blob: 48a8aad47a74d00879cac9b328b18e33b175b3be [file] [log] [blame]
/*
* drxk_hard: DRX-K DVB-C/T demodulator driver
*
* Copyright (C) 2010-2011 Digital Devices GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* version 2 only, as published by the Free Software Foundation.
*
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* To obtain the license, point your browser to
* http://www.gnu.org/copyleft/gpl.html
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/i2c.h>
#include <linux/hardirq.h>
#include <asm/div64.h>
#include "dvb_frontend.h"
#include "drxk.h"
#include "drxk_hard.h"
#include "dvb_math.h"
static int power_down_dvbt(struct drxk_state *state, bool set_power_mode);
static int power_down_qam(struct drxk_state *state);
static int set_dvbt_standard(struct drxk_state *state,
enum operation_mode o_mode);
static int set_qam_standard(struct drxk_state *state,
enum operation_mode o_mode);
static int set_qam(struct drxk_state *state, u16 intermediate_freqk_hz,
s32 tuner_freq_offset);
static int set_dvbt_standard(struct drxk_state *state,
enum operation_mode o_mode);
static int dvbt_start(struct drxk_state *state);
static int set_dvbt(struct drxk_state *state, u16 intermediate_freqk_hz,
s32 tuner_freq_offset);
static int get_qam_lock_status(struct drxk_state *state, u32 *p_lock_status);
static int get_dvbt_lock_status(struct drxk_state *state, u32 *p_lock_status);
static int switch_antenna_to_qam(struct drxk_state *state);
static int switch_antenna_to_dvbt(struct drxk_state *state);
static bool is_dvbt(struct drxk_state *state)
{
return state->m_operation_mode == OM_DVBT;
}
static bool is_qam(struct drxk_state *state)
{
return state->m_operation_mode == OM_QAM_ITU_A ||
state->m_operation_mode == OM_QAM_ITU_B ||
state->m_operation_mode == OM_QAM_ITU_C;
}
#define NOA1ROM 0
#define DRXDAP_FASI_SHORT_FORMAT(addr) (((addr) & 0xFC30FF80) == 0)
#define DRXDAP_FASI_LONG_FORMAT(addr) (((addr) & 0xFC30FF80) != 0)
#define DEFAULT_MER_83 165
#define DEFAULT_MER_93 250
#ifndef DRXK_MPEG_SERIAL_OUTPUT_PIN_DRIVE_STRENGTH
#define DRXK_MPEG_SERIAL_OUTPUT_PIN_DRIVE_STRENGTH (0x02)
#endif
#ifndef DRXK_MPEG_PARALLEL_OUTPUT_PIN_DRIVE_STRENGTH
#define DRXK_MPEG_PARALLEL_OUTPUT_PIN_DRIVE_STRENGTH (0x03)
#endif
#define DEFAULT_DRXK_MPEG_LOCK_TIMEOUT 700
#define DEFAULT_DRXK_DEMOD_LOCK_TIMEOUT 500
#ifndef DRXK_KI_RAGC_ATV
#define DRXK_KI_RAGC_ATV 4
#endif
#ifndef DRXK_KI_IAGC_ATV
#define DRXK_KI_IAGC_ATV 6
#endif
#ifndef DRXK_KI_DAGC_ATV
#define DRXK_KI_DAGC_ATV 7
#endif
#ifndef DRXK_KI_RAGC_QAM
#define DRXK_KI_RAGC_QAM 3
#endif
#ifndef DRXK_KI_IAGC_QAM
#define DRXK_KI_IAGC_QAM 4
#endif
#ifndef DRXK_KI_DAGC_QAM
#define DRXK_KI_DAGC_QAM 7
#endif
#ifndef DRXK_KI_RAGC_DVBT
#define DRXK_KI_RAGC_DVBT (IsA1WithPatchCode(state) ? 3 : 2)
#endif
#ifndef DRXK_KI_IAGC_DVBT
#define DRXK_KI_IAGC_DVBT (IsA1WithPatchCode(state) ? 4 : 2)
#endif
#ifndef DRXK_KI_DAGC_DVBT
#define DRXK_KI_DAGC_DVBT (IsA1WithPatchCode(state) ? 10 : 7)
#endif
#ifndef DRXK_AGC_DAC_OFFSET
#define DRXK_AGC_DAC_OFFSET (0x800)
#endif
#ifndef DRXK_BANDWIDTH_8MHZ_IN_HZ
#define DRXK_BANDWIDTH_8MHZ_IN_HZ (0x8B8249L)
#endif
#ifndef DRXK_BANDWIDTH_7MHZ_IN_HZ
#define DRXK_BANDWIDTH_7MHZ_IN_HZ (0x7A1200L)
#endif
#ifndef DRXK_BANDWIDTH_6MHZ_IN_HZ
#define DRXK_BANDWIDTH_6MHZ_IN_HZ (0x68A1B6L)
#endif
#ifndef DRXK_QAM_SYMBOLRATE_MAX
#define DRXK_QAM_SYMBOLRATE_MAX (7233000)
#endif
#define DRXK_BL_ROM_OFFSET_TAPS_DVBT 56
#define DRXK_BL_ROM_OFFSET_TAPS_ITU_A 64
#define DRXK_BL_ROM_OFFSET_TAPS_ITU_C 0x5FE0
#define DRXK_BL_ROM_OFFSET_TAPS_BG 24
#define DRXK_BL_ROM_OFFSET_TAPS_DKILLP 32
#define DRXK_BL_ROM_OFFSET_TAPS_NTSC 40
#define DRXK_BL_ROM_OFFSET_TAPS_FM 48
#define DRXK_BL_ROM_OFFSET_UCODE 0
#define DRXK_BLC_TIMEOUT 100
#define DRXK_BLCC_NR_ELEMENTS_TAPS 2
#define DRXK_BLCC_NR_ELEMENTS_UCODE 6
#define DRXK_BLDC_NR_ELEMENTS_TAPS 28
#ifndef DRXK_OFDM_NE_NOTCH_WIDTH
#define DRXK_OFDM_NE_NOTCH_WIDTH (4)
#endif
#define DRXK_QAM_SL_SIG_POWER_QAM16 (40960)
#define DRXK_QAM_SL_SIG_POWER_QAM32 (20480)
#define DRXK_QAM_SL_SIG_POWER_QAM64 (43008)
#define DRXK_QAM_SL_SIG_POWER_QAM128 (20992)
#define DRXK_QAM_SL_SIG_POWER_QAM256 (43520)
static unsigned int debug;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "enable debug messages");
#define dprintk(level, fmt, arg...) do { \
if (debug >= level) \
printk(KERN_DEBUG KBUILD_MODNAME ": %s " fmt, __func__, ##arg); \
} while (0)
static inline u32 MulDiv32(u32 a, u32 b, u32 c)
{
u64 tmp64;
tmp64 = (u64) a * (u64) b;
do_div(tmp64, c);
return (u32) tmp64;
}
static inline u32 Frac28a(u32 a, u32 c)
{
int i = 0;
u32 Q1 = 0;
u32 R0 = 0;
R0 = (a % c) << 4; /* 32-28 == 4 shifts possible at max */
Q1 = a / c; /*
* integer part, only the 4 least significant
* bits will be visible in the result
*/
/* division using radix 16, 7 nibbles in the result */
for (i = 0; i < 7; i++) {
Q1 = (Q1 << 4) | (R0 / c);
R0 = (R0 % c) << 4;
}
/* rounding */
if ((R0 >> 3) >= c)
Q1++;
return Q1;
}
static inline u32 log10times100(u32 value)
{
return (100L * intlog10(value)) >> 24;
}
/****************************************************************************/
/* I2C **********************************************************************/
/****************************************************************************/
static int drxk_i2c_lock(struct drxk_state *state)
{
i2c_lock_adapter(state->i2c);
state->drxk_i2c_exclusive_lock = true;
return 0;
}
static void drxk_i2c_unlock(struct drxk_state *state)
{
if (!state->drxk_i2c_exclusive_lock)
return;
i2c_unlock_adapter(state->i2c);
state->drxk_i2c_exclusive_lock = false;
}
static int drxk_i2c_transfer(struct drxk_state *state, struct i2c_msg *msgs,
unsigned len)
{
if (state->drxk_i2c_exclusive_lock)
return __i2c_transfer(state->i2c, msgs, len);
else
return i2c_transfer(state->i2c, msgs, len);
}
static int i2c_read1(struct drxk_state *state, u8 adr, u8 *val)
{
struct i2c_msg msgs[1] = { {.addr = adr, .flags = I2C_M_RD,
.buf = val, .len = 1}
};
return drxk_i2c_transfer(state, msgs, 1);
}
static int i2c_write(struct drxk_state *state, u8 adr, u8 *data, int len)
{
int status;
struct i2c_msg msg = {
.addr = adr, .flags = 0, .buf = data, .len = len };
dprintk(3, ":");
if (debug > 2) {
int i;
for (i = 0; i < len; i++)
pr_cont(" %02x", data[i]);
pr_cont("\n");
}
status = drxk_i2c_transfer(state, &msg, 1);
if (status >= 0 && status != 1)
status = -EIO;
if (status < 0)
pr_err("i2c write error at addr 0x%02x\n", adr);
return status;
}
static int i2c_read(struct drxk_state *state,
u8 adr, u8 *msg, int len, u8 *answ, int alen)
{
int status;
struct i2c_msg msgs[2] = {
{.addr = adr, .flags = 0,
.buf = msg, .len = len},
{.addr = adr, .flags = I2C_M_RD,
.buf = answ, .len = alen}
};
status = drxk_i2c_transfer(state, msgs, 2);
if (status != 2) {
if (debug > 2)
pr_cont(": ERROR!\n");
if (status >= 0)
status = -EIO;
pr_err("i2c read error at addr 0x%02x\n", adr);
return status;
}
if (debug > 2) {
int i;
dprintk(2, ": read from");
for (i = 0; i < len; i++)
pr_cont(" %02x", msg[i]);
pr_cont(", value = ");
for (i = 0; i < alen; i++)
pr_cont(" %02x", answ[i]);
pr_cont("\n");
}
return 0;
}
static int read16_flags(struct drxk_state *state, u32 reg, u16 *data, u8 flags)
{
int status;
u8 adr = state->demod_address, mm1[4], mm2[2], len;
if (state->single_master)
flags |= 0xC0;
if (DRXDAP_FASI_LONG_FORMAT(reg) || (flags != 0)) {
mm1[0] = (((reg << 1) & 0xFF) | 0x01);
mm1[1] = ((reg >> 16) & 0xFF);
mm1[2] = ((reg >> 24) & 0xFF) | flags;
mm1[3] = ((reg >> 7) & 0xFF);
len = 4;
} else {
mm1[0] = ((reg << 1) & 0xFF);
mm1[1] = (((reg >> 16) & 0x0F) | ((reg >> 18) & 0xF0));
len = 2;
}
dprintk(2, "(0x%08x, 0x%02x)\n", reg, flags);
status = i2c_read(state, adr, mm1, len, mm2, 2);
if (status < 0)
return status;
if (data)
*data = mm2[0] | (mm2[1] << 8);
return 0;
}
static int read16(struct drxk_state *state, u32 reg, u16 *data)
{
return read16_flags(state, reg, data, 0);
}
static int read32_flags(struct drxk_state *state, u32 reg, u32 *data, u8 flags)
{
int status;
u8 adr = state->demod_address, mm1[4], mm2[4], len;
if (state->single_master)
flags |= 0xC0;
if (DRXDAP_FASI_LONG_FORMAT(reg) || (flags != 0)) {
mm1[0] = (((reg << 1) & 0xFF) | 0x01);
mm1[1] = ((reg >> 16) & 0xFF);
mm1[2] = ((reg >> 24) & 0xFF) | flags;
mm1[3] = ((reg >> 7) & 0xFF);
len = 4;
} else {
mm1[0] = ((reg << 1) & 0xFF);
mm1[1] = (((reg >> 16) & 0x0F) | ((reg >> 18) & 0xF0));
len = 2;
}
dprintk(2, "(0x%08x, 0x%02x)\n", reg, flags);
status = i2c_read(state, adr, mm1, len, mm2, 4);
if (status < 0)
return status;
if (data)
*data = mm2[0] | (mm2[1] << 8) |
(mm2[2] << 16) | (mm2[3] << 24);
return 0;
}
static int read32(struct drxk_state *state, u32 reg, u32 *data)
{
return read32_flags(state, reg, data, 0);
}
static int write16_flags(struct drxk_state *state, u32 reg, u16 data, u8 flags)
{
u8 adr = state->demod_address, mm[6], len;
if (state->single_master)
flags |= 0xC0;
if (DRXDAP_FASI_LONG_FORMAT(reg) || (flags != 0)) {
mm[0] = (((reg << 1) & 0xFF) | 0x01);
mm[1] = ((reg >> 16) & 0xFF);
mm[2] = ((reg >> 24) & 0xFF) | flags;
mm[3] = ((reg >> 7) & 0xFF);
len = 4;
} else {
mm[0] = ((reg << 1) & 0xFF);
mm[1] = (((reg >> 16) & 0x0F) | ((reg >> 18) & 0xF0));
len = 2;
}
mm[len] = data & 0xff;
mm[len + 1] = (data >> 8) & 0xff;
dprintk(2, "(0x%08x, 0x%04x, 0x%02x)\n", reg, data, flags);
return i2c_write(state, adr, mm, len + 2);
}
static int write16(struct drxk_state *state, u32 reg, u16 data)
{
return write16_flags(state, reg, data, 0);
}
static int write32_flags(struct drxk_state *state, u32 reg, u32 data, u8 flags)
{
u8 adr = state->demod_address, mm[8], len;
if (state->single_master)
flags |= 0xC0;
if (DRXDAP_FASI_LONG_FORMAT(reg) || (flags != 0)) {
mm[0] = (((reg << 1) & 0xFF) | 0x01);
mm[1] = ((reg >> 16) & 0xFF);
mm[2] = ((reg >> 24) & 0xFF) | flags;
mm[3] = ((reg >> 7) & 0xFF);
len = 4;
} else {
mm[0] = ((reg << 1) & 0xFF);
mm[1] = (((reg >> 16) & 0x0F) | ((reg >> 18) & 0xF0));
len = 2;
}
mm[len] = data & 0xff;
mm[len + 1] = (data >> 8) & 0xff;
mm[len + 2] = (data >> 16) & 0xff;
mm[len + 3] = (data >> 24) & 0xff;
dprintk(2, "(0x%08x, 0x%08x, 0x%02x)\n", reg, data, flags);
return i2c_write(state, adr, mm, len + 4);
}
static int write32(struct drxk_state *state, u32 reg, u32 data)
{
return write32_flags(state, reg, data, 0);
}
static int write_block(struct drxk_state *state, u32 address,
const int block_size, const u8 p_block[])
{
int status = 0, blk_size = block_size;
u8 flags = 0;
if (state->single_master)
flags |= 0xC0;
while (blk_size > 0) {
int chunk = blk_size > state->m_chunk_size ?
state->m_chunk_size : blk_size;
u8 *adr_buf = &state->chunk[0];
u32 adr_length = 0;
if (DRXDAP_FASI_LONG_FORMAT(address) || (flags != 0)) {
adr_buf[0] = (((address << 1) & 0xFF) | 0x01);
adr_buf[1] = ((address >> 16) & 0xFF);
adr_buf[2] = ((address >> 24) & 0xFF);
adr_buf[3] = ((address >> 7) & 0xFF);
adr_buf[2] |= flags;
adr_length = 4;
if (chunk == state->m_chunk_size)
chunk -= 2;
} else {
adr_buf[0] = ((address << 1) & 0xFF);
adr_buf[1] = (((address >> 16) & 0x0F) |
((address >> 18) & 0xF0));
adr_length = 2;
}
memcpy(&state->chunk[adr_length], p_block, chunk);
dprintk(2, "(0x%08x, 0x%02x)\n", address, flags);
if (debug > 1) {
int i;
if (p_block)
for (i = 0; i < chunk; i++)
pr_cont(" %02x", p_block[i]);
pr_cont("\n");
}
status = i2c_write(state, state->demod_address,
&state->chunk[0], chunk + adr_length);
if (status < 0) {
pr_err("%s: i2c write error at addr 0x%02x\n",
__func__, address);
break;
}
p_block += chunk;
address += (chunk >> 1);
blk_size -= chunk;
}
return status;
}
#ifndef DRXK_MAX_RETRIES_POWERUP
#define DRXK_MAX_RETRIES_POWERUP 20
#endif
static int power_up_device(struct drxk_state *state)
{
int status;
u8 data = 0;
u16 retry_count = 0;
dprintk(1, "\n");
status = i2c_read1(state, state->demod_address, &data);
if (status < 0) {
do {
data = 0;
status = i2c_write(state, state->demod_address,
&data, 1);
usleep_range(10000, 11000);
retry_count++;
if (status < 0)
continue;
status = i2c_read1(state, state->demod_address,
&data);
} while (status < 0 &&
(retry_count < DRXK_MAX_RETRIES_POWERUP));
if (status < 0 && retry_count >= DRXK_MAX_RETRIES_POWERUP)
goto error;
}
/* Make sure all clk domains are active */
status = write16(state, SIO_CC_PWD_MODE__A, SIO_CC_PWD_MODE_LEVEL_NONE);
if (status < 0)
goto error;
status = write16(state, SIO_CC_UPDATE__A, SIO_CC_UPDATE_KEY);
if (status < 0)
goto error;
/* Enable pll lock tests */
status = write16(state, SIO_CC_PLL_LOCK__A, 1);
if (status < 0)
goto error;
state->m_current_power_mode = DRX_POWER_UP;
error:
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
return status;
}
static int init_state(struct drxk_state *state)
{
/*
* FIXME: most (all?) of the values below should be moved into
* struct drxk_config, as they are probably board-specific
*/
u32 ul_vsb_if_agc_mode = DRXK_AGC_CTRL_AUTO;
u32 ul_vsb_if_agc_output_level = 0;
u32 ul_vsb_if_agc_min_level = 0;
u32 ul_vsb_if_agc_max_level = 0x7FFF;
u32 ul_vsb_if_agc_speed = 3;
u32 ul_vsb_rf_agc_mode = DRXK_AGC_CTRL_AUTO;
u32 ul_vsb_rf_agc_output_level = 0;
u32 ul_vsb_rf_agc_min_level = 0;
u32 ul_vsb_rf_agc_max_level = 0x7FFF;
u32 ul_vsb_rf_agc_speed = 3;
u32 ul_vsb_rf_agc_top = 9500;
u32 ul_vsb_rf_agc_cut_off_current = 4000;
u32 ul_atv_if_agc_mode = DRXK_AGC_CTRL_AUTO;
u32 ul_atv_if_agc_output_level = 0;
u32 ul_atv_if_agc_min_level = 0;
u32 ul_atv_if_agc_max_level = 0;
u32 ul_atv_if_agc_speed = 3;
u32 ul_atv_rf_agc_mode = DRXK_AGC_CTRL_OFF;
u32 ul_atv_rf_agc_output_level = 0;
u32 ul_atv_rf_agc_min_level = 0;
u32 ul_atv_rf_agc_max_level = 0;
u32 ul_atv_rf_agc_top = 9500;
u32 ul_atv_rf_agc_cut_off_current = 4000;
u32 ul_atv_rf_agc_speed = 3;
u32 ulQual83 = DEFAULT_MER_83;
u32 ulQual93 = DEFAULT_MER_93;
u32 ul_mpeg_lock_time_out = DEFAULT_DRXK_MPEG_LOCK_TIMEOUT;
u32 ul_demod_lock_time_out = DEFAULT_DRXK_DEMOD_LOCK_TIMEOUT;
/* io_pad_cfg register (8 bit reg.) MSB bit is 1 (default value) */
/* io_pad_cfg_mode output mode is drive always */
/* io_pad_cfg_drive is set to power 2 (23 mA) */
u32 ul_gpio_cfg = 0x0113;
u32 ul_invert_ts_clock = 0;
u32 ul_ts_data_strength = DRXK_MPEG_SERIAL_OUTPUT_PIN_DRIVE_STRENGTH;
u32 ul_dvbt_bitrate = 50000000;
u32 ul_dvbc_bitrate = DRXK_QAM_SYMBOLRATE_MAX * 8;
u32 ul_insert_rs_byte = 0;
u32 ul_rf_mirror = 1;
u32 ul_power_down = 0;
dprintk(1, "\n");
state->m_has_lna = false;
state->m_has_dvbt = false;
state->m_has_dvbc = false;
state->m_has_atv = false;
state->m_has_oob = false;
state->m_has_audio = false;
if (!state->m_chunk_size)
state->m_chunk_size = 124;
state->m_osc_clock_freq = 0;
state->m_smart_ant_inverted = false;
state->m_b_p_down_open_bridge = false;
/* real system clock frequency in kHz */
state->m_sys_clock_freq = 151875;
/* Timing div, 250ns/Psys */
/* Timing div, = (delay (nano seconds) * sysclk (kHz))/ 1000 */
state->m_hi_cfg_timing_div = ((state->m_sys_clock_freq / 1000) *
HI_I2C_DELAY) / 1000;
/* Clipping */
if (state->m_hi_cfg_timing_div > SIO_HI_RA_RAM_PAR_2_CFG_DIV__M)
state->m_hi_cfg_timing_div = SIO_HI_RA_RAM_PAR_2_CFG_DIV__M;
state->m_hi_cfg_wake_up_key = (state->demod_address << 1);
/* port/bridge/power down ctrl */
state->m_hi_cfg_ctrl = SIO_HI_RA_RAM_PAR_5_CFG_SLV0_SLAVE;
state->m_b_power_down = (ul_power_down != 0);
state->m_drxk_a3_patch_code = false;
/* Init AGC and PGA parameters */
/* VSB IF */
state->m_vsb_if_agc_cfg.ctrl_mode = ul_vsb_if_agc_mode;
state->m_vsb_if_agc_cfg.output_level = ul_vsb_if_agc_output_level;
state->m_vsb_if_agc_cfg.min_output_level = ul_vsb_if_agc_min_level;
state->m_vsb_if_agc_cfg.max_output_level = ul_vsb_if_agc_max_level;
state->m_vsb_if_agc_cfg.speed = ul_vsb_if_agc_speed;
state->m_vsb_pga_cfg = 140;
/* VSB RF */
state->m_vsb_rf_agc_cfg.ctrl_mode = ul_vsb_rf_agc_mode;
state->m_vsb_rf_agc_cfg.output_level = ul_vsb_rf_agc_output_level;
state->m_vsb_rf_agc_cfg.min_output_level = ul_vsb_rf_agc_min_level;
state->m_vsb_rf_agc_cfg.max_output_level = ul_vsb_rf_agc_max_level;
state->m_vsb_rf_agc_cfg.speed = ul_vsb_rf_agc_speed;
state->m_vsb_rf_agc_cfg.top = ul_vsb_rf_agc_top;
state->m_vsb_rf_agc_cfg.cut_off_current = ul_vsb_rf_agc_cut_off_current;
state->m_vsb_pre_saw_cfg.reference = 0x07;
state->m_vsb_pre_saw_cfg.use_pre_saw = true;
state->m_Quality83percent = DEFAULT_MER_83;
state->m_Quality93percent = DEFAULT_MER_93;
if (ulQual93 <= 500 && ulQual83 < ulQual93) {
state->m_Quality83percent = ulQual83;
state->m_Quality93percent = ulQual93;
}
/* ATV IF */
state->m_atv_if_agc_cfg.ctrl_mode = ul_atv_if_agc_mode;
state->m_atv_if_agc_cfg.output_level = ul_atv_if_agc_output_level;
state->m_atv_if_agc_cfg.min_output_level = ul_atv_if_agc_min_level;
state->m_atv_if_agc_cfg.max_output_level = ul_atv_if_agc_max_level;
state->m_atv_if_agc_cfg.speed = ul_atv_if_agc_speed;
/* ATV RF */
state->m_atv_rf_agc_cfg.ctrl_mode = ul_atv_rf_agc_mode;
state->m_atv_rf_agc_cfg.output_level = ul_atv_rf_agc_output_level;
state->m_atv_rf_agc_cfg.min_output_level = ul_atv_rf_agc_min_level;
state->m_atv_rf_agc_cfg.max_output_level = ul_atv_rf_agc_max_level;
state->m_atv_rf_agc_cfg.speed = ul_atv_rf_agc_speed;
state->m_atv_rf_agc_cfg.top = ul_atv_rf_agc_top;
state->m_atv_rf_agc_cfg.cut_off_current = ul_atv_rf_agc_cut_off_current;
state->m_atv_pre_saw_cfg.reference = 0x04;
state->m_atv_pre_saw_cfg.use_pre_saw = true;
/* DVBT RF */
state->m_dvbt_rf_agc_cfg.ctrl_mode = DRXK_AGC_CTRL_OFF;
state->m_dvbt_rf_agc_cfg.output_level = 0;
state->m_dvbt_rf_agc_cfg.min_output_level = 0;
state->m_dvbt_rf_agc_cfg.max_output_level = 0xFFFF;
state->m_dvbt_rf_agc_cfg.top = 0x2100;
state->m_dvbt_rf_agc_cfg.cut_off_current = 4000;
state->m_dvbt_rf_agc_cfg.speed = 1;
/* DVBT IF */
state->m_dvbt_if_agc_cfg.ctrl_mode = DRXK_AGC_CTRL_AUTO;
state->m_dvbt_if_agc_cfg.output_level = 0;
state->m_dvbt_if_agc_cfg.min_output_level = 0;
state->m_dvbt_if_agc_cfg.max_output_level = 9000;
state->m_dvbt_if_agc_cfg.top = 13424;
state->m_dvbt_if_agc_cfg.cut_off_current = 0;
state->m_dvbt_if_agc_cfg.speed = 3;
state->m_dvbt_if_agc_cfg.fast_clip_ctrl_delay = 30;
state->m_dvbt_if_agc_cfg.ingain_tgt_max = 30000;
/* state->m_dvbtPgaCfg = 140; */
state->m_dvbt_pre_saw_cfg.reference = 4;
state->m_dvbt_pre_saw_cfg.use_pre_saw = false;
/* QAM RF */
state->m_qam_rf_agc_cfg.ctrl_mode = DRXK_AGC_CTRL_OFF;
state->m_qam_rf_agc_cfg.output_level = 0;
state->m_qam_rf_agc_cfg.min_output_level = 6023;
state->m_qam_rf_agc_cfg.max_output_level = 27000;
state->m_qam_rf_agc_cfg.top = 0x2380;
state->m_qam_rf_agc_cfg.cut_off_current = 4000;
state->m_qam_rf_agc_cfg.speed = 3;
/* QAM IF */
state->m_qam_if_agc_cfg.ctrl_mode = DRXK_AGC_CTRL_AUTO;
state->m_qam_if_agc_cfg.output_level = 0;
state->m_qam_if_agc_cfg.min_output_level = 0;
state->m_qam_if_agc_cfg.max_output_level = 9000;
state->m_qam_if_agc_cfg.top = 0x0511;
state->m_qam_if_agc_cfg.cut_off_current = 0;
state->m_qam_if_agc_cfg.speed = 3;
state->m_qam_if_agc_cfg.ingain_tgt_max = 5119;
state->m_qam_if_agc_cfg.fast_clip_ctrl_delay = 50;
state->m_qam_pga_cfg = 140;
state->m_qam_pre_saw_cfg.reference = 4;
state->m_qam_pre_saw_cfg.use_pre_saw = false;
state->m_operation_mode = OM_NONE;
state->m_drxk_state = DRXK_UNINITIALIZED;
/* MPEG output configuration */
state->m_enable_mpeg_output = true; /* If TRUE; enable MPEG ouput */
state->m_insert_rs_byte = false; /* If TRUE; insert RS byte */
state->m_invert_data = false; /* If TRUE; invert DATA signals */
state->m_invert_err = false; /* If TRUE; invert ERR signal */
state->m_invert_str = false; /* If TRUE; invert STR signals */
state->m_invert_val = false; /* If TRUE; invert VAL signals */
state->m_invert_clk = (ul_invert_ts_clock != 0); /* If TRUE; invert CLK signals */
/* If TRUE; static MPEG clockrate will be used;
otherwise clockrate will adapt to the bitrate of the TS */
state->m_dvbt_bitrate = ul_dvbt_bitrate;
state->m_dvbc_bitrate = ul_dvbc_bitrate;
state->m_ts_data_strength = (ul_ts_data_strength & 0x07);
/* Maximum bitrate in b/s in case static clockrate is selected */
state->m_mpeg_ts_static_bitrate = 19392658;
state->m_disable_te_ihandling = false;
if (ul_insert_rs_byte)
state->m_insert_rs_byte = true;
state->m_mpeg_lock_time_out = DEFAULT_DRXK_MPEG_LOCK_TIMEOUT;
if (ul_mpeg_lock_time_out < 10000)
state->m_mpeg_lock_time_out = ul_mpeg_lock_time_out;
state->m_demod_lock_time_out = DEFAULT_DRXK_DEMOD_LOCK_TIMEOUT;
if (ul_demod_lock_time_out < 10000)
state->m_demod_lock_time_out = ul_demod_lock_time_out;
/* QAM defaults */
state->m_constellation = DRX_CONSTELLATION_AUTO;
state->m_qam_interleave_mode = DRXK_QAM_I12_J17;
state->m_fec_rs_plen = 204 * 8; /* fecRsPlen annex A */
state->m_fec_rs_prescale = 1;
state->m_sqi_speed = DRXK_DVBT_SQI_SPEED_MEDIUM;
state->m_agcfast_clip_ctrl_delay = 0;
state->m_gpio_cfg = ul_gpio_cfg;
state->m_b_power_down = false;
state->m_current_power_mode = DRX_POWER_DOWN;
state->m_rfmirror = (ul_rf_mirror == 0);
state->m_if_agc_pol = false;
return 0;
}
static int drxx_open(struct drxk_state *state)
{
int status = 0;
u32 jtag = 0;
u16 bid = 0;
u16 key = 0;
dprintk(1, "\n");
/* stop lock indicator process */
status = write16(state, SCU_RAM_GPIO__A,
SCU_RAM_GPIO_HW_LOCK_IND_DISABLE);
if (status < 0)
goto error;
/* Check device id */
status = read16(state, SIO_TOP_COMM_KEY__A, &key);
if (status < 0)
goto error;
status = write16(state, SIO_TOP_COMM_KEY__A, SIO_TOP_COMM_KEY_KEY);
if (status < 0)
goto error;
status = read32(state, SIO_TOP_JTAGID_LO__A, &jtag);
if (status < 0)
goto error;
status = read16(state, SIO_PDR_UIO_IN_HI__A, &bid);
if (status < 0)
goto error;
status = write16(state, SIO_TOP_COMM_KEY__A, key);
error:
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
return status;
}
static int get_device_capabilities(struct drxk_state *state)
{
u16 sio_pdr_ohw_cfg = 0;
u32 sio_top_jtagid_lo = 0;
int status;
const char *spin = "";
dprintk(1, "\n");
/* driver 0.9.0 */
/* stop lock indicator process */
status = write16(state, SCU_RAM_GPIO__A,
SCU_RAM_GPIO_HW_LOCK_IND_DISABLE);
if (status < 0)
goto error;
status = write16(state, SIO_TOP_COMM_KEY__A, SIO_TOP_COMM_KEY_KEY);
if (status < 0)
goto error;
status = read16(state, SIO_PDR_OHW_CFG__A, &sio_pdr_ohw_cfg);
if (status < 0)
goto error;
status = write16(state, SIO_TOP_COMM_KEY__A, 0x0000);
if (status < 0)
goto error;
switch ((sio_pdr_ohw_cfg & SIO_PDR_OHW_CFG_FREF_SEL__M)) {
case 0:
/* ignore (bypass ?) */
break;
case 1:
/* 27 MHz */
state->m_osc_clock_freq = 27000;
break;
case 2:
/* 20.25 MHz */
state->m_osc_clock_freq = 20250;
break;
case 3:
/* 4 MHz */
state->m_osc_clock_freq = 20250;
break;
default:
pr_err("Clock Frequency is unknown\n");
return -EINVAL;
}
/*
Determine device capabilities
Based on pinning v14
*/
status = read32(state, SIO_TOP_JTAGID_LO__A, &sio_top_jtagid_lo);
if (status < 0)
goto error;
pr_info("status = 0x%08x\n", sio_top_jtagid_lo);
/* driver 0.9.0 */
switch ((sio_top_jtagid_lo >> 29) & 0xF) {
case 0:
state->m_device_spin = DRXK_SPIN_A1;
spin = "A1";
break;
case 2:
state->m_device_spin = DRXK_SPIN_A2;
spin = "A2";
break;
case 3:
state->m_device_spin = DRXK_SPIN_A3;
spin = "A3";
break;
default:
state->m_device_spin = DRXK_SPIN_UNKNOWN;
status = -EINVAL;
pr_err("Spin %d unknown\n", (sio_top_jtagid_lo >> 29) & 0xF);
goto error2;
}
switch ((sio_top_jtagid_lo >> 12) & 0xFF) {
case 0x13:
/* typeId = DRX3913K_TYPE_ID */
state->m_has_lna = false;
state->m_has_oob = false;
state->m_has_atv = false;
state->m_has_audio = false;
state->m_has_dvbt = true;
state->m_has_dvbc = true;
state->m_has_sawsw = true;
state->m_has_gpio2 = false;
state->m_has_gpio1 = false;
state->m_has_irqn = false;
break;
case 0x15:
/* typeId = DRX3915K_TYPE_ID */
state->m_has_lna = false;
state->m_has_oob = false;
state->m_has_atv = true;
state->m_has_audio = false;
state->m_has_dvbt = true;
state->m_has_dvbc = false;
state->m_has_sawsw = true;
state->m_has_gpio2 = true;
state->m_has_gpio1 = true;
state->m_has_irqn = false;
break;
case 0x16:
/* typeId = DRX3916K_TYPE_ID */
state->m_has_lna = false;
state->m_has_oob = false;
state->m_has_atv = true;
state->m_has_audio = false;
state->m_has_dvbt = true;
state->m_has_dvbc = false;
state->m_has_sawsw = true;
state->m_has_gpio2 = true;
state->m_has_gpio1 = true;
state->m_has_irqn = false;
break;
case 0x18:
/* typeId = DRX3918K_TYPE_ID */
state->m_has_lna = false;
state->m_has_oob = false;
state->m_has_atv = true;
state->m_has_audio = true;
state->m_has_dvbt = true;
state->m_has_dvbc = false;
state->m_has_sawsw = true;
state->m_has_gpio2 = true;
state->m_has_gpio1 = true;
state->m_has_irqn = false;
break;
case 0x21:
/* typeId = DRX3921K_TYPE_ID */
state->m_has_lna = false;
state->m_has_oob = false;
state->m_has_atv = true;
state->m_has_audio = true;
state->m_has_dvbt = true;
state->m_has_dvbc = true;
state->m_has_sawsw = true;
state->m_has_gpio2 = true;
state->m_has_gpio1 = true;
state->m_has_irqn = false;
break;
case 0x23:
/* typeId = DRX3923K_TYPE_ID */
state->m_has_lna = false;
state->m_has_oob = false;
state->m_has_atv = true;
state->m_has_audio = true;
state->m_has_dvbt = true;
state->m_has_dvbc = true;
state->m_has_sawsw = true;
state->m_has_gpio2 = true;
state->m_has_gpio1 = true;
state->m_has_irqn = false;
break;
case 0x25:
/* typeId = DRX3925K_TYPE_ID */
state->m_has_lna = false;
state->m_has_oob = false;
state->m_has_atv = true;
state->m_has_audio = true;
state->m_has_dvbt = true;
state->m_has_dvbc = true;
state->m_has_sawsw = true;
state->m_has_gpio2 = true;
state->m_has_gpio1 = true;
state->m_has_irqn = false;
break;
case 0x26:
/* typeId = DRX3926K_TYPE_ID */
state->m_has_lna = false;
state->m_has_oob = false;
state->m_has_atv = true;
state->m_has_audio = false;
state->m_has_dvbt = true;
state->m_has_dvbc = true;
state->m_has_sawsw = true;
state->m_has_gpio2 = true;
state->m_has_gpio1 = true;
state->m_has_irqn = false;
break;
default:
pr_err("DeviceID 0x%02x not supported\n",
((sio_top_jtagid_lo >> 12) & 0xFF));
status = -EINVAL;
goto error2;
}
pr_info("detected a drx-39%02xk, spin %s, xtal %d.%03d MHz\n",
((sio_top_jtagid_lo >> 12) & 0xFF), spin,
state->m_osc_clock_freq / 1000,
state->m_osc_clock_freq % 1000);
error:
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
error2:
return status;
}
static int hi_command(struct drxk_state *state, u16 cmd, u16 *p_result)
{
int status;
bool powerdown_cmd;
dprintk(1, "\n");
/* Write command */
status = write16(state, SIO_HI_RA_RAM_CMD__A, cmd);
if (status < 0)
goto error;
if (cmd == SIO_HI_RA_RAM_CMD_RESET)
usleep_range(1000, 2000);
powerdown_cmd =
(bool) ((cmd == SIO_HI_RA_RAM_CMD_CONFIG) &&
((state->m_hi_cfg_ctrl) &
SIO_HI_RA_RAM_PAR_5_CFG_SLEEP__M) ==
SIO_HI_RA_RAM_PAR_5_CFG_SLEEP_ZZZ);
if (!powerdown_cmd) {
/* Wait until command rdy */
u32 retry_count = 0;
u16 wait_cmd;
do {
usleep_range(1000, 2000);
retry_count += 1;
status = read16(state, SIO_HI_RA_RAM_CMD__A,
&wait_cmd);
} while ((status < 0) && (retry_count < DRXK_MAX_RETRIES)
&& (wait_cmd != 0));
if (status < 0)
goto error;
status = read16(state, SIO_HI_RA_RAM_RES__A, p_result);
}
error:
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
return status;
}
static int hi_cfg_command(struct drxk_state *state)
{
int status;
dprintk(1, "\n");
mutex_lock(&state->mutex);
status = write16(state, SIO_HI_RA_RAM_PAR_6__A,
state->m_hi_cfg_timeout);
if (status < 0)
goto error;
status = write16(state, SIO_HI_RA_RAM_PAR_5__A,
state->m_hi_cfg_ctrl);
if (status < 0)
goto error;
status = write16(state, SIO_HI_RA_RAM_PAR_4__A,
state->m_hi_cfg_wake_up_key);
if (status < 0)
goto error;
status = write16(state, SIO_HI_RA_RAM_PAR_3__A,
state->m_hi_cfg_bridge_delay);
if (status < 0)
goto error;
status = write16(state, SIO_HI_RA_RAM_PAR_2__A,
state->m_hi_cfg_timing_div);
if (status < 0)
goto error;
status = write16(state, SIO_HI_RA_RAM_PAR_1__A,
SIO_HI_RA_RAM_PAR_1_PAR1_SEC_KEY);
if (status < 0)
goto error;
status = hi_command(state, SIO_HI_RA_RAM_CMD_CONFIG, NULL);
if (status < 0)
goto error;
state->m_hi_cfg_ctrl &= ~SIO_HI_RA_RAM_PAR_5_CFG_SLEEP_ZZZ;
error:
mutex_unlock(&state->mutex);
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
return status;
}
static int init_hi(struct drxk_state *state)
{
dprintk(1, "\n");
state->m_hi_cfg_wake_up_key = (state->demod_address << 1);
state->m_hi_cfg_timeout = 0x96FF;
/* port/bridge/power down ctrl */
state->m_hi_cfg_ctrl = SIO_HI_RA_RAM_PAR_5_CFG_SLV0_SLAVE;
return hi_cfg_command(state);
}
static int mpegts_configure_pins(struct drxk_state *state, bool mpeg_enable)
{
int status = -1;
u16 sio_pdr_mclk_cfg = 0;
u16 sio_pdr_mdx_cfg = 0;
u16 err_cfg = 0;
dprintk(1, ": mpeg %s, %s mode\n",
mpeg_enable ? "enable" : "disable",
state->m_enable_parallel ? "parallel" : "serial");
/* stop lock indicator process */
status = write16(state, SCU_RAM_GPIO__A,
SCU_RAM_GPIO_HW_LOCK_IND_DISABLE);
if (status < 0)
goto error;
/* MPEG TS pad configuration */
status = write16(state, SIO_TOP_COMM_KEY__A, SIO_TOP_COMM_KEY_KEY);
if (status < 0)
goto error;
if (!mpeg_enable) {
/* Set MPEG TS pads to inputmode */
status = write16(state, SIO_PDR_MSTRT_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MERR_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MCLK_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MVAL_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD0_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD1_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD2_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD3_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD4_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD5_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD6_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD7_CFG__A, 0x0000);
if (status < 0)
goto error;
} else {
/* Enable MPEG output */
sio_pdr_mdx_cfg =
((state->m_ts_data_strength <<
SIO_PDR_MD0_CFG_DRIVE__B) | 0x0003);
sio_pdr_mclk_cfg = ((state->m_ts_clockk_strength <<
SIO_PDR_MCLK_CFG_DRIVE__B) |
0x0003);
status = write16(state, SIO_PDR_MSTRT_CFG__A, sio_pdr_mdx_cfg);
if (status < 0)
goto error;
if (state->enable_merr_cfg)
err_cfg = sio_pdr_mdx_cfg;
status = write16(state, SIO_PDR_MERR_CFG__A, err_cfg);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MVAL_CFG__A, err_cfg);
if (status < 0)
goto error;
if (state->m_enable_parallel) {
/* parallel -> enable MD1 to MD7 */
status = write16(state, SIO_PDR_MD1_CFG__A,
sio_pdr_mdx_cfg);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD2_CFG__A,
sio_pdr_mdx_cfg);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD3_CFG__A,
sio_pdr_mdx_cfg);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD4_CFG__A,
sio_pdr_mdx_cfg);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD5_CFG__A,
sio_pdr_mdx_cfg);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD6_CFG__A,
sio_pdr_mdx_cfg);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD7_CFG__A,
sio_pdr_mdx_cfg);
if (status < 0)
goto error;
} else {
sio_pdr_mdx_cfg = ((state->m_ts_data_strength <<
SIO_PDR_MD0_CFG_DRIVE__B)
| 0x0003);
/* serial -> disable MD1 to MD7 */
status = write16(state, SIO_PDR_MD1_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD2_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD3_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD4_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD5_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD6_CFG__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD7_CFG__A, 0x0000);
if (status < 0)
goto error;
}
status = write16(state, SIO_PDR_MCLK_CFG__A, sio_pdr_mclk_cfg);
if (status < 0)
goto error;
status = write16(state, SIO_PDR_MD0_CFG__A, sio_pdr_mdx_cfg);
if (status < 0)
goto error;
}
/* Enable MB output over MPEG pads and ctl input */
status = write16(state, SIO_PDR_MON_CFG__A, 0x0000);
if (status < 0)
goto error;
/* Write nomagic word to enable pdr reg write */
status = write16(state, SIO_TOP_COMM_KEY__A, 0x0000);
error:
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
return status;
}
static int mpegts_disable(struct drxk_state *state)
{
dprintk(1, "\n");
return mpegts_configure_pins(state, false);
}
static int bl_chain_cmd(struct drxk_state *state,
u16 rom_offset, u16 nr_of_elements, u32 time_out)
{
u16 bl_status = 0;
int status;
unsigned long end;
dprintk(1, "\n");
mutex_lock(&state->mutex);
status = write16(state, SIO_BL_MODE__A, SIO_BL_MODE_CHAIN);
if (status < 0)
goto error;
status = write16(state, SIO_BL_CHAIN_ADDR__A, rom_offset);
if (status < 0)
goto error;
status = write16(state, SIO_BL_CHAIN_LEN__A, nr_of_elements);
if (status < 0)
goto error;
status = write16(state, SIO_BL_ENABLE__A, SIO_BL_ENABLE_ON);
if (status < 0)
goto error;
end = jiffies + msecs_to_jiffies(time_out);
do {
usleep_range(1000, 2000);
status = read16(state, SIO_BL_STATUS__A, &bl_status);
if (status < 0)
goto error;
} while ((bl_status == 0x1) &&
((time_is_after_jiffies(end))));
if (bl_status == 0x1) {
pr_err("SIO not ready\n");
status = -EINVAL;
goto error2;
}
error:
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
error2:
mutex_unlock(&state->mutex);
return status;
}
static int download_microcode(struct drxk_state *state,
const u8 p_mc_image[], u32 length)
{
const u8 *p_src = p_mc_image;
u32 address;
u16 n_blocks;
u16 block_size;
u32 offset = 0;
u32 i;
int status = 0;
dprintk(1, "\n");
/* down the drain (we don't care about MAGIC_WORD) */
#if 0
/* For future reference */
drain = (p_src[0] << 8) | p_src[1];
#endif
p_src += sizeof(u16);
offset += sizeof(u16);
n_blocks = (p_src[0] << 8) | p_src[1];
p_src += sizeof(u16);
offset += sizeof(u16);
for (i = 0; i < n_blocks; i += 1) {
address = (p_src[0] << 24) | (p_src[1] << 16) |
(p_src[2] << 8) | p_src[3];
p_src += sizeof(u32);
offset += sizeof(u32);
block_size = ((p_src[0] << 8) | p_src[1]) * sizeof(u16);
p_src += sizeof(u16);
offset += sizeof(u16);
#if 0
/* For future reference */
flags = (p_src[0] << 8) | p_src[1];
#endif
p_src += sizeof(u16);
offset += sizeof(u16);
#if 0
/* For future reference */
block_crc = (p_src[0] << 8) | p_src[1];
#endif
p_src += sizeof(u16);
offset += sizeof(u16);
if (offset + block_size > length) {
pr_err("Firmware is corrupted.\n");
return -EINVAL;
}
status = write_block(state, address, block_size, p_src);
if (status < 0) {
pr_err("Error %d while loading firmware\n", status);
break;
}
p_src += block_size;
offset += block_size;
}
return status;
}
static int dvbt_enable_ofdm_token_ring(struct drxk_state *state, bool enable)
{
int status;
u16 data = 0;
u16 desired_ctrl = SIO_OFDM_SH_OFDM_RING_ENABLE_ON;
u16 desired_status = SIO_OFDM_SH_OFDM_RING_STATUS_ENABLED;
unsigned long end;
dprintk(1, "\n");
if (!enable) {
desired_ctrl = SIO_OFDM_SH_OFDM_RING_ENABLE_OFF;
desired_status = SIO_OFDM_SH_OFDM_RING_STATUS_DOWN;
}
status = read16(state, SIO_OFDM_SH_OFDM_RING_STATUS__A, &data);
if (status >= 0 && data == desired_status) {
/* tokenring already has correct status */
return status;
}
/* Disable/enable dvbt tokenring bridge */
status = write16(state, SIO_OFDM_SH_OFDM_RING_ENABLE__A, desired_ctrl);
end = jiffies + msecs_to_jiffies(DRXK_OFDM_TR_SHUTDOWN_TIMEOUT);
do {
status = read16(state, SIO_OFDM_SH_OFDM_RING_STATUS__A, &data);
if ((status >= 0 && data == desired_status)
|| time_is_after_jiffies(end))
break;
usleep_range(1000, 2000);
} while (1);
if (data != desired_status) {
pr_err("SIO not ready\n");
return -EINVAL;
}
return status;
}
static int mpegts_stop(struct drxk_state *state)
{
int status = 0;
u16 fec_oc_snc_mode = 0;
u16 fec_oc_ipr_mode = 0;
dprintk(1, "\n");
/* Graceful shutdown (byte boundaries) */
status = read16(state, FEC_OC_SNC_MODE__A, &fec_oc_snc_mode);
if (status < 0)
goto error;
fec_oc_snc_mode |= FEC_OC_SNC_MODE_SHUTDOWN__M;
status = write16(state, FEC_OC_SNC_MODE__A, fec_oc_snc_mode);
if (status < 0)
goto error;
/* Suppress MCLK during absence of data */
status = read16(state, FEC_OC_IPR_MODE__A, &fec_oc_ipr_mode);
if (status < 0)
goto error;
fec_oc_ipr_mode |= FEC_OC_IPR_MODE_MCLK_DIS_DAT_ABS__M;
status = write16(state, FEC_OC_IPR_MODE__A, fec_oc_ipr_mode);
error:
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
return status;
}
static int scu_command(struct drxk_state *state,
u16 cmd, u8 parameter_len,
u16 *parameter, u8 result_len, u16 *result)
{
#if (SCU_RAM_PARAM_0__A - SCU_RAM_PARAM_15__A) != 15
#error DRXK register mapping no longer compatible with this routine!
#endif
u16 cur_cmd = 0;
int status = -EINVAL;
unsigned long end;
u8 buffer[34];
int cnt = 0, ii;
const char *p;
char errname[30];
dprintk(1, "\n");
if ((cmd == 0) || ((parameter_len > 0) && (parameter == NULL)) ||
((result_len > 0) && (result == NULL))) {
pr_err("Error %d on %s\n", status, __func__);
return status;
}
mutex_lock(&state->mutex);
/* assume that the command register is ready
since it is checked afterwards */
for (ii = parameter_len - 1; ii >= 0; ii -= 1) {
buffer[cnt++] = (parameter[ii] & 0xFF);
buffer[cnt++] = ((parameter[ii] >> 8) & 0xFF);
}
buffer[cnt++] = (cmd & 0xFF);
buffer[cnt++] = ((cmd >> 8) & 0xFF);
write_block(state, SCU_RAM_PARAM_0__A -
(parameter_len - 1), cnt, buffer);
/* Wait until SCU has processed command */
end = jiffies + msecs_to_jiffies(DRXK_MAX_WAITTIME);
do {
usleep_range(1000, 2000);
status = read16(state, SCU_RAM_COMMAND__A, &cur_cmd);
if (status < 0)
goto error;
} while (!(cur_cmd == DRX_SCU_READY) && (time_is_after_jiffies(end)));
if (cur_cmd != DRX_SCU_READY) {
pr_err("SCU not ready\n");
status = -EIO;
goto error2;
}
/* read results */
if ((result_len > 0) && (result != NULL)) {
s16 err;
int ii;
for (ii = result_len - 1; ii >= 0; ii -= 1) {
status = read16(state, SCU_RAM_PARAM_0__A - ii,
&result[ii]);
if (status < 0)
goto error;
}
/* Check if an error was reported by SCU */
err = (s16)result[0];
if (err >= 0)
goto error;
/* check for the known error codes */
switch (err) {
case SCU_RESULT_UNKCMD:
p = "SCU_RESULT_UNKCMD";
break;
case SCU_RESULT_UNKSTD:
p = "SCU_RESULT_UNKSTD";
break;
case SCU_RESULT_SIZE:
p = "SCU_RESULT_SIZE";
break;
case SCU_RESULT_INVPAR:
p = "SCU_RESULT_INVPAR";
break;
default: /* Other negative values are errors */
sprintf(errname, "ERROR: %d\n", err);
p = errname;
}
pr_err("%s while sending cmd 0x%04x with params:", p, cmd);
print_hex_dump_bytes("drxk: ", DUMP_PREFIX_NONE, buffer, cnt);
status = -EINVAL;
goto error2;
}
error:
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
error2:
mutex_unlock(&state->mutex);
return status;
}
static int set_iqm_af(struct drxk_state *state, bool active)
{
u16 data = 0;
int status;
dprintk(1, "\n");
/* Configure IQM */
status = read16(state, IQM_AF_STDBY__A, &data);
if (status < 0)
goto error;
if (!active) {
data |= (IQM_AF_STDBY_STDBY_ADC_STANDBY
| IQM_AF_STDBY_STDBY_AMP_STANDBY
| IQM_AF_STDBY_STDBY_PD_STANDBY
| IQM_AF_STDBY_STDBY_TAGC_IF_STANDBY
| IQM_AF_STDBY_STDBY_TAGC_RF_STANDBY);
} else {
data &= ((~IQM_AF_STDBY_STDBY_ADC_STANDBY)
& (~IQM_AF_STDBY_STDBY_AMP_STANDBY)
& (~IQM_AF_STDBY_STDBY_PD_STANDBY)
& (~IQM_AF_STDBY_STDBY_TAGC_IF_STANDBY)
& (~IQM_AF_STDBY_STDBY_TAGC_RF_STANDBY)
);
}
status = write16(state, IQM_AF_STDBY__A, data);
error:
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
return status;
}
static int ctrl_power_mode(struct drxk_state *state, enum drx_power_mode *mode)
{
int status = 0;
u16 sio_cc_pwd_mode = 0;
dprintk(1, "\n");
/* Check arguments */
if (mode == NULL)
return -EINVAL;
switch (*mode) {
case DRX_POWER_UP:
sio_cc_pwd_mode = SIO_CC_PWD_MODE_LEVEL_NONE;
break;
case DRXK_POWER_DOWN_OFDM:
sio_cc_pwd_mode = SIO_CC_PWD_MODE_LEVEL_OFDM;
break;
case DRXK_POWER_DOWN_CORE:
sio_cc_pwd_mode = SIO_CC_PWD_MODE_LEVEL_CLOCK;
break;
case DRXK_POWER_DOWN_PLL:
sio_cc_pwd_mode = SIO_CC_PWD_MODE_LEVEL_PLL;
break;
case DRX_POWER_DOWN:
sio_cc_pwd_mode = SIO_CC_PWD_MODE_LEVEL_OSC;
break;
default:
/* Unknow sleep mode */
return -EINVAL;
}
/* If already in requested power mode, do nothing */
if (state->m_current_power_mode == *mode)
return 0;
/* For next steps make sure to start from DRX_POWER_UP mode */
if (state->m_current_power_mode != DRX_POWER_UP) {
status = power_up_device(state);
if (status < 0)
goto error;
status = dvbt_enable_ofdm_token_ring(state, true);
if (status < 0)
goto error;
}
if (*mode == DRX_POWER_UP) {
/* Restore analog & pin configuration */
} else {
/* Power down to requested mode */
/* Backup some register settings */
/* Set pins with possible pull-ups connected
to them in input mode */
/* Analog power down */
/* ADC power down */
/* Power down device */
/* stop all comm_exec */
/* Stop and power down previous standard */
switch (state->m_operation_mode) {
case OM_DVBT:
status = mpegts_stop(state);
if (status < 0)
goto error;
status = power_down_dvbt(state, false);
if (status < 0)
goto error;
break;
case OM_QAM_ITU_A:
case OM_QAM_ITU_C:
status = mpegts_stop(state);
if (status < 0)
goto error;
status = power_down_qam(state);
if (status < 0)
goto error;
break;
default:
break;
}
status = dvbt_enable_ofdm_token_ring(state, false);
if (status < 0)
goto error;
status = write16(state, SIO_CC_PWD_MODE__A, sio_cc_pwd_mode);
if (status < 0)
goto error;
status = write16(state, SIO_CC_UPDATE__A, SIO_CC_UPDATE_KEY);
if (status < 0)
goto error;
if (*mode != DRXK_POWER_DOWN_OFDM) {
state->m_hi_cfg_ctrl |=
SIO_HI_RA_RAM_PAR_5_CFG_SLEEP_ZZZ;
status = hi_cfg_command(state);
if (status < 0)
goto error;
}
}
state->m_current_power_mode = *mode;
error:
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
return status;
}
static int power_down_dvbt(struct drxk_state *state, bool set_power_mode)
{
enum drx_power_mode power_mode = DRXK_POWER_DOWN_OFDM;
u16 cmd_result = 0;
u16 data = 0;
int status;
dprintk(1, "\n");
status = read16(state, SCU_COMM_EXEC__A, &data);
if (status < 0)
goto error;
if (data == SCU_COMM_EXEC_ACTIVE) {
/* Send OFDM stop command */
status = scu_command(state,
SCU_RAM_COMMAND_STANDARD_OFDM
| SCU_RAM_COMMAND_CMD_DEMOD_STOP,
0, NULL, 1, &cmd_result);
if (status < 0)
goto error;
/* Send OFDM reset command */
status = scu_command(state,
SCU_RAM_COMMAND_STANDARD_OFDM
| SCU_RAM_COMMAND_CMD_DEMOD_RESET,
0, NULL, 1, &cmd_result);
if (status < 0)
goto error;
}
/* Reset datapath for OFDM, processors first */
status = write16(state, OFDM_SC_COMM_EXEC__A, OFDM_SC_COMM_EXEC_STOP);
if (status < 0)
goto error;
status = write16(state, OFDM_LC_COMM_EXEC__A, OFDM_LC_COMM_EXEC_STOP);
if (status < 0)
goto error;
status = write16(state, IQM_COMM_EXEC__A, IQM_COMM_EXEC_B_STOP);
if (status < 0)
goto error;
/* powerdown AFE */
status = set_iqm_af(state, false);
if (status < 0)
goto error;
/* powerdown to OFDM mode */
if (set_power_mode) {
status = ctrl_power_mode(state, &power_mode);
if (status < 0)
goto error;
}
error:
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
return status;
}
static int setoperation_mode(struct drxk_state *state,
enum operation_mode o_mode)
{
int status = 0;
dprintk(1, "\n");
/*
Stop and power down previous standard
TODO investigate total power down instead of partial
power down depending on "previous" standard.
*/
/* disable HW lock indicator */
status = write16(state, SCU_RAM_GPIO__A,
SCU_RAM_GPIO_HW_LOCK_IND_DISABLE);
if (status < 0)
goto error;
/* Device is already at the required mode */
if (state->m_operation_mode == o_mode)
return 0;
switch (state->m_operation_mode) {
/* OM_NONE was added for start up */
case OM_NONE:
break;
case OM_DVBT:
status = mpegts_stop(state);
if (status < 0)
goto error;
status = power_down_dvbt(state, true);
if (status < 0)
goto error;
state->m_operation_mode = OM_NONE;
break;
case OM_QAM_ITU_A: /* fallthrough */
case OM_QAM_ITU_C:
status = mpegts_stop(state);
if (status < 0)
goto error;
status = power_down_qam(state);
if (status < 0)
goto error;
state->m_operation_mode = OM_NONE;
break;
case OM_QAM_ITU_B:
default:
status = -EINVAL;
goto error;
}
/*
Power up new standard
*/
switch (o_mode) {
case OM_DVBT:
dprintk(1, ": DVB-T\n");
state->m_operation_mode = o_mode;
status = set_dvbt_standard(state, o_mode);
if (status < 0)
goto error;
break;
case OM_QAM_ITU_A: /* fallthrough */
case OM_QAM_ITU_C:
dprintk(1, ": DVB-C Annex %c\n",
(state->m_operation_mode == OM_QAM_ITU_A) ? 'A' : 'C');
state->m_operation_mode = o_mode;
status = set_qam_standard(state, o_mode);
if (status < 0)
goto error;
break;
case OM_QAM_ITU_B:
default:
status = -EINVAL;
}
error:
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
return status;
}
static int start(struct drxk_state *state, s32 offset_freq,
s32 intermediate_frequency)
{
int status = -EINVAL;
u16 i_freqk_hz;
s32 offsetk_hz = offset_freq / 1000;
dprintk(1, "\n");
if (state->m_drxk_state != DRXK_STOPPED &&
state->m_drxk_state != DRXK_DTV_STARTED)
goto error;
state->m_b_mirror_freq_spect = (state->props.inversion == INVERSION_ON);
if (intermediate_frequency < 0) {
state->m_b_mirror_freq_spect = !state->m_b_mirror_freq_spect;
intermediate_frequency = -intermediate_frequency;
}
switch (state->m_operation_mode) {
case OM_QAM_ITU_A:
case OM_QAM_ITU_C:
i_freqk_hz = (intermediate_frequency / 1000);
status = set_qam(state, i_freqk_hz, offsetk_hz);
if (status < 0)
goto error;
state->m_drxk_state = DRXK_DTV_STARTED;
break;
case OM_DVBT:
i_freqk_hz = (intermediate_frequency / 1000);
status = mpegts_stop(state);
if (status < 0)
goto error;
status = set_dvbt(state, i_freqk_hz, offsetk_hz);
if (status < 0)
goto error;
status = dvbt_start(state);
if (status < 0)
goto error;
state->m_drxk_state = DRXK_DTV_STARTED;
break;
default:
break;
}
error:
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
return status;
}
static int shut_down(struct drxk_state *state)
{
dprintk(1, "\n");
mpegts_stop(state);
return 0;
}
static int get_lock_status(struct drxk_state *state, u32 *p_lock_status)
{
int status = -EINVAL;
dprintk(1, "\n");
if (p_lock_status == NULL)
goto error;
*p_lock_status = NOT_LOCKED;
/* define the SCU command code */
switch (state->m_operation_mode) {
case OM_QAM_ITU_A:
case OM_QAM_ITU_B:
case OM_QAM_ITU_C:
status = get_qam_lock_status(state, p_lock_status);
break;
case OM_DVBT:
status = get_dvbt_lock_status(state, p_lock_status);
break;
default:
pr_debug("Unsupported operation mode %d in %s\n",
state->m_operation_mode, __func__);
return 0;
}
error:
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
return status;
}
static int mpegts_start(struct drxk_state *state)
{
int status;
u16 fec_oc_snc_mode = 0;
/* Allow OC to sync again */
status = read16(state, FEC_OC_SNC_MODE__A, &fec_oc_snc_mode);
if (status < 0)
goto error;
fec_oc_snc_mode &= ~FEC_OC_SNC_MODE_SHUTDOWN__M;
status = write16(state, FEC_OC_SNC_MODE__A, fec_oc_snc_mode);
if (status < 0)
goto error;
status = write16(state, FEC_OC_SNC_UNLOCK__A, 1);
error:
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
return status;
}
static int mpegts_dto_init(struct drxk_state *state)
{
int status;
dprintk(1, "\n");
/* Rate integration settings */
status = write16(state, FEC_OC_RCN_CTL_STEP_LO__A, 0x0000);
if (status < 0)
goto error;
status = write16(state, FEC_OC_RCN_CTL_STEP_HI__A, 0x000C);
if (status < 0)
goto error;
status = write16(state, FEC_OC_RCN_GAIN__A, 0x000A);
if (status < 0)
goto error;
status = write16(state, FEC_OC_AVR_PARM_A__A, 0x0008);
if (status < 0)
goto error;
status = write16(state, FEC_OC_AVR_PARM_B__A, 0x0006);
if (status < 0)
goto error;
status = write16(state, FEC_OC_TMD_HI_MARGIN__A, 0x0680);
if (status < 0)
goto error;
status = write16(state, FEC_OC_TMD_LO_MARGIN__A, 0x0080);
if (status < 0)
goto error;
status = write16(state, FEC_OC_TMD_COUNT__A, 0x03F4);
if (status < 0)
goto error;
/* Additional configuration */
status = write16(state, FEC_OC_OCR_INVERT__A, 0);
if (status < 0)
goto error;
status = write16(state, FEC_OC_SNC_LWM__A, 2);
if (status < 0)
goto error;
status = write16(state, FEC_OC_SNC_HWM__A, 12);
error:
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
return status;
}
static int mpegts_dto_setup(struct drxk_state *state,
enum operation_mode o_mode)
{
int status;
u16 fec_oc_reg_mode = 0; /* FEC_OC_MODE register value */
u16 fec_oc_reg_ipr_mode = 0; /* FEC_OC_IPR_MODE register value */
u16 fec_oc_dto_mode = 0; /* FEC_OC_IPR_INVERT register value */
u16 fec_oc_fct_mode = 0; /* FEC_OC_IPR_INVERT register value */
u16 fec_oc_dto_period = 2; /* FEC_OC_IPR_INVERT register value */
u16 fec_oc_dto_burst_len = 188; /* FEC_OC_IPR_INVERT register value */
u32 fec_oc_rcn_ctl_rate = 0; /* FEC_OC_IPR_INVERT register value */
u16 fec_oc_tmd_mode = 0;
u16 fec_oc_tmd_int_upd_rate = 0;
u32 max_bit_rate = 0;
bool static_clk = false;
dprintk(1, "\n");
/* Check insertion of the Reed-Solomon parity bytes */
status = read16(state, FEC_OC_MODE__A, &fec_oc_reg_mode);
if (status < 0)
goto error;
status = read16(state, FEC_OC_IPR_MODE__A, &fec_oc_reg_ipr_mode);
if (status < 0)
goto error;
fec_oc_reg_mode &= (~FEC_OC_MODE_PARITY__M);
fec_oc_reg_ipr_mode &= (~FEC_OC_IPR_MODE_MVAL_DIS_PAR__M);
if (state->m_insert_rs_byte) {
/* enable parity symbol forward */
fec_oc_reg_mode |= FEC_OC_MODE_PARITY__M;
/* MVAL disable during parity bytes */
fec_oc_reg_ipr_mode |= FEC_OC_IPR_MODE_MVAL_DIS_PAR__M;
/* TS burst length to 204 */
fec_oc_dto_burst_len = 204;
}
/* Check serial or parallel output */
fec_oc_reg_ipr_mode &= (~(FEC_OC_IPR_MODE_SERIAL__M));
if (!state->m_enable_parallel) {
/* MPEG data output is serial -> set ipr_mode[0] */
fec_oc_reg_ipr_mode |= FEC_OC_IPR_MODE_SERIAL__M;
}
switch (o_mode) {
case OM_DVBT:
max_bit_rate = state->m_dvbt_bitrate;
fec_oc_tmd_mode = 3;
fec_oc_rcn_ctl_rate = 0xC00000;
static_clk = state->m_dvbt_static_clk;
break;
case OM_QAM_ITU_A: /* fallthrough */
case OM_QAM_ITU_C:
fec_oc_tmd_mode = 0x0004;
fec_oc_rcn_ctl_rate = 0xD2B4EE; /* good for >63 Mb/s */
max_bit_rate = state->m_dvbc_bitrate;
static_clk = state->m_dvbc_static_clk;
break;
default:
status = -EINVAL;
} /* switch (standard) */
if (status < 0)
goto error;
/* Configure DTO's */
if (static_clk) {
u32 bit_rate = 0;
/* Rational DTO for MCLK source (static MCLK rate),
Dynamic DTO for optimal grouping
(avoid intra-packet gaps),
DTO offset enable to sync TS burst with MSTRT */
fec_oc_dto_mode = (FEC_OC_DTO_MODE_DYNAMIC__M |
FEC_OC_DTO_MODE_OFFSET_ENABLE__M);
fec_oc_fct_mode = (FEC_OC_FCT_MODE_RAT_ENA__M |
FEC_OC_FCT_MODE_VIRT_ENA__M);
/* Check user defined bitrate */
bit_rate = max_bit_rate;
if (bit_rate > 75900000UL) { /* max is 75.9 Mb/s */
bit_rate = 75900000UL;
}
/* Rational DTO period:
dto_period = (Fsys / bitrate) - 2
result should be floored,
to make sure >= requested bitrate
*/
fec_oc_dto_period = (u16) (((state->m_sys_clock_freq)
* 1000) / bit_rate);
if (fec_oc_dto_period <= 2)
fec_oc_dto_period = 0;
else
fec_oc_dto_period -= 2;
fec_oc_tmd_int_upd_rate = 8;
} else {
/* (commonAttr->static_clk == false) => dynamic mode */
fec_oc_dto_mode = FEC_OC_DTO_MODE_DYNAMIC__M;
fec_oc_fct_mode = FEC_OC_FCT_MODE__PRE;
fec_oc_tmd_int_upd_rate = 5;
}
/* Write appropriate registers with requested configuration */
status = write16(state, FEC_OC_DTO_BURST_LEN__A, fec_oc_dto_burst_len);
if (status < 0)
goto error;
status = write16(state, FEC_OC_DTO_PERIOD__A, fec_oc_dto_period);
if (status < 0)
goto error;
status = write16(state, FEC_OC_DTO_MODE__A, fec_oc_dto_mode);
if (status < 0)
goto error;
status = write16(state, FEC_OC_FCT_MODE__A, fec_oc_fct_mode);
if (status < 0)
goto error;
status = write16(state, FEC_OC_MODE__A, fec_oc_reg_mode);
if (status < 0)
goto error;
status = write16(state, FEC_OC_IPR_MODE__A, fec_oc_reg_ipr_mode);
if (status < 0)
goto error;
/* Rate integration settings */
status = write32(state, FEC_OC_RCN_CTL_RATE_LO__A, fec_oc_rcn_ctl_rate);
if (status < 0)
goto error;
status = write16(state, FEC_OC_TMD_INT_UPD_RATE__A,
fec_oc_tmd_int_upd_rate);
if (status < 0)
goto error;
status = write16(state, FEC_OC_TMD_MODE__A, fec_oc_tmd_mode);
error:
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
return status;
}
static int mpegts_configure_polarity(struct drxk_state *state)
{
u16 fec_oc_reg_ipr_invert = 0;
/* Data mask for the output data byte */
u16 invert_data_mask =
FEC_OC_IPR_INVERT_MD7__M | FEC_OC_IPR_INVERT_MD6__M |
FEC_OC_IPR_INVERT_MD5__M | FEC_OC_IPR_INVERT_MD4__M |
FEC_OC_IPR_INVERT_MD3__M | FEC_OC_IPR_INVERT_MD2__M |
FEC_OC_IPR_INVERT_MD1__M | FEC_OC_IPR_INVERT_MD0__M;
dprintk(1, "\n");
/* Control selective inversion of output bits */
fec_oc_reg_ipr_invert &= (~(invert_data_mask));
if (state->m_invert_data)
fec_oc_reg_ipr_invert |= invert_data_mask;
fec_oc_reg_ipr_invert &= (~(FEC_OC_IPR_INVERT_MERR__M));
if (state->m_invert_err)
fec_oc_reg_ipr_invert |= FEC_OC_IPR_INVERT_MERR__M;
fec_oc_reg_ipr_invert &= (~(FEC_OC_IPR_INVERT_MSTRT__M));
if (state->m_invert_str)
fec_oc_reg_ipr_invert |= FEC_OC_IPR_INVERT_MSTRT__M;
fec_oc_reg_ipr_invert &= (~(FEC_OC_IPR_INVERT_MVAL__M));
if (state->m_invert_val)
fec_oc_reg_ipr_invert |= FEC_OC_IPR_INVERT_MVAL__M;
fec_oc_reg_ipr_invert &= (~(FEC_OC_IPR_INVERT_MCLK__M));
if (state->m_invert_clk)
fec_oc_reg_ipr_invert |= FEC_OC_IPR_INVERT_MCLK__M;
return write16(state, FEC_OC_IPR_INVERT__A, fec_oc_reg_ipr_invert);
}
#define SCU_RAM_AGC_KI_INV_RF_POL__M 0x4000
static int set_agc_rf(struct drxk_state *state,
struct s_cfg_agc *p_agc_cfg, bool is_dtv)
{
int status = -EINVAL;
u16 data = 0;
struct s_cfg_agc *p_if_agc_settings;
dprintk(1, "\n");
if (p_agc_cfg == NULL)
goto error;
switch (p_agc_cfg->ctrl_mode) {
case DRXK_AGC_CTRL_AUTO:
/* Enable RF AGC DAC */
status = read16(state, IQM_AF_STDBY__A, &data);
if (status < 0)
goto error;
data &= ~IQM_AF_STDBY_STDBY_TAGC_RF_STANDBY;
status = write16(state, IQM_AF_STDBY__A, data);
if (status < 0)
goto error;
status = read16(state, SCU_RAM_AGC_CONFIG__A, &data);
if (status < 0)
goto error;
/* Enable SCU RF AGC loop */
data &= ~SCU_RAM_AGC_CONFIG_DISABLE_RF_AGC__M;
/* Polarity */
if (state->m_rf_agc_pol)
data |= SCU_RAM_AGC_CONFIG_INV_RF_POL__M;
else
data &= ~SCU_RAM_AGC_CONFIG_INV_RF_POL__M;
status = write16(state, SCU_RAM_AGC_CONFIG__A, data);
if (status < 0)
goto error;
/* Set speed (using complementary reduction value) */
status = read16(state, SCU_RAM_AGC_KI_RED__A, &data);
if (status < 0)
goto error;
data &= ~SCU_RAM_AGC_KI_RED_RAGC_RED__M;
data |= (~(p_agc_cfg->speed <<
SCU_RAM_AGC_KI_RED_RAGC_RED__B)
& SCU_RAM_AGC_KI_RED_RAGC_RED__M);
status = write16(state, SCU_RAM_AGC_KI_RED__A, data);
if (status < 0)
goto error;
if (is_dvbt(state))
p_if_agc_settings = &state->m_dvbt_if_agc_cfg;
else if (is_qam(state))
p_if_agc_settings = &state->m_qam_if_agc_cfg;
else
p_if_agc_settings = &state->m_atv_if_agc_cfg;
if (p_if_agc_settings == NULL) {
status = -EINVAL;
goto error;
}
/* Set TOP, only if IF-AGC is in AUTO mode */
if (p_if_agc_settings->ctrl_mode == DRXK_AGC_CTRL_AUTO) {
status = write16(state,
SCU_RAM_AGC_IF_IACCU_HI_TGT_MAX__A,
p_agc_cfg->top);
if (status < 0)
goto error;
}
/* Cut-Off current */
status = write16(state, SCU_RAM_AGC_RF_IACCU_HI_CO__A,
p_agc_cfg->cut_off_current);
if (status < 0)
goto error;
/* Max. output level */
status = write16(state, SCU_RAM_AGC_RF_MAX__A,
p_agc_cfg->max_output_level);
if (status < 0)
goto error;
break;
case DRXK_AGC_CTRL_USER:
/* Enable RF AGC DAC */
status = read16(state, IQM_AF_STDBY__A, &data);
if (status < 0)
goto error;
data &= ~IQM_AF_STDBY_STDBY_TAGC_RF_STANDBY;
status = write16(state, IQM_AF_STDBY__A, data);
if (status < 0)
goto error;
/* Disable SCU RF AGC loop */
status = read16(state, SCU_RAM_AGC_CONFIG__A, &data);
if (status < 0)
goto error;
data |= SCU_RAM_AGC_CONFIG_DISABLE_RF_AGC__M;
if (state->m_rf_agc_pol)
data |= SCU_RAM_AGC_CONFIG_INV_RF_POL__M;
else
data &= ~SCU_RAM_AGC_CONFIG_INV_RF_POL__M;
status = write16(state, SCU_RAM_AGC_CONFIG__A, data);
if (status < 0)
goto error;
/* SCU c.o.c. to 0, enabling full control range */
status = write16(state, SCU_RAM_AGC_RF_IACCU_HI_CO__A, 0);
if (status < 0)
goto error;
/* Write value to output pin */
status = write16(state, SCU_RAM_AGC_RF_IACCU_HI__A,
p_agc_cfg->output_level);
if (status < 0)
goto error;
break;
case DRXK_AGC_CTRL_OFF:
/* Disable RF AGC DAC */
status = read16(state, IQM_AF_STDBY__A, &data);
if (status < 0)
goto error;
data |= IQM_AF_STDBY_STDBY_TAGC_RF_STANDBY;
status = write16(state, IQM_AF_STDBY__A, data);
if (status < 0)
goto error;
/* Disable SCU RF AGC loop */
status = read16(state, SCU_RAM_AGC_CONFIG__A, &data);
if (status < 0)
goto error;
data |= SCU_RAM_AGC_CONFIG_DISABLE_RF_AGC__M;
status = write16(state, SCU_RAM_AGC_CONFIG__A, data);
if (status < 0)
goto error;
break;
default:
status = -EINVAL;
}
error:
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
return status;
}
#define SCU_RAM_AGC_KI_INV_IF_POL__M 0x2000
static int set_agc_if(struct drxk_state *state,
struct s_cfg_agc *p_agc_cfg, bool is_dtv)
{
u16 data = 0;
int status = 0;
struct s_cfg_agc *p_rf_agc_settings;
dprintk(1, "\n");
switch (p_agc_cfg->ctrl_mode) {
case DRXK_AGC_CTRL_AUTO:
/* Enable IF AGC DAC */
status = read16(state, IQM_AF_STDBY__A, &data);
if (status < 0)
goto error;
data &= ~IQM_AF_STDBY_STDBY_TAGC_IF_STANDBY;
status = write16(state, IQM_AF_STDBY__A, data);
if (status < 0)
goto error;
status = read16(state, SCU_RAM_AGC_CONFIG__A, &data);
if (status < 0)
goto error;
/* Enable SCU IF AGC loop */
data &= ~SCU_RAM_AGC_CONFIG_DISABLE_IF_AGC__M;
/* Polarity */
if (state->m_if_agc_pol)
data |= SCU_RAM_AGC_CONFIG_INV_IF_POL__M;
else
data &= ~SCU_RAM_AGC_CONFIG_INV_IF_POL__M;
status = write16(state, SCU_RAM_AGC_CONFIG__A, data);
if (status < 0)
goto error;
/* Set speed (using complementary reduction value) */
status = read16(state, SCU_RAM_AGC_KI_RED__A, &data);
if (status < 0)
goto error;
data &= ~SCU_RAM_AGC_KI_RED_IAGC_RED__M;
data |= (~(p_agc_cfg->speed <<
SCU_RAM_AGC_KI_RED_IAGC_RED__B)
& SCU_RAM_AGC_KI_RED_IAGC_RED__M);
status = write16(state, SCU_RAM_AGC_KI_RED__A, data);
if (status < 0)
goto error;
if (is_qam(state))
p_rf_agc_settings = &state->m_qam_rf_agc_cfg;
else
p_rf_agc_settings = &state->m_atv_rf_agc_cfg;
if (p_rf_agc_settings == NULL)
return -1;
/* Restore TOP */
status = write16(state, SCU_RAM_AGC_IF_IACCU_HI_TGT_MAX__A,
p_rf_agc_settings->top);
if (status < 0)
goto error;
break;
case DRXK_AGC_CTRL_USER:
/* Enable IF AGC DAC */
status = read16(state, IQM_AF_STDBY__A, &data);
if (status < 0)
goto error;
data &= ~IQM_AF_STDBY_STDBY_TAGC_IF_STANDBY;
status = write16(state, IQM_AF_STDBY__A, data);
if (status < 0)
goto error;
status = read16(state, SCU_RAM_AGC_CONFIG__A, &data);
if (status < 0)
goto error;
/* Disable SCU IF AGC loop */
data |= SCU_RAM_AGC_CONFIG_DISABLE_IF_AGC__M;
/* Polarity */
if (state->m_if_agc_pol)
data |= SCU_RAM_AGC_CONFIG_INV_IF_POL__M;
else
data &= ~SCU_RAM_AGC_CONFIG_INV_IF_POL__M;
status = write16(state, SCU_RAM_AGC_CONFIG__A, data);
if (status < 0)
goto error;
/* Write value to output pin */
status = write16(state, SCU_RAM_AGC_IF_IACCU_HI_TGT_MAX__A,
p_agc_cfg->output_level);
if (status < 0)
goto error;
break;
case DRXK_AGC_CTRL_OFF:
/* Disable If AGC DAC */
status = read16(state, IQM_AF_STDBY__A, &data);
if (status < 0)
goto error;
data |= IQM_AF_STDBY_STDBY_TAGC_IF_STANDBY;
status = write16(state, IQM_AF_STDBY__A, data);
if (status < 0)
goto error;
/* Disable SCU IF AGC loop */
status = read16(state, SCU_RAM_AGC_CONFIG__A, &data);
if (status < 0)
goto error;
data |= SCU_RAM_AGC_CONFIG_DISABLE_IF_AGC__M;
status = write16(state, SCU_RAM_AGC_CONFIG__A, data);
if (status < 0)
goto error;
break;
} /* switch (agcSettingsIf->ctrl_mode) */
/* always set the top to support
configurations without if-loop */
status = write16(state, SCU_RAM_AGC_INGAIN_TGT_MIN__A, p_agc_cfg->top);
error:
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
return status;
}
static int get_qam_signal_to_noise(struct drxk_state *state,
s32 *p_signal_to_noise)
{
int status = 0;
u16 qam_sl_err_power = 0; /* accum. error between
raw and sliced symbols */
u32 qam_sl_sig_power = 0; /* used for MER, depends of
QAM modulation */
u32 qam_sl_mer = 0; /* QAM MER */
dprintk(1, "\n");
/* MER calculation */
/* get the register value needed for MER */
status = read16(state, QAM_SL_ERR_POWER__A, &qam_sl_err_power);
if (status < 0) {
pr_err("Error %d on %s\n", status, __func__);
return -EINVAL;
}
switch (state->props.modulation) {
case QAM_16:
qam_sl_sig_power = DRXK_QAM_SL_SIG_POWER_QAM16 << 2;
break;
case QAM_32:
qam_sl_sig_power = DRXK_QAM_SL_SIG_POWER_QAM32 << 2;
break;
case QAM_64:
qam_sl_sig_power = DRXK_QAM_SL_SIG_POWER_QAM64 << 2;
break;
case QAM_128:
qam_sl_sig_power = DRXK_QAM_SL_SIG_POWER_QAM128 << 2;
break;
default:
case QAM_256:
qam_sl_sig_power = DRXK_QAM_SL_SIG_POWER_QAM256 << 2;
break;
}
if (qam_sl_err_power > 0) {
qam_sl_mer = log10times100(qam_sl_sig_power) -
log10times100((u32) qam_sl_err_power);
}
*p_signal_to_noise = qam_sl_mer;
return status;
}
static int get_dvbt_signal_to_noise(struct drxk_state *state,
s32 *p_signal_to_noise)
{
int status;
u16 reg_data = 0;
u32 eq_reg_td_sqr_err_i = 0;
u32 eq_reg_td_sqr_err_q = 0;
u16 eq_reg_td_sqr_err_exp = 0;
u16 eq_reg_td_tps_pwr_ofs = 0;
u16 eq_reg_td_req_smb_cnt = 0;
u32 tps_cnt = 0;
u32 sqr_err_iq = 0;
u32 a = 0;
u32 b = 0;
u32 c = 0;
u32 i_mer = 0;
u16 transmission_params = 0;
dprintk(1, "\n");
status = read16(state, OFDM_EQ_TOP_TD_TPS_PWR_OFS__A,
&eq_reg_td_tps_pwr_ofs);
if (status < 0)
goto error;
status = read16(state, OFDM_EQ_TOP_TD_REQ_SMB_CNT__A,
&eq_reg_td_req_smb_cnt);
if (status < 0)
goto error;
status = read16(state, OFDM_EQ_TOP_TD_SQR_ERR_EXP__A,
&eq_reg_td_sqr_err_exp);
if (status < 0)
goto error;
status = read16(state, OFDM_EQ_TOP_TD_SQR_ERR_I__A,
&reg_data);
if (status < 0)
goto error;
/* Extend SQR_ERR_I operational range */
eq_reg_td_sqr_err_i = (u32) reg_data;
if ((eq_reg_td_sqr_err_exp > 11) &&
(eq_reg_td_sqr_err_i < 0x00000FFFUL)) {
eq_reg_td_sqr_err_i += 0x00010000UL;
}
status = read16(state, OFDM_EQ_TOP_TD_SQR_ERR_Q__A, &reg_data);
if (status < 0)
goto error;
/* Extend SQR_ERR_Q operational range */
eq_reg_td_sqr_err_q = (u32) reg_data;
if ((eq_reg_td_sqr_err_exp > 11) &&
(eq_reg_td_sqr_err_q < 0x00000FFFUL))
eq_reg_td_sqr_err_q += 0x00010000UL;
status = read16(state, OFDM_SC_RA_RAM_OP_PARAM__A,
&transmission_params);
if (status < 0)
goto error;
/* Check input data for MER */
/* MER calculation (in 0.1 dB) without math.h */
if ((eq_reg_td_tps_pwr_ofs == 0) || (eq_reg_td_req_smb_cnt == 0))
i_mer = 0;
else if ((eq_reg_td_sqr_err_i + eq_reg_td_sqr_err_q) == 0) {
/* No error at all, this must be the HW reset value
* Apparently no first measurement yet
* Set MER to 0.0 */
i_mer = 0;
} else {
sqr_err_iq = (eq_reg_td_sqr_err_i + eq_reg_td_sqr_err_q) <<
eq_reg_td_sqr_err_exp;
if ((transmission_params &
OFDM_SC_RA_RAM_OP_PARAM_MODE__M)
== OFDM_SC_RA_RAM_OP_PARAM_MODE_2K)
tps_cnt = 17;
else
tps_cnt = 68;
/* IMER = 100 * log10 (x)
where x = (eq_reg_td_tps_pwr_ofs^2 *
eq_reg_td_req_smb_cnt * tps_cnt)/sqr_err_iq
=> IMER = a + b -c
where a = 100 * log10 (eq_reg_td_tps_pwr_ofs^2)
b = 100 * log10 (eq_reg_td_req_smb_cnt * tps_cnt)
c = 100 * log10 (sqr_err_iq)
*/
/* log(x) x = 9bits * 9bits->18 bits */
a = log10times100(eq_reg_td_tps_pwr_ofs *
eq_reg_td_tps_pwr_ofs);
/* log(x) x = 16bits * 7bits->23 bits */
b = log10times100(eq_reg_td_req_smb_cnt * tps_cnt);
/* log(x) x = (16bits + 16bits) << 15 ->32 bits */
c = log10times100(sqr_err_iq);
i_mer = a + b - c;
}
*p_signal_to_noise = i_mer;
error:
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
return status;
}
static int get_signal_to_noise(struct drxk_state *state, s32 *p_signal_to_noise)
{
dprintk(1, "\n");
*p_signal_to_noise = 0;
switch (state->m_operation_mode) {
case OM_DVBT:
return get_dvbt_signal_to_noise(state, p_signal_to_noise);
case OM_QAM_ITU_A:
case OM_QAM_ITU_C:
return get_qam_signal_to_noise(state, p_signal_to_noise);
default:
break;
}
return 0;
}
#if 0
static int get_dvbt_quality(struct drxk_state *state, s32 *p_quality)
{
/* SNR Values for quasi errorfree reception rom Nordig 2.2 */
int status = 0;
dprintk(1, "\n");
static s32 QE_SN[] = {
51, /* QPSK 1/2 */
69, /* QPSK 2/3 */
79, /* QPSK 3/4 */
89, /* QPSK 5/6 */
97, /* QPSK 7/8 */
108, /* 16-QAM 1/2 */
131, /* 16-QAM 2/3 */
146, /* 16-QAM 3/4 */
156, /* 16-QAM 5/6 */
160, /* 16-QAM 7/8 */
165, /* 64-QAM 1/2 */
187, /* 64-QAM 2/3 */
202, /* 64-QAM 3/4 */
216, /* 64-QAM 5/6 */
225, /* 64-QAM 7/8 */
};
*p_quality = 0;
do {
s32 signal_to_noise = 0;
u16 constellation = 0;
u16 code_rate = 0;
u32 signal_to_noise_rel;
u32 ber_quality;
status = get_dvbt_signal_to_noise(state, &signal_to_noise);
if (status < 0)
break;
status = read16(state, OFDM_EQ_TOP_TD_TPS_CONST__A,
&constellation);
if (status < 0)
break;
constellation &= OFDM_EQ_TOP_TD_TPS_CONST__M;
status = read16(state, OFDM_EQ_TOP_TD_TPS_CODE_HP__A,
&code_rate);
if (status < 0)
break;
code_rate &= OFDM_EQ_TOP_TD_TPS_CODE_HP__M;
if (constellation > OFDM_EQ_TOP_TD_TPS_CONST_64QAM ||
code_rate > OFDM_EQ_TOP_TD_TPS_CODE_LP_7_8)
break;
signal_to_noise_rel = signal_to_noise -
QE_SN[constellation * 5 + code_rate];
ber_quality = 100;
if (signal_to_noise_rel < -70)
*p_quality = 0;
else if (signal_to_noise_rel < 30)
*p_quality = ((signal_to_noise_rel + 70) *
ber_quality) / 100;
else
*p_quality = ber_quality;
} while (0);
return 0;
};
static int get_dvbc_quality(struct drxk_state *state, s32 *p_quality)
{
int status = 0;
*p_quality = 0;
dprintk(1, "\n");
do {
u32 signal_to_noise = 0;
u32 ber_quality = 100;
u32 signal_to_noise_rel = 0;
status = get_qam_signal_to_noise(state, &signal_to_noise);
if (status < 0)
break;
switch (state->props.modulation) {
case QAM_16:
signal_to_noise_rel = signal_to_noise - 200;
break;
case QAM_32:
signal_to_noise_rel = signal_to_noise - 230;
break; /* Not in NorDig */
case QAM_64:
signal_to_noise_rel = signal_to_noise - 260;
break;
case QAM_128:
signal_to_noise_rel = signal_to_noise - 290;
break;
default:
case QAM_256:
signal_to_noise_rel = signal_to_noise - 320;
break;
}
if (signal_to_noise_rel < -70)
*p_quality = 0;
else if (signal_to_noise_rel < 30)
*p_quality = ((signal_to_noise_rel + 70) *
ber_quality) / 100;
else
*p_quality = ber_quality;
} while (0);
return status;
}
static int get_quality(struct drxk_state *state, s32 *p_quality)
{
dprintk(1, "\n");
switch (state->m_operation_mode) {
case OM_DVBT:
return get_dvbt_quality(state, p_quality);
case OM_QAM_ITU_A:
return get_dvbc_quality(state, p_quality);
default:
break;
}
return 0;
}
#endif
/* Free data ram in SIO HI */
#define SIO_HI_RA_RAM_USR_BEGIN__A 0x420040
#define SIO_HI_RA_RAM_USR_END__A 0x420060
#define DRXK_HI_ATOMIC_BUF_START (SIO_HI_RA_RAM_USR_BEGIN__A)
#define DRXK_HI_ATOMIC_BUF_END (SIO_HI_RA_RAM_USR_BEGIN__A + 7)
#define DRXK_HI_ATOMIC_READ SIO_HI_RA_RAM_PAR_3_ACP_RW_READ
#define DRXK_HI_ATOMIC_WRITE SIO_HI_RA_RAM_PAR_3_ACP_RW_WRITE
#define DRXDAP_FASI_ADDR2BLOCK(addr) (((addr) >> 22) & 0x3F)
#define DRXDAP_FASI_ADDR2BANK(addr) (((addr) >> 16) & 0x3F)
#define DRXDAP_FASI_ADDR2OFFSET(addr) ((addr) & 0x7FFF)
static int ConfigureI2CBridge(struct drxk_state *state, bool b_enable_bridge)
{
int status = -EINVAL;
dprintk(1, "\n");
if (state->m_drxk_state == DRXK_UNINITIALIZED)
return 0;
if (state->m_drxk_state == DRXK_POWERED_DOWN)
goto error;
if (state->no_i2c_bridge)
return 0;
status = write16(state, SIO_HI_RA_RAM_PAR_1__A,
SIO_HI_RA_RAM_PAR_1_PAR1_SEC_KEY);
if (status < 0)
goto error;
if (b_enable_bridge) {
status = write16(state, SIO_HI_RA_RAM_PAR_2__A,
SIO_HI_RA_RAM_PAR_2_BRD_CFG_CLOSED);
if (status < 0)
goto error;
} else {
status = write16(state, SIO_HI_RA_RAM_PAR_2__A,
SIO_HI_RA_RAM_PAR_2_BRD_CFG_OPEN);
if (status < 0)
goto error;
}
status = hi_command(state, SIO_HI_RA_RAM_CMD_BRDCTRL, NULL);
error:
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
return status;
}
static int set_pre_saw(struct drxk_state *state,
struct s_cfg_pre_saw *p_pre_saw_cfg)
{
int status = -EINVAL;
dprintk(1, "\n");
if ((p_pre_saw_cfg == NULL)
|| (p_pre_saw_cfg->reference > IQM_AF_PDREF__M))
goto error;
status = write16(state, IQM_AF_PDREF__A, p_pre_saw_cfg->reference);
error:
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
return status;
}
static int bl_direct_cmd(struct drxk_state *state, u32 target_addr,
u16 rom_offset, u16 nr_of_elements, u32 time_out)
{
u16 bl_status = 0;
u16 offset = (u16) ((target_addr >> 0) & 0x00FFFF);
u16 blockbank = (u16) ((target_addr >> 16) & 0x000FFF);
int status;
unsigned long end;
dprintk(1, "\n");
mutex_lock(&state->mutex);
status = write16(state, SIO_BL_MODE__A, SIO_BL_MODE_DIRECT);
if (status < 0)
goto error;
status = write16(state, SIO_BL_TGT_HDR__A, blockbank);
if (status < 0)
goto error;
status = write16(state, SIO_BL_TGT_ADDR__A, offset);
if (status < 0)
goto error;
status = write16(state, SIO_BL_SRC_ADDR__A, rom_offset);
if (status < 0)
goto error;
status = write16(state, SIO_BL_SRC_LEN__A, nr_of_elements);
if (status < 0)
goto error;
status = write16(state, SIO_BL_ENABLE__A, SIO_BL_ENABLE_ON);
if (status < 0)
goto error;
end = jiffies + msecs_to_jiffies(time_out);
do {
status = read16(state, SIO_BL_STATUS__A, &bl_status);
if (status < 0)
goto error;
} while ((bl_status == 0x1) && time_is_after_jiffies(end));
if (bl_status == 0x1) {
pr_err("SIO not ready\n");
status = -EINVAL;
goto error2;
}
error:
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
error2:
mutex_unlock(&state->mutex);
return status;
}
static int adc_sync_measurement(struct drxk_state *state, u16 *count)
{
u16 data = 0;
int status;
dprintk(1, "\n");
/* start measurement */
status = write16(state, IQM_AF_COMM_EXEC__A, IQM_AF_COMM_EXEC_ACTIVE);
if (status < 0)
goto error;
status = write16(state, IQM_AF_START_LOCK__A, 1);
if (status < 0)
goto error;
*count = 0;
status = read16(state, IQM_AF_PHASE0__A, &data);
if (status < 0)
goto error;
if (data == 127)
*count = *count + 1;
status = read16(state, IQM_AF_PHASE1__A, &data);
if (status < 0)
goto error;
if (data == 127)
*count = *count + 1;
status = read16(state, IQM_AF_PHASE2__A, &data);
if (status < 0)
goto error;
if (data == 127)
*count = *count + 1;
error:
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
return status;
}
static int adc_synchronization(struct drxk_state *state)
{
u16 count = 0;
int status;
dprintk(1, "\n");
status = adc_sync_measurement(state, &count);
if (status < 0)
goto error;
if (count == 1) {
/* Try sampling on a different edge */
u16 clk_neg = 0;
status = read16(state, IQM_AF_CLKNEG__A, &clk_neg);
if (status < 0)
goto error;
if ((clk_neg & IQM_AF_CLKNEG_CLKNEGDATA__M) ==
IQM_AF_CLKNEG_CLKNEGDATA_CLK_ADC_DATA_POS) {
clk_neg &= (~(IQM_AF_CLKNEG_CLKNEGDATA__M));
clk_neg |=
IQM_AF_CLKNEG_CLKNEGDATA_CLK_ADC_DATA_NEG;
} else {
clk_neg &= (~(IQM_AF_CLKNEG_CLKNEGDATA__M));
clk_neg |=
IQM_AF_CLKNEG_CLKNEGDATA_CLK_ADC_DATA_POS;
}
status = write16(state, IQM_AF_CLKNEG__A, clk_neg);
if (status < 0)
goto error;
status = adc_sync_measurement(state, &count);
if (status < 0)
goto error;
}
if (count < 2)
status = -EINVAL;
error:
if (status < 0)
pr_err("Error %d on %s\n", status, __func__);
return status;
}
static int set_frequency_shifter(struct drxk_state *state,
u16 intermediate_freqk_hz,
s32 tuner_freq_offset, bool is_dtv)
{
bool select_pos_image = false;
u32 rf_freq_residual = tuner_freq_offset;
u32 fm_frequency_shift = 0;
bool tuner_mirror = !state->m_b_mirror_freq_spect;
u32 adc_freq;
bool adc_flip;
int status;
u32 if_freq_actual;
u32 sampling_frequency = (u32) (state->m_sys_clock_freq / 3);
u32 frequency_shift;
bool image_to_select;
dprintk(1, "\n");
/*
Program frequency shifter
No need to account for mirroring on RF
*/
if (is_dtv) {
if ((state->m_operation_mode == OM_QAM_ITU_A) ||
(state->m_operation_mode == OM_QAM_ITU_C) ||
(state->m_operation_mode == OM_DVBT))
select_pos_image = true;
else
select_pos_image = false;
}