static void ptlrpc_interrupted_set(void *data) |
| { |
| struct ptlrpc_request_set *set = data; |
| struct list_head *tmp; |
| |
| CDEBUG(D_RPCTRACE, "INTERRUPTED SET %p\n", set); |
| |
| list_for_each(tmp, &set->set_requests) { |
| struct ptlrpc_request *req = |
| list_entry(tmp, struct ptlrpc_request, rq_set_chain); |
| |
| if (req->rq_phase != RQ_PHASE_RPC && |
| req->rq_phase != RQ_PHASE_UNREG_RPC) |
| continue; |
| |
| ptlrpc_mark_interrupted(req); |
| } |
| } |
| |
| /** |
| * Get the smallest timeout in the set; this does NOT set a timeout. |
| */ |
| int ptlrpc_set_next_timeout(struct ptlrpc_request_set *set) |
| { |
| struct list_head *tmp; |
| time64_t now = ktime_get_real_seconds(); |
| int timeout = 0; |
| struct ptlrpc_request *req; |
| time64_t deadline; |
| |
| list_for_each(tmp, &set->set_requests) { |
| req = list_entry(tmp, struct ptlrpc_request, rq_set_chain); |
| |
| /* Request in-flight? */ |
| if (!(((req->rq_phase == RQ_PHASE_RPC) && !req->rq_waiting) || |
| (req->rq_phase == RQ_PHASE_BULK) || |
| (req->rq_phase == RQ_PHASE_NEW))) |
| continue; |
| |
| /* Already timed out. */ |
| if (req->rq_timedout) |
| continue; |
| |
| /* Waiting for ctx. */ |
| if (req->rq_wait_ctx) |
| continue; |
| |
| if (req->rq_phase == RQ_PHASE_NEW) |
| deadline = req->rq_sent; |
| else if (req->rq_phase == RQ_PHASE_RPC && req->rq_resend) |
| deadline = req->rq_sent; |
| else |
| deadline = req->rq_sent + req->rq_timeout; |
| |
| if (deadline <= now) /* actually expired already */ |
| timeout = 1; /* ASAP */ |
| else if (timeout == 0 || timeout > deadline - now) |
| timeout = deadline - now; |
| } |
| return timeout; |
| } |
| |
| /** |
| * Send all unset request from the set and then wait until all |
| * requests in the set complete (either get a reply, timeout, get an |
| * error or otherwise be interrupted). |
| * Returns 0 on success or error code otherwise. |
| */ |
| int ptlrpc_set_wait(struct ptlrpc_request_set *set) |
| { |
| struct list_head *tmp; |
| struct ptlrpc_request *req; |
| struct l_wait_info lwi; |
| int rc, timeout; |
| |
| if (set->set_producer) |
| (void)ptlrpc_set_producer(set); |
| else |
| list_for_each(tmp, &set->set_requests) { |
| req = list_entry(tmp, struct ptlrpc_request, |
| rq_set_chain); |
| if (req->rq_phase == RQ_PHASE_NEW) |
| (void)ptlrpc_send_new_req(req); |
| } |
| |
| if (list_empty(&set->set_requests)) |
| return 0; |
| |
| do { |
| timeout = ptlrpc_set_next_timeout(set); |
| |
| /* |
| * wait until all complete, interrupted, or an in-flight |
| * req times out |
| */ |
| CDEBUG(D_RPCTRACE, "set %p going to sleep for %d seconds\n", |
| set, timeout); |
| |
| if (timeout == 0 && !signal_pending(current)) |
| /* |
| * No requests are in-flight (ether timed out |
| * or delayed), so we can allow interrupts. |
| * We still want to block for a limited time, |
| * so we allow interrupts during the timeout. |
| */ |
| lwi = LWI_TIMEOUT_INTR_ALL(cfs_time_seconds(1), |
| ptlrpc_expired_set, |
| ptlrpc_interrupted_set, set); |
| else |
| /* |
| * At least one request is in flight, so no |
| * interrupts are allowed. Wait until all |
| * complete, or an in-flight req times out. |
| */ |
| lwi = LWI_TIMEOUT(cfs_time_seconds(timeout ? timeout : 1), |
| ptlrpc_expired_set, set); |
| |
| rc = l_wait_event(set->set_waitq, ptlrpc_check_set(NULL, set), &lwi); |
| |
| /* |
| * LU-769 - if we ignored the signal because it was already |
| * pending when we started, we need to handle it now or we risk |
| * it being ignored forever |
| */ |
| if (rc == -ETIMEDOUT && !lwi.lwi_allow_intr && |
| signal_pending(current)) { |
| sigset_t blocked_sigs = |
| cfs_block_sigsinv(LUSTRE_FATAL_SIGS); |
| |
| /* |
| * In fact we only interrupt for the "fatal" signals |
| * like SIGINT or SIGKILL. We still ignore less |
| * important signals since ptlrpc set is not easily |
| * reentrant from userspace again |
| */ |
| if (signal_pending(current)) |
| ptlrpc_interrupted_set(set); |
| cfs_restore_sigs(blocked_sigs); |
| } |
| |
| LASSERT(rc == 0 || rc == -EINTR || rc == -ETIMEDOUT); |
| |
| /* |
| * -EINTR => all requests have been flagged rq_intr so next |
| * check completes. |
| * -ETIMEDOUT => someone timed out. When all reqs have |
| * timed out, signals are enabled allowing completion with |
| * EINTR. |
| * I don't really care if we go once more round the loop in |
| * the error cases -eeb. |
| */ |
| if (rc == 0 && atomic_read(&set->set_remaining) == 0) { |
| list_for_each(tmp, &set->set_requests) { |
| req = list_entry(tmp, struct ptlrpc_request, |
| rq_set_chain); |
| spin_lock(&req->rq_lock); |
| req->rq_invalid_rqset = 1; |
| spin_unlock(&req->rq_lock); |
| } |
| } |
| } while (rc != 0 || atomic_read(&set->set_remaining) != 0); |
| |
| LASSERT(atomic_read(&set->set_remaining) == 0); |
| |
| rc = set->set_rc; /* rq_status of already freed requests if any */ |
| list_for_each(tmp, &set->set_requests) { |
| req = list_entry(tmp, struct ptlrpc_request, rq_set_chain); |
| |
| LASSERT(req->rq_phase == RQ_PHASE_COMPLETE); |
| if (req->rq_status != 0) |
| rc = req->rq_status; |
| } |
| |
| if (set->set_interpret) { |
| int (*interpreter)(struct ptlrpc_request_set *set, void *, int) = |
| set->set_interpret; |
| rc = interpreter(set, set->set_arg, rc); |
| } else { |
| struct ptlrpc_set_cbdata *cbdata, *n; |
| int err; |
| |
| list_for_each_entry_safe(cbdata, n, |
| &set->set_cblist, psc_item) { |
| list_del_init(&cbdata->psc_item); |
| err = cbdata->psc_interpret(set, cbdata->psc_data, rc); |
| if (err && !rc) |
| rc = err; |
| kfree(cbdata); |
| } |
| } |
| |
| return rc; |
| } |
| EXPORT_SYMBOL(ptlrpc_set_wait); |
| |
| /** |
| * Helper function for request freeing. |
| * Called when request count reached zero and request needs to be freed. |
| * Removes request from all sorts of sending/replay lists it might be on, |
| * frees network buffers if any are present. |
| * If \a locked is set, that means caller is already holding import imp_lock |
| * and so we no longer need to reobtain it (for certain lists manipulations) |
| */ |
| static void __ptlrpc_free_req(struct ptlrpc_request *request, int locked) |
| { |
| if (!request) |
| return; |
| LASSERT(!request->rq_srv_req); |
| LASSERT(!request->rq_export); |
| LASSERTF(!request->rq_receiving_reply, "req %p\n", request); |
| LASSERTF(list_empty(&request->rq_list), "req %p\n", request); |
| LASSERTF(list_empty(&request->rq_set_chain), "req %p\n", request); |
| LASSERTF(!request->rq_replay, "req %p\n", request); |
| |
| req_capsule_fini(&request->rq_pill); |
| |
| /* |
| * We must take it off the imp_replay_list first. Otherwise, we'll set |
| * request->rq_reqmsg to NULL while osc_close is dereferencing it. |
| */ |
| if (request->rq_import) { |
| if (!locked) |
| spin_lock(&request->rq_import->imp_lock); |
| list_del_init(&request->rq_replay_list); |
| list_del_init(&request->rq_unreplied_list); |
| if (!locked) |
| spin_unlock(&request->rq_import->imp_lock); |
| } |
| LASSERTF(list_empty(&request->rq_replay_list), "req %p\n", request); |
| |
| if (atomic_read(&request->rq_refcount) != 0) { |
| DEBUG_REQ(D_ERROR, request, |
| "freeing request with nonzero refcount"); |
| LBUG(); |
| } |
| |
| if (request->rq_repbuf) |
| sptlrpc_cli_free_repbuf(request); |
| |
| if (request->rq_import) { |
| class_import_put(request->rq_import); |
| request->rq_import = NULL; |
| } |
| if (request->rq_bulk) |
| ptlrpc_free_bulk(request->rq_bulk); |
| |
| if (request->rq_reqbuf || request->rq_clrbuf) |
| sptlrpc_cli_free_reqbuf(request); |
| |
| if (request->rq_cli_ctx) |
| sptlrpc_req_put_ctx(request, !locked); |
| |
| if (request->rq_pool) |
| __ptlrpc_free_req_to_pool(request); |
| else |
| ptlrpc_request_cache_free(request); |
| } |
| |
| /** |
| * Helper function |
| * Drops one reference count for request \a request. |
| * \a locked set indicates that caller holds import imp_lock. |
| * Frees the request when reference count reaches zero. |
| */ |
| static int __ptlrpc_req_finished(struct ptlrpc_request *request, int locked) |
| { |
| if (!request) |
| return 1; |
| |
| if (request == LP_POISON || |
| request->rq_reqmsg == LP_POISON) { |
| CERROR("dereferencing freed request (bug 575)\n"); |
| LBUG(); |
| return 1; |
| } |
| |
| DEBUG_REQ(D_INFO, request, "refcount now %u", |
| atomic_read(&request->rq_refcount) - 1); |
| |
| if (atomic_dec_and_test(&request->rq_refcount)) { |
| __ptlrpc_free_req(request, locked); |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Drops one reference count for a request. |
| */ |
| void ptlrpc_req_finished(struct ptlrpc_request *request) |
| { |
| __ptlrpc_req_finished(request, 0); |
| } |
| EXPORT_SYMBOL(ptlrpc_req_finished); |
| |
| /** |
| * Returns xid of a \a request |
| */ |
| __u64 ptlrpc_req_xid(struct ptlrpc_request *request) |
| { |
| return request->rq_xid; |
| } |
| EXPORT_SYMBOL(ptlrpc_req_xid); |
| |
| /** |
| * Disengage the client's reply buffer from the network |
| * NB does _NOT_ unregister any client-side bulk. |
| * IDEMPOTENT, but _not_ safe against concurrent callers. |
| * The request owner (i.e. the thread doing the I/O) must call... |
| * Returns 0 on success or 1 if unregistering cannot be made. |
| */ |
| static int ptlrpc_unregister_reply(struct ptlrpc_request *request, int async) |
| { |
| int rc; |
| wait_queue_head_t *wq; |
| struct l_wait_info lwi; |
| |
| /* Might sleep. */ |
| LASSERT(!in_interrupt()); |
| |
| /* Let's setup deadline for reply unlink. */ |
| if (OBD_FAIL_CHECK(OBD_FAIL_PTLRPC_LONG_REPL_UNLINK) && |
| async && request->rq_reply_deadline == 0 && cfs_fail_val == 0) |
| request->rq_reply_deadline = |
| ktime_get_real_seconds() + LONG_UNLINK; |
| |
| /* Nothing left to do. */ |
| if (!ptlrpc_client_recv_or_unlink(request)) |
| return 1; |
| |
| LNetMDUnlink(request->rq_reply_md_h); |
| |
| /* Let's check it once again. */ |
| if (!ptlrpc_client_recv_or_unlink(request)) |
| return 1; |
| |
| /* Move to "Unregistering" phase as reply was not unlinked yet. */ |
| ptlrpc_rqphase_move(request, RQ_PHASE_UNREG_RPC); |
| |
| /* Do not wait for unlink to finish. */ |
| if (async) |
| return 0; |
| |
| /* |
| * We have to l_wait_event() whatever the result, to give liblustre |
| * a chance to run reply_in_callback(), and to make sure we've |
| * unlinked before returning a req to the pool. |
| */ |
| if (request->rq_set) |
| wq = &request->rq_set->set_waitq; |
| else |
| wq = &request->rq_reply_waitq; |
| |
| for (;;) { |
| /* |
| * Network access will complete in finite time but the HUGE |
| * timeout lets us CWARN for visibility of sluggish NALs |
| */ |
| lwi = LWI_TIMEOUT_INTERVAL(cfs_time_seconds(LONG_UNLINK), |
| cfs_time_seconds(1), NULL, NULL); |
| rc = l_wait_event(*wq, !ptlrpc_client_recv_or_unlink(request), |
| &lwi); |
| if (rc == 0) { |
| ptlrpc_rqphase_move(request, request->rq_next_phase); |
| return 1; |
| } |
| |
| LASSERT(rc == -ETIMEDOUT); |
| DEBUG_REQ(D_WARNING, request, |
| "Unexpectedly long timeout receiving_reply=%d req_ulinked=%d reply_unlinked=%d", |
| request->rq_receiving_reply, |
| request->rq_req_unlinked, |
| request->rq_reply_unlinked); |
| } |
| return 0; |
| } |
| |
| static void ptlrpc_free_request(struct ptlrpc_request *req) |
| { |
| spin_lock(&req->rq_lock); |
| req->rq_replay = 0; |
| spin_unlock(&req->rq_lock); |
| |
| if (req->rq_commit_cb) |
| req->rq_commit_cb(req); |
| list_del_init(&req->rq_replay_list); |
| |
| __ptlrpc_req_finished(req, 1); |
| } |
| |
| /** |
| * the request is committed and dropped from the replay list of its import |
| */ |
| void ptlrpc_request_committed(struct ptlrpc_request *req, int force) |
| { |
| struct obd_import *imp = req->rq_import; |
| |
| spin_lock(&imp->imp_lock); |
| if (list_empty(&req->rq_replay_list)) { |
| spin_unlock(&imp->imp_lock); |
| return; |
| } |
| |
| if (force || req->rq_transno <= imp->imp_peer_committed_transno) |
| ptlrpc_free_request(req); |
| |
| spin_unlock(&imp->imp_lock); |
| } |
| EXPORT_SYMBOL(ptlrpc_request_committed); |
| |
| /** |
| * Iterates through replay_list on import and prunes |
| * all requests have transno smaller than last_committed for the |
| * import and don't have rq_replay set. |
| * Since requests are sorted in transno order, stops when meeting first |
| * transno bigger than last_committed. |
| * caller must hold imp->imp_lock |
| */ |
| void ptlrpc_free_committed(struct obd_import *imp) |
| { |
| struct ptlrpc_request *req, *saved; |
| struct ptlrpc_request *last_req = NULL; /* temporary fire escape */ |
| bool skip_committed_list = true; |
| |
| assert_spin_locked(&imp->imp_lock); |
| |
| if (imp->imp_peer_committed_transno == imp->imp_last_transno_checked && |
| imp->imp_generation == imp->imp_last_generation_checked) { |
| CDEBUG(D_INFO, "%s: skip recheck: last_committed %llu\n", |
| imp->imp_obd->obd_name, imp->imp_peer_committed_transno); |
| return; |
| } |
| CDEBUG(D_RPCTRACE, "%s: committing for last_committed %llu gen %d\n", |
| imp->imp_obd->obd_name, imp->imp_peer_committed_transno, |
| imp->imp_generation); |
| |
| if (imp->imp_generation != imp->imp_last_generation_checked || |
| !imp->imp_last_transno_checked) |
| skip_committed_list = false; |
| |
| imp->imp_last_transno_checked = imp->imp_peer_committed_transno; |
| imp->imp_last_generation_checked = imp->imp_generation; |
| |
| list_for_each_entry_safe(req, saved, &imp->imp_replay_list, |
| rq_replay_list) { |
| /* XXX ok to remove when 1357 resolved - rread 05/29/03 */ |
| LASSERT(req != last_req); |
| last_req = req; |
| |
| if (req->rq_transno == 0) { |
| DEBUG_REQ(D_EMERG, req, "zero transno during replay"); |
| LBUG(); |
| } |
| if (req->rq_import_generation < imp->imp_generation) { |
| DEBUG_REQ(D_RPCTRACE, req, "free request with old gen"); |
| goto free_req; |
| } |
| |
| /* not yet committed */ |
| if (req->rq_transno > imp->imp_peer_committed_transno) { |
| DEBUG_REQ(D_RPCTRACE, req, "stopping search"); |
| break; |
| } |
| |
| if (req->rq_replay) { |
| DEBUG_REQ(D_RPCTRACE, req, "keeping (FL_REPLAY)"); |
| list_move_tail(&req->rq_replay_list, |
| &imp->imp_committed_list); |
| continue; |
| } |
| |
| DEBUG_REQ(D_INFO, req, "commit (last_committed %llu)", |
| imp->imp_peer_committed_transno); |
| free_req: |
| ptlrpc_free_request(req); |
| } |
| if (skip_committed_list) |
| return; |
| |
| list_for_each_entry_safe(req, saved, &imp->imp_committed_list, |
| rq_replay_list) { |
| LASSERT(req->rq_transno != 0); |
| if (req->rq_import_generation < imp->imp_generation || |
| !req->rq_replay) { |
| DEBUG_REQ(D_RPCTRACE, req, "free %s open request", |
| req->rq_import_generation < |
| imp->imp_generation ? "stale" : "closed"); |
| |
| if (imp->imp_replay_cursor == &req->rq_replay_list) |
| imp->imp_replay_cursor = |
| req->rq_replay_list.next; |
| |
| ptlrpc_free_request(req); |
| } |
| } |
| } |
| |
| /** |
| * Schedule previously sent request for resend. |
| * For bulk requests we assign new xid (to avoid problems with |
| * lost replies and therefore several transfers landing into same buffer |
| * from different sending attempts). |
| */ |
| void ptlrpc_resend_req(struct ptlrpc_request *req) |
| { |
| DEBUG_REQ(D_HA, req, "going to resend"); |
| spin_lock(&req->rq_lock); |
| |
| /* |
| * Request got reply but linked to the import list still. |
| * Let ptlrpc_check_set() to process it. |
| */ |
| if (ptlrpc_client_replied(req)) { |
| spin_unlock(&req->rq_lock); |
| DEBUG_REQ(D_HA, req, "it has reply, so skip it"); |
| return; |
| } |
| |
| lustre_msg_set_handle(req->rq_reqmsg, &(struct lustre_handle){ 0 }); |
| req->rq_status = -EAGAIN; |
| |
| req->rq_resend = 1; |
| req->rq_net_err = 0; |
| req->rq_timedout = 0; |
| ptlrpc_client_wake_req(req); |
| spin_unlock(&req->rq_lock); |
| } |
| |
| /** |
| * Grab additional reference on a request \a req |
| */ |
| struct ptlrpc_request *ptlrpc_request_addref(struct ptlrpc_request *req) |
| { |
| atomic_inc(&req->rq_refcount); |
| return req; |
| } |
| EXPORT_SYMBOL(ptlrpc_request_addref); |
| |
| /** |
| * Add a request to import replay_list. |
| * Must be called under imp_lock |
| */ |
| void ptlrpc_retain_replayable_request(struct ptlrpc_request *req, |
| struct obd_import *imp) |
| { |
| struct list_head *tmp; |
| |
| assert_spin_locked(&imp->imp_lock); |
| |
| if (req->rq_transno == 0) { |
| DEBUG_REQ(D_EMERG, req, "saving request with zero transno"); |
| LBUG(); |
| } |
| |
| /* |
| * clear this for new requests that were resent as well |
| * as resent replayed requests. |
| */ |
| lustre_msg_clear_flags(req->rq_reqmsg, MSG_RESENT); |
| |
| /* don't re-add requests that have been replayed */ |
| if (!list_empty(&req->rq_replay_list)) |
| return; |
| |
| lustre_msg_add_flags(req->rq_reqmsg, MSG_REPLAY); |
| |
| spin_lock(&req->rq_lock); |
| req->rq_resend = 0; |
| spin_unlock(&req->rq_lock); |
| |
| LASSERT(imp->imp_replayable); |
| /* Balanced in ptlrpc_free_committed, usually. */ |
| ptlrpc_request_addref(req); |
| list_for_each_prev(tmp, &imp->imp_replay_list) { |
| struct ptlrpc_request *iter = |
| list_entry(tmp, struct ptlrpc_request, rq_replay_list); |
| |
| /* |
| * We may have duplicate transnos if we create and then |
| * open a file, or for closes retained if to match creating |
| * opens, so use req->rq_xid as a secondary key. |
| * (See bugs 684, 685, and 428.) |
| * XXX no longer needed, but all opens need transnos! |
| */ |
| if (iter->rq_transno > req->rq_transno) |
| continue; |
| |
| if (iter->rq_transno == req->rq_transno) { |
| LASSERT(iter->rq_xid != req->rq_xid); |
| if (iter->rq_xid > req->rq_xid) |
| continue; |
| } |
| |
| list_add(&req->rq_replay_list, &iter->rq_replay_list); |
| return; |
| } |
| |
| list_add(&req->rq_replay_list, &imp->imp_replay_list); |
| } |
| |
| /** |
| * Send request and wait until it completes. |
| * Returns request processing status. |
| */ |
| int ptlrpc_queue_wait(struct ptlrpc_request *req) |
| { |
| struct ptlrpc_request_set *set; |
| int rc; |
| |
| LASSERT(!req->rq_set); |
| LASSERT(!req->rq_receiving_reply); |
| |
| set = ptlrpc_prep_set(); |
| if (!set) { |
| CERROR("cannot allocate ptlrpc set: rc = %d\n", -ENOMEM); |
| return -ENOMEM; |
| } |
| |
| /* for distributed debugging */ |
| lustre_msg_set_status(req->rq_reqmsg, current_pid()); |
| |
| /* add a ref for the set (see comment in ptlrpc_set_add_req) */ |
| ptlrpc_request_addref(req); |
| ptlrpc_set_add_req(set, req); |
| rc = ptlrpc_set_wait(set); |
| ptlrpc_set_destroy(set); |
| |
| return rc; |
| } |
| EXPORT_SYMBOL(ptlrpc_queue_wait); |
| |
| /** |
| * Callback used for replayed requests reply processing. |
| * In case of successful reply calls registered request replay callback. |
| * In case of error restart replay process. |
| */ |
| static int ptlrpc_replay_interpret(const struct lu_env *env, |
| struct ptlrpc_request *req, |
| void *data, int rc) |
| { |
| struct ptlrpc_replay_async_args *aa = data; |
| struct obd_import *imp = req->rq_import; |
| |
| atomic_dec(&imp->imp_replay_inflight); |
| |
| /* |
| * Note: if it is bulk replay (MDS-MDS replay), then even if |
| * server got the request, but bulk transfer timeout, let's |
| * replay the bulk req again |
| */ |
| if (!ptlrpc_client_replied(req) || |
| (req->rq_bulk && |
| lustre_msg_get_status(req->rq_repmsg) == -ETIMEDOUT)) { |
| DEBUG_REQ(D_ERROR, req, "request replay timed out.\n"); |
| rc = -ETIMEDOUT; |
| goto out; |
| } |
| |
| if (lustre_msg_get_type(req->rq_repmsg) == PTL_RPC_MSG_ERR && |
| (lustre_msg_get_status(req->rq_repmsg) == -ENOTCONN || |
| lustre_msg_get_status(req->rq_repmsg) == -ENODEV)) { |
| rc = lustre_msg_get_status(req->rq_repmsg); |
| goto out; |
| } |
| |
| /** VBR: check version failure */ |
| if (lustre_msg_get_status(req->rq_repmsg) == -EOVERFLOW) { |
| /** replay was failed due to version mismatch */ |
| DEBUG_REQ(D_WARNING, req, "Version mismatch during replay\n"); |
| spin_lock(&imp->imp_lock); |
| imp->imp_vbr_failed = 1; |
| imp->imp_no_lock_replay = 1; |
| spin_unlock(&imp->imp_lock); |
| lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status); |
| } else { |
| /** The transno had better not change over replay. */ |
| LASSERTF(lustre_msg_get_transno(req->rq_reqmsg) == |
| lustre_msg_get_transno(req->rq_repmsg) || |
| lustre_msg_get_transno(req->rq_repmsg) == 0, |
| "%#llx/%#llx\n", |
| lustre_msg_get_transno(req->rq_reqmsg), |
| lustre_msg_get_transno(req->rq_repmsg)); |
| } |
| |
| spin_lock(&imp->imp_lock); |
| /** if replays by version then gap occur on server, no trust to locks */ |
| if (lustre_msg_get_flags(req->rq_repmsg) & MSG_VERSION_REPLAY) |
| imp->imp_no_lock_replay = 1; |
| imp->imp_last_replay_transno = lustre_msg_get_transno(req->rq_reqmsg); |
| spin_unlock(&imp->imp_lock); |
| LASSERT(imp->imp_last_replay_transno); |
| |
| /* transaction number shouldn't be bigger than the latest replayed */ |
| if (req->rq_transno > lustre_msg_get_transno(req->rq_reqmsg)) { |
| DEBUG_REQ(D_ERROR, req, |
| "Reported transno %llu is bigger than the replayed one: %llu", |
| req->rq_transno, |
| lustre_msg_get_transno(req->rq_reqmsg)); |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| DEBUG_REQ(D_HA, req, "got rep"); |
| |
| /* let the callback do fixups, possibly including in the request */ |
| if (req->rq_replay_cb) |
| req->rq_replay_cb(req); |
| |
| if (ptlrpc_client_replied(req) && |
| lustre_msg_get_status(req->rq_repmsg) != aa->praa_old_status) { |
| DEBUG_REQ(D_ERROR, req, "status %d, old was %d", |
| lustre_msg_get_status(req->rq_repmsg), |
| aa->praa_old_status); |
| } else { |
| /* Put it back for re-replay. */ |
| lustre_msg_set_status(req->rq_repmsg, aa->praa_old_status); |
| } |
| |
| /* |
| * Errors while replay can set transno to 0, but |
| * imp_last_replay_transno shouldn't be set to 0 anyway |
| */ |
| if (req->rq_transno == 0) |
| CERROR("Transno is 0 during replay!\n"); |
| |
| /* continue with recovery */ |
| rc = ptlrpc_import_recovery_state_machine(imp); |
| out: |
| req->rq_send_state = aa->praa_old_state; |
| |
| if (rc != 0) |
| /* this replay failed, so restart recovery */ |
| ptlrpc_connect_import(imp); |
| |
| return rc; |
| } |
| |
| /** |
| * Prepares and queues request for replay. |
| * Adds it to ptlrpcd queue for actual sending. |
| * Returns 0 on success. |
| */ |
| int ptlrpc_replay_req(struct ptlrpc_request *req) |
| { |
| struct ptlrpc_replay_async_args *aa; |
| |
| LASSERT(req->rq_import->imp_state == LUSTRE_IMP_REPLAY); |
| |
| LASSERT(sizeof(*aa) <= sizeof(req->rq_async_args)); |
| aa = ptlrpc_req_async_args(req); |
| memset(aa, 0, sizeof(*aa)); |
| |
| /* Prepare request to be resent with ptlrpcd */ |
| aa->praa_old_state = req->rq_send_state; |
| req->rq_send_state = LUSTRE_IMP_REPLAY; |
| req->rq_phase = RQ_PHASE_NEW; |
| req->rq_next_phase = RQ_PHASE_UNDEFINED; |
| if (req->rq_repmsg) |
| aa->praa_old_status = lustre_msg_get_status(req->rq_repmsg); |
| req->rq_status = 0; |
| req->rq_interpret_reply = ptlrpc_replay_interpret; |
| /* Readjust the timeout for current conditions */ |
| ptlrpc_at_set_req_timeout(req); |
| |
| /* |
| * Tell server the net_latency, so the server can calculate how long |
| * it should wait for next replay |
| */ |
| lustre_msg_set_service_time(req->rq_reqmsg, |
| ptlrpc_at_get_net_latency(req)); |
| DEBUG_REQ(D_HA, req, "REPLAY"); |
| |
| atomic_inc(&req->rq_import->imp_replay_inflight); |
| ptlrpc_request_addref(req); /* ptlrpcd needs a ref */ |
| |
| ptlrpcd_add_req(req); |
| return 0; |
| } |
| |
| /** |
| * Aborts all in-flight request on import \a imp sending and delayed lists |
| */ |
| void ptlrpc_abort_inflight(struct obd_import *imp) |
| { |
| struct list_head *tmp, *n; |
| |
| /* |
| * Make sure that no new requests get processed for this import. |
| * ptlrpc_{queue,set}_wait must (and does) hold imp_lock while testing |
| * this flag and then putting requests on sending_list or delayed_list. |
| */ |
| spin_lock(&imp->imp_lock); |
| |
| /* |
| * XXX locking? Maybe we should remove each request with the list |
| * locked? Also, how do we know if the requests on the list are |
| * being freed at this time? |
| */ |
| list_for_each_safe(tmp, n, &imp->imp_sending_list) { |
| struct ptlrpc_request *req = |
| list_entry(tmp, struct ptlrpc_request, rq_list); |
| |
| DEBUG_REQ(D_RPCTRACE, req, "inflight"); |
| |
| spin_lock(&req->rq_lock); |
| if (req->rq_import_generation < imp->imp_generation) { |
| req->rq_err = 1; |
| req->rq_status = -EIO; |
| ptlrpc_client_wake_req(req); |
| } |
| spin_unlock(&req->rq_lock); |
| } |
| |
| list_for_each_safe(tmp, n, &imp->imp_delayed_list) { |
| struct ptlrpc_request *req = |
| list_entry(tmp, struct ptlrpc_request, rq_list); |
| |
| DEBUG_REQ(D_RPCTRACE, req, "aborting waiting req"); |
| |
| spin_lock(&req->rq_lock); |
| if (req->rq_import_generation < imp->imp_generation) { |
| req->rq_err = 1; |
| req->rq_status = -EIO; |
| ptlrpc_client_wake_req(req); |
| } |
| spin_unlock(&req->rq_lock); |
| } |
| |
| /* |
| * Last chance to free reqs left on the replay list, but we |
| * will still leak reqs that haven't committed. |
| */ |
| if (imp->imp_replayable) |
| ptlrpc_free_committed(imp); |
| |
| spin_unlock(&imp->imp_lock); |
| } |
| |
| /** |
| * Abort all uncompleted requests in request set \a set |
| */ |
| void ptlrpc_abort_set(struct ptlrpc_request_set *set) |
| { |
| struct list_head *tmp, *pos; |
| |
| list_for_each_safe(pos, tmp, &set->set_requests) { |
| struct ptlrpc_request *req = |
| list_entry(pos, struct ptlrpc_request, rq_set_chain); |
| |
| spin_lock(&req->rq_lock); |
| if (req->rq_phase != RQ_PHASE_RPC) { |
| spin_unlock(&req->rq_lock); |
| continue; |
| } |
| |
| req->rq_err = 1; |
| req->rq_status = -EINTR; |
| ptlrpc_client_wake_req(req); |
| spin_unlock(&req->rq_lock); |
| } |
| } |
| |
| static __u64 ptlrpc_last_xid; |
| static spinlock_t ptlrpc_last_xid_lock; |
| |
| /** |
| * Initialize the XID for the node. This is common among all requests on |
| * this node, and only requires the property that it is monotonically |
| * increasing. It does not need to be sequential. Since this is also used |
| * as the RDMA match bits, it is important that a single client NOT have |
| * the same match bits for two different in-flight requests, hence we do |
| * NOT want to have an XID per target or similar. |
| * |
| * To avoid an unlikely collision between match bits after a client reboot |
| * (which would deliver old data into the wrong RDMA buffer) initialize |
| * the XID based on the current time, assuming a maximum RPC rate of 1M RPC/s. |
| * If the time is clearly incorrect, we instead use a 62-bit random number. |
| * In the worst case the random number will overflow 1M RPCs per second in |
| * 9133 years, or permutations thereof. |
| */ |
| #define YEAR_2004 (1ULL << 30) |
| void ptlrpc_init_xid(void) |
| { |
| time64_t now = ktime_get_real_seconds(); |
| |
| spin_lock_init(&ptlrpc_last_xid_lock); |
| if (now < YEAR_2004) { |
| cfs_get_random_bytes(&ptlrpc_last_xid, sizeof(ptlrpc_last_xid)); |
| ptlrpc_last_xid >>= 2; |
| ptlrpc_last_xid |= (1ULL << 61); |
| } else { |
| ptlrpc_last_xid = (__u64)now << 20; |
| } |
| |
| /* Always need to be aligned to a power-of-two for multi-bulk BRW */ |
| BUILD_BUG_ON(((PTLRPC_BULK_OPS_COUNT - 1) & PTLRPC_BULK_OPS_COUNT) != 0); |
| ptlrpc_last_xid &= PTLRPC_BULK_OPS_MASK; |
| } |
| |
| /** |
| * Increase xid and returns resulting new value to the caller. |
| * |
| * Multi-bulk BRW RPCs consume multiple XIDs for each bulk transfer, starting |
| * at the returned xid, up to xid + PTLRPC_BULK_OPS_COUNT - 1. The BRW RPC |
| * itself uses the last bulk xid needed, so the server can determine the |
| * the number of bulk transfers from the RPC XID and a bitmask. The starting |
| * xid must align to a power-of-two value. |
| * |
| * This is assumed to be true due to the initial ptlrpc_last_xid |
| * value also being initialized to a power-of-two value. LU-1431 |
| */ |
| __u64 ptlrpc_next_xid(void) |
| { |
| __u64 next; |
| |
| spin_lock(&ptlrpc_last_xid_lock); |
| next = ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT; |
| ptlrpc_last_xid = next; |
| spin_unlock(&ptlrpc_last_xid_lock); |
| |
| return next; |
| } |
| |
| /** |
| * If request has a new allocated XID (new request or EINPROGRESS resend), |
| * use this XID as matchbits of bulk, otherwise allocate a new matchbits for |
| * request to ensure previous bulk fails and avoid problems with lost replies |
| * and therefore several transfers landing into the same buffer from different |
| * sending attempts. |
| */ |
| void ptlrpc_set_bulk_mbits(struct ptlrpc_request *req) |
| { |
| struct ptlrpc_bulk_desc *bd = req->rq_bulk; |
| |
| LASSERT(bd); |
| |
| /* |
| * Generate new matchbits for all resend requests, including |
| * resend replay. |
| */ |
| if (req->rq_resend) { |
| u64 old_mbits = req->rq_mbits; |
| |
| /* |
| * First time resend on -EINPROGRESS will generate new xid, |
| * so we can actually use the rq_xid as rq_mbits in such case, |
| * however, it's bit hard to distinguish such resend with a |
| * 'resend for the -EINPROGRESS resend'. To make it simple, |
| * we opt to generate mbits for all resend cases. |
| */ |
| if ((bd->bd_import->imp_connect_data.ocd_connect_flags & |
| OBD_CONNECT_BULK_MBITS)) { |
| req->rq_mbits = ptlrpc_next_xid(); |
| } else { |
| /* old version transfers rq_xid to peer as matchbits */ |
| spin_lock(&req->rq_import->imp_lock); |
| list_del_init(&req->rq_unreplied_list); |
| ptlrpc_assign_next_xid_nolock(req); |
| spin_unlock(&req->rq_import->imp_lock); |
| req->rq_mbits = req->rq_xid; |
| } |
| |
| CDEBUG(D_HA, "resend bulk old x%llu new x%llu\n", |
| old_mbits, req->rq_mbits); |
| } else if (!(lustre_msg_get_flags(req->rq_reqmsg) & MSG_REPLAY)) { |
| /* Request being sent first time, use xid as matchbits. */ |
| req->rq_mbits = req->rq_xid; |
| } else { |
| /* |
| * Replay request, xid and matchbits have already been |
| * correctly assigned. |
| */ |
| return; |
| } |
| |
| /* |
| * For multi-bulk RPCs, rq_mbits is the last mbits needed for bulks so |
| * that server can infer the number of bulks that were prepared, |
| * see LU-1431 |
| */ |
| req->rq_mbits += DIV_ROUND_UP(bd->bd_iov_count, LNET_MAX_IOV) - 1; |
| } |
| |
| /** |
| * Get a glimpse at what next xid value might have been. |
| * Returns possible next xid. |
| */ |
| __u64 ptlrpc_sample_next_xid(void) |
| { |
| #if BITS_PER_LONG == 32 |
| /* need to avoid possible word tearing on 32-bit systems */ |
| __u64 next; |
| |
| spin_lock(&ptlrpc_last_xid_lock); |
| next = ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT; |
| spin_unlock(&ptlrpc_last_xid_lock); |
| |
| return next; |
| #else |
| /* No need to lock, since returned value is racy anyways */ |
| return ptlrpc_last_xid + PTLRPC_BULK_OPS_COUNT; |
| #endif |
| } |
| EXPORT_SYMBOL(ptlrpc_sample_next_xid); |
| |
| /** |
| * Functions for operating ptlrpc workers. |
| * |
| * A ptlrpc work is a function which will be running inside ptlrpc context. |
| * The callback shouldn't sleep otherwise it will block that ptlrpcd thread. |
| * |
| * 1. after a work is created, it can be used many times, that is: |
| * handler = ptlrpcd_alloc_work(); |
| * ptlrpcd_queue_work(); |
| * |
| * queue it again when necessary: |
| * ptlrpcd_queue_work(); |
| * ptlrpcd_destroy_work(); |
| * 2. ptlrpcd_queue_work() can be called by multiple processes meanwhile, but |
| * it will only be queued once in any time. Also as its name implies, it may |
| * have delay before it really runs by ptlrpcd thread. |
| */ |
| struct ptlrpc_work_async_args { |
| int (*cb)(const struct lu_env *, void *); |
| void *cbdata; |
| }; |
| |
| static void ptlrpcd_add_work_req(struct ptlrpc_request *req) |
| { |
| /* re-initialize the req */ |
|