blob: 0453ff6839a7eb68c8cede521d5004daaed0e6b2 [file] [log] [blame]
/*
* drivers/soc/tegra/pmc.c
*
* Copyright (c) 2010 Google, Inc
*
* Author:
* Colin Cross <ccross@google.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#define pr_fmt(fmt) "tegra-pmc: " fmt
#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/clk/tegra.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h>
#include <linux/reboot.h>
#include <linux/reset.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <soc/tegra/common.h>
#include <soc/tegra/fuse.h>
#include <soc/tegra/pmc.h>
#define PMC_CNTRL 0x0
#define PMC_CNTRL_INTR_POLARITY BIT(17) /* inverts INTR polarity */
#define PMC_CNTRL_CPU_PWRREQ_OE BIT(16) /* CPU pwr req enable */
#define PMC_CNTRL_CPU_PWRREQ_POLARITY BIT(15) /* CPU pwr req polarity */
#define PMC_CNTRL_SIDE_EFFECT_LP0 BIT(14) /* LP0 when CPU pwr gated */
#define PMC_CNTRL_SYSCLK_OE BIT(11) /* system clock enable */
#define PMC_CNTRL_SYSCLK_POLARITY BIT(10) /* sys clk polarity */
#define PMC_CNTRL_MAIN_RST BIT(4)
#define DPD_SAMPLE 0x020
#define DPD_SAMPLE_ENABLE BIT(0)
#define DPD_SAMPLE_DISABLE (0 << 0)
#define PWRGATE_TOGGLE 0x30
#define PWRGATE_TOGGLE_START BIT(8)
#define REMOVE_CLAMPING 0x34
#define PWRGATE_STATUS 0x38
#define PMC_PWR_DET 0x48
#define PMC_SCRATCH0 0x50
#define PMC_SCRATCH0_MODE_RECOVERY BIT(31)
#define PMC_SCRATCH0_MODE_BOOTLOADER BIT(30)
#define PMC_SCRATCH0_MODE_RCM BIT(1)
#define PMC_SCRATCH0_MODE_MASK (PMC_SCRATCH0_MODE_RECOVERY | \
PMC_SCRATCH0_MODE_BOOTLOADER | \
PMC_SCRATCH0_MODE_RCM)
#define PMC_CPUPWRGOOD_TIMER 0xc8
#define PMC_CPUPWROFF_TIMER 0xcc
#define PMC_PWR_DET_VALUE 0xe4
#define PMC_SCRATCH41 0x140
#define PMC_SENSOR_CTRL 0x1b0
#define PMC_SENSOR_CTRL_SCRATCH_WRITE BIT(2)
#define PMC_SENSOR_CTRL_ENABLE_RST BIT(1)
#define PMC_RST_STATUS 0x1b4
#define PMC_RST_STATUS_POR 0
#define PMC_RST_STATUS_WATCHDOG 1
#define PMC_RST_STATUS_SENSOR 2
#define PMC_RST_STATUS_SW_MAIN 3
#define PMC_RST_STATUS_LP0 4
#define PMC_RST_STATUS_AOTAG 5
#define IO_DPD_REQ 0x1b8
#define IO_DPD_REQ_CODE_IDLE (0U << 30)
#define IO_DPD_REQ_CODE_OFF (1U << 30)
#define IO_DPD_REQ_CODE_ON (2U << 30)
#define IO_DPD_REQ_CODE_MASK (3U << 30)
#define IO_DPD_STATUS 0x1bc
#define IO_DPD2_REQ 0x1c0
#define IO_DPD2_STATUS 0x1c4
#define SEL_DPD_TIM 0x1c8
#define PMC_SCRATCH54 0x258
#define PMC_SCRATCH54_DATA_SHIFT 8
#define PMC_SCRATCH54_ADDR_SHIFT 0
#define PMC_SCRATCH55 0x25c
#define PMC_SCRATCH55_RESET_TEGRA BIT(31)
#define PMC_SCRATCH55_CNTRL_ID_SHIFT 27
#define PMC_SCRATCH55_PINMUX_SHIFT 24
#define PMC_SCRATCH55_16BITOP BIT(15)
#define PMC_SCRATCH55_CHECKSUM_SHIFT 16
#define PMC_SCRATCH55_I2CSLV1_SHIFT 0
#define GPU_RG_CNTRL 0x2d4
struct tegra_powergate {
struct generic_pm_domain genpd;
struct tegra_pmc *pmc;
unsigned int id;
struct clk **clks;
unsigned int num_clks;
struct reset_control **resets;
unsigned int num_resets;
};
struct tegra_io_pad_soc {
enum tegra_io_pad id;
unsigned int dpd;
unsigned int voltage;
};
struct tegra_pmc_soc {
unsigned int num_powergates;
const char *const *powergates;
unsigned int num_cpu_powergates;
const u8 *cpu_powergates;
bool has_tsense_reset;
bool has_gpu_clamps;
const struct tegra_io_pad_soc *io_pads;
unsigned int num_io_pads;
};
/**
* struct tegra_pmc - NVIDIA Tegra PMC
* @dev: pointer to PMC device structure
* @base: pointer to I/O remapped register region
* @clk: pointer to pclk clock
* @soc: pointer to SoC data structure
* @debugfs: pointer to debugfs entry
* @rate: currently configured rate of pclk
* @suspend_mode: lowest suspend mode available
* @cpu_good_time: CPU power good time (in microseconds)
* @cpu_off_time: CPU power off time (in microsecends)
* @core_osc_time: core power good OSC time (in microseconds)
* @core_pmu_time: core power good PMU time (in microseconds)
* @core_off_time: core power off time (in microseconds)
* @corereq_high: core power request is active-high
* @sysclkreq_high: system clock request is active-high
* @combined_req: combined power request for CPU & core
* @cpu_pwr_good_en: CPU power good signal is enabled
* @lp0_vec_phys: physical base address of the LP0 warm boot code
* @lp0_vec_size: size of the LP0 warm boot code
* @powergates_available: Bitmap of available power gates
* @powergates_lock: mutex for power gate register access
*/
struct tegra_pmc {
struct device *dev;
void __iomem *base;
struct clk *clk;
struct dentry *debugfs;
const struct tegra_pmc_soc *soc;
unsigned long rate;
enum tegra_suspend_mode suspend_mode;
u32 cpu_good_time;
u32 cpu_off_time;
u32 core_osc_time;
u32 core_pmu_time;
u32 core_off_time;
bool corereq_high;
bool sysclkreq_high;
bool combined_req;
bool cpu_pwr_good_en;
u32 lp0_vec_phys;
u32 lp0_vec_size;
DECLARE_BITMAP(powergates_available, TEGRA_POWERGATE_MAX);
struct mutex powergates_lock;
};
static struct tegra_pmc *pmc = &(struct tegra_pmc) {
.base = NULL,
.suspend_mode = TEGRA_SUSPEND_NONE,
};
static inline struct tegra_powergate *
to_powergate(struct generic_pm_domain *domain)
{
return container_of(domain, struct tegra_powergate, genpd);
}
static u32 tegra_pmc_readl(unsigned long offset)
{
return readl(pmc->base + offset);
}
static void tegra_pmc_writel(u32 value, unsigned long offset)
{
writel(value, pmc->base + offset);
}
static inline bool tegra_powergate_state(int id)
{
if (id == TEGRA_POWERGATE_3D && pmc->soc->has_gpu_clamps)
return (tegra_pmc_readl(GPU_RG_CNTRL) & 0x1) == 0;
else
return (tegra_pmc_readl(PWRGATE_STATUS) & BIT(id)) != 0;
}
static inline bool tegra_powergate_is_valid(int id)
{
return (pmc->soc && pmc->soc->powergates[id]);
}
static inline bool tegra_powergate_is_available(int id)
{
return test_bit(id, pmc->powergates_available);
}
static int tegra_powergate_lookup(struct tegra_pmc *pmc, const char *name)
{
unsigned int i;
if (!pmc || !pmc->soc || !name)
return -EINVAL;
for (i = 0; i < pmc->soc->num_powergates; i++) {
if (!tegra_powergate_is_valid(i))
continue;
if (!strcmp(name, pmc->soc->powergates[i]))
return i;
}
return -ENODEV;
}
/**
* tegra_powergate_set() - set the state of a partition
* @id: partition ID
* @new_state: new state of the partition
*/
static int tegra_powergate_set(unsigned int id, bool new_state)
{
bool status;
int err;
if (id == TEGRA_POWERGATE_3D && pmc->soc->has_gpu_clamps)
return -EINVAL;
mutex_lock(&pmc->powergates_lock);
if (tegra_powergate_state(id) == new_state) {
mutex_unlock(&pmc->powergates_lock);
return 0;
}
tegra_pmc_writel(PWRGATE_TOGGLE_START | id, PWRGATE_TOGGLE);
err = readx_poll_timeout(tegra_powergate_state, id, status,
status == new_state, 10, 100000);
mutex_unlock(&pmc->powergates_lock);
return err;
}
static int __tegra_powergate_remove_clamping(unsigned int id)
{
u32 mask;
mutex_lock(&pmc->powergates_lock);
/*
* On Tegra124 and later, the clamps for the GPU are controlled by a
* separate register (with different semantics).
*/
if (id == TEGRA_POWERGATE_3D) {
if (pmc->soc->has_gpu_clamps) {
tegra_pmc_writel(0, GPU_RG_CNTRL);
goto out;
}
}
/*
* Tegra 2 has a bug where PCIE and VDE clamping masks are
* swapped relatively to the partition ids
*/
if (id == TEGRA_POWERGATE_VDEC)
mask = (1 << TEGRA_POWERGATE_PCIE);
else if (id == TEGRA_POWERGATE_PCIE)
mask = (1 << TEGRA_POWERGATE_VDEC);
else
mask = (1 << id);
tegra_pmc_writel(mask, REMOVE_CLAMPING);
out:
mutex_unlock(&pmc->powergates_lock);
return 0;
}
static void tegra_powergate_disable_clocks(struct tegra_powergate *pg)
{
unsigned int i;
for (i = 0; i < pg->num_clks; i++)
clk_disable_unprepare(pg->clks[i]);
}
static int tegra_powergate_enable_clocks(struct tegra_powergate *pg)
{
unsigned int i;
int err;
for (i = 0; i < pg->num_clks; i++) {
err = clk_prepare_enable(pg->clks[i]);
if (err)
goto out;
}
return 0;
out:
while (i--)
clk_disable_unprepare(pg->clks[i]);
return err;
}
static int tegra_powergate_reset_assert(struct tegra_powergate *pg)
{
unsigned int i;
int err;
for (i = 0; i < pg->num_resets; i++) {
err = reset_control_assert(pg->resets[i]);
if (err)
return err;
}
return 0;
}
static int tegra_powergate_reset_deassert(struct tegra_powergate *pg)
{
unsigned int i;
int err;
for (i = 0; i < pg->num_resets; i++) {
err = reset_control_deassert(pg->resets[i]);
if (err)
return err;
}
return 0;
}
static int tegra_powergate_power_up(struct tegra_powergate *pg,
bool disable_clocks)
{
int err;
err = tegra_powergate_reset_assert(pg);
if (err)
return err;
usleep_range(10, 20);
err = tegra_powergate_set(pg->id, true);
if (err < 0)
return err;
usleep_range(10, 20);
err = tegra_powergate_enable_clocks(pg);
if (err)
goto disable_clks;
usleep_range(10, 20);
err = __tegra_powergate_remove_clamping(pg->id);
if (err)
goto disable_clks;
usleep_range(10, 20);
err = tegra_powergate_reset_deassert(pg);
if (err)
goto powergate_off;
usleep_range(10, 20);
if (disable_clocks)
tegra_powergate_disable_clocks(pg);
return 0;
disable_clks:
tegra_powergate_disable_clocks(pg);
usleep_range(10, 20);
powergate_off:
tegra_powergate_set(pg->id, false);
return err;
}
static int tegra_powergate_power_down(struct tegra_powergate *pg)
{
int err;
err = tegra_powergate_enable_clocks(pg);
if (err)
return err;
usleep_range(10, 20);
err = tegra_powergate_reset_assert(pg);
if (err)
goto disable_clks;
usleep_range(10, 20);
tegra_powergate_disable_clocks(pg);
usleep_range(10, 20);
err = tegra_powergate_set(pg->id, false);
if (err)
goto assert_resets;
return 0;
assert_resets:
tegra_powergate_enable_clocks(pg);
usleep_range(10, 20);
tegra_powergate_reset_deassert(pg);
usleep_range(10, 20);
disable_clks:
tegra_powergate_disable_clocks(pg);
return err;
}
static int tegra_genpd_power_on(struct generic_pm_domain *domain)
{
struct tegra_powergate *pg = to_powergate(domain);
int err;
err = tegra_powergate_power_up(pg, true);
if (err)
pr_err("failed to turn on PM domain %s: %d\n", pg->genpd.name,
err);
return err;
}
static int tegra_genpd_power_off(struct generic_pm_domain *domain)
{
struct tegra_powergate *pg = to_powergate(domain);
int err;
err = tegra_powergate_power_down(pg);
if (err)
pr_err("failed to turn off PM domain %s: %d\n",
pg->genpd.name, err);
return err;
}
/**
* tegra_powergate_power_on() - power on partition
* @id: partition ID
*/
int tegra_powergate_power_on(unsigned int id)
{
if (!tegra_powergate_is_available(id))
return -EINVAL;
return tegra_powergate_set(id, true);
}
/**
* tegra_powergate_power_off() - power off partition
* @id: partition ID
*/
int tegra_powergate_power_off(unsigned int id)
{
if (!tegra_powergate_is_available(id))
return -EINVAL;
return tegra_powergate_set(id, false);
}
EXPORT_SYMBOL(tegra_powergate_power_off);
/**
* tegra_powergate_is_powered() - check if partition is powered
* @id: partition ID
*/
int tegra_powergate_is_powered(unsigned int id)
{
int status;
if (!tegra_powergate_is_valid(id))
return -EINVAL;
mutex_lock(&pmc->powergates_lock);
status = tegra_powergate_state(id);
mutex_unlock(&pmc->powergates_lock);
return status;
}
/**
* tegra_powergate_remove_clamping() - remove power clamps for partition
* @id: partition ID
*/
int tegra_powergate_remove_clamping(unsigned int id)
{
if (!tegra_powergate_is_available(id))
return -EINVAL;
return __tegra_powergate_remove_clamping(id);
}
EXPORT_SYMBOL(tegra_powergate_remove_clamping);
/**
* tegra_powergate_sequence_power_up() - power up partition
* @id: partition ID
* @clk: clock for partition
* @rst: reset for partition
*
* Must be called with clk disabled, and returns with clk enabled.
*/
int tegra_powergate_sequence_power_up(unsigned int id, struct clk *clk,
struct reset_control *rst)
{
struct tegra_powergate pg;
int err;
if (!tegra_powergate_is_available(id))
return -EINVAL;
pg.id = id;
pg.clks = &clk;
pg.num_clks = 1;
pg.resets = &rst;
pg.num_resets = 1;
err = tegra_powergate_power_up(&pg, false);
if (err)
pr_err("failed to turn on partition %d: %d\n", id, err);
return err;
}
EXPORT_SYMBOL(tegra_powergate_sequence_power_up);
#ifdef CONFIG_SMP
/**
* tegra_get_cpu_powergate_id() - convert from CPU ID to partition ID
* @cpuid: CPU partition ID
*
* Returns the partition ID corresponding to the CPU partition ID or a
* negative error code on failure.
*/
static int tegra_get_cpu_powergate_id(unsigned int cpuid)
{
if (pmc->soc && cpuid < pmc->soc->num_cpu_powergates)
return pmc->soc->cpu_powergates[cpuid];
return -EINVAL;
}
/**
* tegra_pmc_cpu_is_powered() - check if CPU partition is powered
* @cpuid: CPU partition ID
*/
bool tegra_pmc_cpu_is_powered(unsigned int cpuid)
{
int id;
id = tegra_get_cpu_powergate_id(cpuid);
if (id < 0)
return false;
return tegra_powergate_is_powered(id);
}
/**
* tegra_pmc_cpu_power_on() - power on CPU partition
* @cpuid: CPU partition ID
*/
int tegra_pmc_cpu_power_on(unsigned int cpuid)
{
int id;
id = tegra_get_cpu_powergate_id(cpuid);
if (id < 0)
return id;
return tegra_powergate_set(id, true);
}
/**
* tegra_pmc_cpu_remove_clamping() - remove power clamps for CPU partition
* @cpuid: CPU partition ID
*/
int tegra_pmc_cpu_remove_clamping(unsigned int cpuid)
{
int id;
id = tegra_get_cpu_powergate_id(cpuid);
if (id < 0)
return id;
return tegra_powergate_remove_clamping(id);
}
#endif /* CONFIG_SMP */
static int tegra_pmc_restart_notify(struct notifier_block *this,
unsigned long action, void *data)
{
const char *cmd = data;
u32 value;
value = tegra_pmc_readl(PMC_SCRATCH0);
value &= ~PMC_SCRATCH0_MODE_MASK;
if (cmd) {
if (strcmp(cmd, "recovery") == 0)
value |= PMC_SCRATCH0_MODE_RECOVERY;
if (strcmp(cmd, "bootloader") == 0)
value |= PMC_SCRATCH0_MODE_BOOTLOADER;
if (strcmp(cmd, "forced-recovery") == 0)
value |= PMC_SCRATCH0_MODE_RCM;
}
tegra_pmc_writel(value, PMC_SCRATCH0);
/* reset everything but PMC_SCRATCH0 and PMC_RST_STATUS */
value = tegra_pmc_readl(PMC_CNTRL);
value |= PMC_CNTRL_MAIN_RST;
tegra_pmc_writel(value, PMC_CNTRL);
return NOTIFY_DONE;
}
static struct notifier_block tegra_pmc_restart_handler = {
.notifier_call = tegra_pmc_restart_notify,
.priority = 128,
};
static int powergate_show(struct seq_file *s, void *data)
{
unsigned int i;
int status;
seq_printf(s, " powergate powered\n");
seq_printf(s, "------------------\n");
for (i = 0; i < pmc->soc->num_powergates; i++) {
status = tegra_powergate_is_powered(i);
if (status < 0)
continue;
seq_printf(s, " %9s %7s\n", pmc->soc->powergates[i],
status ? "yes" : "no");
}
return 0;
}
static int powergate_open(struct inode *inode, struct file *file)
{
return single_open(file, powergate_show, inode->i_private);
}
static const struct file_operations powergate_fops = {
.open = powergate_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static int tegra_powergate_debugfs_init(void)
{
pmc->debugfs = debugfs_create_file("powergate", S_IRUGO, NULL, NULL,
&powergate_fops);
if (!pmc->debugfs)
return -ENOMEM;
return 0;
}
static int tegra_powergate_of_get_clks(struct tegra_powergate *pg,
struct device_node *np)
{
struct clk *clk;
unsigned int i, count;
int err;
count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
if (count == 0)
return -ENODEV;
pg->clks = kcalloc(count, sizeof(clk), GFP_KERNEL);
if (!pg->clks)
return -ENOMEM;
for (i = 0; i < count; i++) {
pg->clks[i] = of_clk_get(np, i);
if (IS_ERR(pg->clks[i])) {
err = PTR_ERR(pg->clks[i]);
goto err;
}
}
pg->num_clks = count;
return 0;
err:
while (i--)
clk_put(pg->clks[i]);
kfree(pg->clks);
return err;
}
static int tegra_powergate_of_get_resets(struct tegra_powergate *pg,
struct device_node *np, bool off)
{
struct reset_control *rst;
unsigned int i, count;
int err;
count = of_count_phandle_with_args(np, "resets", "#reset-cells");
if (count == 0)
return -ENODEV;
pg->resets = kcalloc(count, sizeof(rst), GFP_KERNEL);
if (!pg->resets)
return -ENOMEM;
for (i = 0; i < count; i++) {
pg->resets[i] = of_reset_control_get_by_index(np, i);
if (IS_ERR(pg->resets[i])) {
err = PTR_ERR(pg->resets[i]);
goto error;
}
if (off)
err = reset_control_assert(pg->resets[i]);
else
err = reset_control_deassert(pg->resets[i]);
if (err) {
reset_control_put(pg->resets[i]);
goto error;
}
}
pg->num_resets = count;
return 0;
error:
while (i--)
reset_control_put(pg->resets[i]);
kfree(pg->resets);
return err;
}
static void tegra_powergate_add(struct tegra_pmc *pmc, struct device_node *np)
{
struct tegra_powergate *pg;
int id, err;
bool off;
pg = kzalloc(sizeof(*pg), GFP_KERNEL);
if (!pg)
return;
id = tegra_powergate_lookup(pmc, np->name);
if (id < 0) {
pr_err("powergate lookup failed for %s: %d\n", np->name, id);
goto free_mem;
}
/*
* Clear the bit for this powergate so it cannot be managed
* directly via the legacy APIs for controlling powergates.
*/
clear_bit(id, pmc->powergates_available);
pg->id = id;
pg->genpd.name = np->name;
pg->genpd.power_off = tegra_genpd_power_off;
pg->genpd.power_on = tegra_genpd_power_on;
pg->pmc = pmc;
off = !tegra_powergate_is_powered(pg->id);
err = tegra_powergate_of_get_clks(pg, np);
if (err < 0) {
pr_err("failed to get clocks for %s: %d\n", np->name, err);
goto set_available;
}
err = tegra_powergate_of_get_resets(pg, np, off);
if (err < 0) {
pr_err("failed to get resets for %s: %d\n", np->name, err);
goto remove_clks;
}
if (!IS_ENABLED(CONFIG_PM_GENERIC_DOMAINS)) {
if (off)
WARN_ON(tegra_powergate_power_up(pg, true));
goto remove_resets;
}
/*
* FIXME: If XHCI is enabled for Tegra, then power-up the XUSB
* host and super-speed partitions. Once the XHCI driver
* manages the partitions itself this code can be removed. Note
* that we don't register these partitions with the genpd core
* to avoid it from powering down the partitions as they appear
* to be unused.
*/
if (IS_ENABLED(CONFIG_USB_XHCI_TEGRA) &&
(id == TEGRA_POWERGATE_XUSBA || id == TEGRA_POWERGATE_XUSBC)) {
if (off)
WARN_ON(tegra_powergate_power_up(pg, true));
goto remove_resets;
}
err = pm_genpd_init(&pg->genpd, NULL, off);
if (err < 0) {
pr_err("failed to initialise PM domain %s: %d\n", np->name,
err);
goto remove_resets;
}
err = of_genpd_add_provider_simple(np, &pg->genpd);
if (err < 0) {
pr_err("failed to add PM domain provider for %s: %d\n",
np->name, err);
goto remove_genpd;
}
pr_debug("added PM domain %s\n", pg->genpd.name);
return;
remove_genpd:
pm_genpd_remove(&pg->genpd);
remove_resets:
while (pg->num_resets--)
reset_control_put(pg->resets[pg->num_resets]);
kfree(pg->resets);
remove_clks:
while (pg->num_clks--)
clk_put(pg->clks[pg->num_clks]);
kfree(pg->clks);
set_available:
set_bit(id, pmc->powergates_available);
free_mem:
kfree(pg);
}
static void tegra_powergate_init(struct tegra_pmc *pmc,
struct device_node *parent)
{
struct device_node *np, *child;
unsigned int i;
/* Create a bitmap of the available and valid partitions */
for (i = 0; i < pmc->soc->num_powergates; i++)
if (pmc->soc->powergates[i])
set_bit(i, pmc->powergates_available);
np = of_get_child_by_name(parent, "powergates");
if (!np)
return;
for_each_child_of_node(np, child)
tegra_powergate_add(pmc, child);
of_node_put(np);
}
static const struct tegra_io_pad_soc *
tegra_io_pad_find(struct tegra_pmc *pmc, enum tegra_io_pad id)
{
unsigned int i;
for (i = 0; i < pmc->soc->num_io_pads; i++)
if (pmc->soc->io_pads[i].id == id)
return &pmc->soc->io_pads[i];
return NULL;
}
static int tegra_io_pad_prepare(enum tegra_io_pad id, unsigned long *request,
unsigned long *status, u32 *mask)
{
const struct tegra_io_pad_soc *pad;
unsigned long rate, value;
pad = tegra_io_pad_find(pmc, id);
if (!pad) {
pr_err("invalid I/O pad ID %u\n", id);
return -ENOENT;
}
if (pad->dpd == UINT_MAX)
return -ENOTSUPP;
*mask = BIT(pad->dpd % 32);
if (pad->dpd < 32) {
*status = IO_DPD_STATUS;
*request = IO_DPD_REQ;
} else {
*status = IO_DPD2_STATUS;
*request = IO_DPD2_REQ;
}
rate = clk_get_rate(pmc->clk);
if (!rate) {
pr_err("failed to get clock rate\n");
return -ENODEV;
}
tegra_pmc_writel(DPD_SAMPLE_ENABLE, DPD_SAMPLE);
/* must be at least 200 ns, in APB (PCLK) clock cycles */
value = DIV_ROUND_UP(1000000000, rate);
value = DIV_ROUND_UP(200, value);
tegra_pmc_writel(value, SEL_DPD_TIM);
return 0;
}
static int tegra_io_pad_poll(unsigned long offset, u32 mask,
u32 val, unsigned long timeout)
{
u32 value;
timeout = jiffies + msecs_to_jiffies(timeout);
while (time_after(timeout, jiffies)) {
value = tegra_pmc_readl(offset);
if ((value & mask) == val)
return 0;
usleep_range(250, 1000);
}
return -ETIMEDOUT;
}
static void tegra_io_pad_unprepare(void)
{
tegra_pmc_writel(DPD_SAMPLE_DISABLE, DPD_SAMPLE);
}
/**
* tegra_io_pad_power_enable() - enable power to I/O pad
* @id: Tegra I/O pad ID for which to enable power
*
* Returns: 0 on success or a negative error code on failure.
*/
int tegra_io_pad_power_enable(enum tegra_io_pad id)
{
unsigned long request, status;
u32 mask;
int err;
mutex_lock(&pmc->powergates_lock);
err = tegra_io_pad_prepare(id, &request, &status, &mask);
if (err < 0) {
pr_err("failed to prepare I/O pad: %d\n", err);
goto unlock;
}
tegra_pmc_writel(IO_DPD_REQ_CODE_OFF | mask, request);
err = tegra_io_pad_poll(status, mask, 0, 250);
if (err < 0) {
pr_err("failed to enable I/O pad: %d\n", err);
goto unlock;
}
tegra_io_pad_unprepare();
unlock:
mutex_unlock(&pmc->powergates_lock);
return err;
}
EXPORT_SYMBOL(tegra_io_pad_power_enable);
/**
* tegra_io_pad_power_disable() - disable power to I/O pad
* @id: Tegra I/O pad ID for which to disable power
*
* Returns: 0 on success or a negative error code on failure.
*/
int tegra_io_pad_power_disable(enum tegra_io_pad id)
{
unsigned long request, status;
u32 mask;
int err;
mutex_lock(&pmc->powergates_lock);
err = tegra_io_pad_prepare(id, &request, &status, &mask);
if (err < 0) {
pr_err("failed to prepare I/O pad: %d\n", err);
goto unlock;
}
tegra_pmc_writel(IO_DPD_REQ_CODE_ON | mask, request);
err = tegra_io_pad_poll(status, mask, mask, 250);
if (err < 0) {
pr_err("failed to disable I/O pad: %d\n", err);
goto unlock;
}
tegra_io_pad_unprepare();
unlock:
mutex_unlock(&pmc->powergates_lock);
return err;
}
EXPORT_SYMBOL(tegra_io_pad_power_disable);
int tegra_io_pad_set_voltage(enum tegra_io_pad id,
enum tegra_io_pad_voltage voltage)
{
const struct tegra_io_pad_soc *pad;
u32 value;
pad = tegra_io_pad_find(pmc, id);
if (!pad)
return -ENOENT;
if (pad->voltage == UINT_MAX)
return -ENOTSUPP;
mutex_lock(&pmc->powergates_lock);
/* write-enable PMC_PWR_DET_VALUE[pad->voltage] */
value = tegra_pmc_readl(PMC_PWR_DET);
value |= BIT(pad->voltage);
tegra_pmc_writel(value, PMC_PWR_DET);
/* update I/O voltage */
value = tegra_pmc_readl(PMC_PWR_DET_VALUE);
if (voltage == TEGRA_IO_PAD_1800000UV)
value &= ~BIT(pad->voltage);
else
value |= BIT(pad->voltage);
tegra_pmc_writel(value, PMC_PWR_DET_VALUE);
mutex_unlock(&pmc->powergates_lock);
usleep_range(100, 250);
return 0;
}
EXPORT_SYMBOL(tegra_io_pad_set_voltage);
int tegra_io_pad_get_voltage(enum tegra_io_pad id)
{
const struct tegra_io_pad_soc *pad;
u32 value;
pad = tegra_io_pad_find(pmc, id);
if (!pad)
return -ENOENT;
if (pad->voltage == UINT_MAX)
return -ENOTSUPP;
value = tegra_pmc_readl(PMC_PWR_DET_VALUE);
if ((value & BIT(pad->voltage)) == 0)
return TEGRA_IO_PAD_1800000UV;
return TEGRA_IO_PAD_3300000UV;
}
EXPORT_SYMBOL(tegra_io_pad_get_voltage);
/**
* tegra_io_rail_power_on() - enable power to I/O rail
* @id: Tegra I/O pad ID for which to enable power
*
* See also: tegra_io_pad_power_enable()
*/
int tegra_io_rail_power_on(unsigned int id)
{
return tegra_io_pad_power_enable(id);
}
EXPORT_SYMBOL(tegra_io_rail_power_on);
/**
* tegra_io_rail_power_off() - disable power to I/O rail
* @id: Tegra I/O pad ID for which to disable power
*
* See also: tegra_io_pad_power_disable()
*/
int tegra_io_rail_power_off(unsigned int id)
{
return tegra_io_pad_power_disable(id);
}
EXPORT_SYMBOL(tegra_io_rail_power_off);
#ifdef CONFIG_PM_SLEEP
enum tegra_suspend_mode tegra_pmc_get_suspend_mode(void)
{
return pmc->suspend_mode;
}
void tegra_pmc_set_suspend_mode(enum tegra_suspend_mode mode)
{
if (mode < TEGRA_SUSPEND_NONE || mode >= TEGRA_MAX_SUSPEND_MODE)
return;
pmc->suspend_mode = mode;
}
void tegra_pmc_enter_suspend_mode(enum tegra_suspend_mode mode)
{
unsigned long long rate = 0;
u32 value;
switch (mode) {
case TEGRA_SUSPEND_LP1:
rate = 32768;
break;
case TEGRA_SUSPEND_LP2:
rate = clk_get_rate(pmc->clk);
break;
default:
break;
}
if (WARN_ON_ONCE(rate == 0))
rate = 100000000;
if (rate != pmc->rate) {
u64 ticks;
ticks = pmc->cpu_good_time * rate + USEC_PER_SEC - 1;
do_div(ticks, USEC_PER_SEC);
tegra_pmc_writel(ticks, PMC_CPUPWRGOOD_TIMER);
ticks = pmc->cpu_off_time * rate + USEC_PER_SEC - 1;
do_div(ticks, USEC_PER_SEC);
tegra_pmc_writel(ticks, PMC_CPUPWROFF_TIMER);
wmb();
pmc->rate = rate;
}
value = tegra_pmc_readl(PMC_CNTRL);
value &= ~PMC_CNTRL_SIDE_EFFECT_LP0;
value |= PMC_CNTRL_CPU_PWRREQ_OE;
tegra_pmc_writel(value, PMC_CNTRL);
}
#endif
static int tegra_pmc_parse_dt(struct tegra_pmc *pmc, struct device_node *np)
{
u32 value, values[2];
if (of_property_read_u32(np, "nvidia,suspend-mode", &value)) {
} else {
switch (value) {
case 0:
pmc->suspend_mode = TEGRA_SUSPEND_LP0;
break;
case 1:
pmc->suspend_mode = TEGRA_SUSPEND_LP1;
break;
case 2:
pmc->suspend_mode = TEGRA_SUSPEND_LP2;
break;
default:
pmc->suspend_mode = TEGRA_SUSPEND_NONE;
break;
}
}
pmc->suspend_mode = tegra_pm_validate_suspend_mode(pmc->suspend_mode);
if (of_property_read_u32(np, "nvidia,cpu-pwr-good-time", &value))
pmc->suspend_mode = TEGRA_SUSPEND_NONE;
pmc->cpu_good_time = value;
if (of_property_read_u32(np, "nvidia,cpu-pwr-off-time", &value))
pmc->suspend_mode = TEGRA_SUSPEND_NONE;
pmc->cpu_off_time = value;
if (of_property_read_u32_array(np, "nvidia,core-pwr-good-time",
values, ARRAY_SIZE(values)))
pmc->suspend_mode = TEGRA_SUSPEND_NONE;
pmc->core_osc_time = values[0];
pmc->core_pmu_time = values[1];
if (of_property_read_u32(np, "nvidia,core-pwr-off-time", &value))
pmc->suspend_mode = TEGRA_SUSPEND_NONE;
pmc->core_off_time = value;
pmc->corereq_high = of_property_read_bool(np,
"nvidia,core-power-req-active-high");
pmc->sysclkreq_high = of_property_read_bool(np,
"nvidia,sys-clock-req-active-high");
pmc->combined_req = of_property_read_bool(np,
"nvidia,combined-power-req");
pmc->cpu_pwr_good_en = of_property_read_bool(np,
"nvidia,cpu-pwr-good-en");
if (of_property_read_u32_array(np, "nvidia,lp0-vec", values,
ARRAY_SIZE(values)))
if (pmc->suspend_mode == TEGRA_SUSPEND_LP0)
pmc->suspend_mode = TEGRA_SUSPEND_LP1;
pmc->lp0_vec_phys = values[0];
pmc->lp0_vec_size = values[1];
return 0;
}
static void tegra_pmc_init(struct tegra_pmc *pmc)
{
u32 value;
/* Always enable CPU power request */
value = tegra_pmc_readl(PMC_CNTRL);
value |= PMC_CNTRL_CPU_PWRREQ_OE;
tegra_pmc_writel(value, PMC_CNTRL);
value = tegra_pmc_readl(PMC_CNTRL);
if (pmc->sysclkreq_high)
value &= ~PMC_CNTRL_SYSCLK_POLARITY;
else
value |= PMC_CNTRL_SYSCLK_POLARITY;
/* configure the output polarity while the request is tristated */
tegra_pmc_writel(value, PMC_CNTRL);
/* now enable the request */
value = tegra_pmc_readl(PMC_CNTRL);
value |= PMC_CNTRL_SYSCLK_OE;
tegra_pmc_writel(value, PMC_CNTRL);
}
static void tegra_pmc_init_tsense_reset(struct tegra_pmc *pmc)
{
static const char disabled[] = "emergency thermal reset disabled";
u32 pmu_addr, ctrl_id, reg_addr, reg_data, pinmux;
struct device *dev = pmc->dev;
struct device_node *np;
u32 value, checksum;
if (!pmc->soc->has_tsense_reset)
return;
np = of_find_node_by_name(pmc->dev->of_node, "i2c-thermtrip");
if (!np) {
dev_warn(dev, "i2c-thermtrip node not found, %s.\n", disabled);
return;
}
if (of_property_read_u32(np, "nvidia,i2c-controller-id", &ctrl_id)) {
dev_err(dev, "I2C controller ID missing, %s.\n", disabled);
goto out;
}
if (of_property_read_u32(np, "nvidia,bus-addr", &pmu_addr)) {
dev_err(dev, "nvidia,bus-addr missing, %s.\n", disabled);
goto out;
}
if (of_property_read_u32(np, "nvidia,reg-addr", &reg_addr)) {
dev_err(dev, "nvidia,reg-addr missing, %s.\n", disabled);
goto out;
}
if (of_property_read_u32(np, "nvidia,reg-data", &reg_data)) {
dev_err(dev, "nvidia,reg-data missing, %s.\n", disabled);
goto out;
}
if (of_property_read_u32(np, "nvidia,pinmux-id", &pinmux))
pinmux = 0;
value = tegra_pmc_readl(PMC_SENSOR_CTRL);
value |= PMC_SENSOR_CTRL_SCRATCH_WRITE;
tegra_pmc_writel(value, PMC_SENSOR_CTRL);
value = (reg_data << PMC_SCRATCH54_DATA_SHIFT) |
(reg_addr << PMC_SCRATCH54_ADDR_SHIFT);
tegra_pmc_writel(value, PMC_SCRATCH54);
value = PMC_SCRATCH55_RESET_TEGRA;
value |= ctrl_id << PMC_SCRATCH55_CNTRL_ID_SHIFT;
value |= pinmux << PMC_SCRATCH55_PINMUX_SHIFT;
value |= pmu_addr << PMC_SCRATCH55_I2CSLV1_SHIFT;
/*
* Calculate checksum of SCRATCH54, SCRATCH55 fields. Bits 23:16 will
* contain the checksum and are currently zero, so they are not added.
*/
checksum = reg_addr + reg_data + (value & 0xff) + ((value >> 8) & 0xff)
+ ((value >> 24) & 0xff);
checksum &= 0xff;
checksum = 0x100 - checksum;
value |= checksum << PMC_SCRATCH55_CHECKSUM_SHIFT;
tegra_pmc_writel(value, PMC_SCRATCH55);
value = tegra_pmc_readl(PMC_SENSOR_CTRL);
value |= PMC_SENSOR_CTRL_ENABLE_RST;
tegra_pmc_writel(value, PMC_SENSOR_CTRL);
dev_info(pmc->dev, "emergency thermal reset enabled\n");
out:
of_node_put(np);
}
static int tegra_pmc_probe(struct platform_device *pdev)
{
void __iomem *base;
struct resource *res;
int err;
/*
* Early initialisation should have configured an initial
* register mapping and setup the soc data pointer. If these
* are not valid then something went badly wrong!
*/
if (WARN_ON(!pmc->base || !pmc->soc))
return -ENODEV;
err = tegra_pmc_parse_dt(pmc, pdev->dev.of_node);
if (err < 0)
return err;
/* take over the memory region from the early initialization */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
pmc->clk = devm_clk_get(&pdev->dev, "pclk");
if (IS_ERR(pmc->clk)) {
err = PTR_ERR(pmc->clk);
dev_err(&pdev->dev, "failed to get pclk: %d\n", err);
return err;
}
pmc->dev = &pdev->dev;
tegra_pmc_init(pmc);
tegra_pmc_init_tsense_reset(pmc);
if (IS_ENABLED(CONFIG_DEBUG_FS)) {
err = tegra_powergate_debugfs_init();
if (err < 0)
return err;
}
err = register_restart_handler(&tegra_pmc_restart_handler);
if (err) {
debugfs_remove(pmc->debugfs);
dev_err(&pdev->dev, "unable to register restart handler, %d\n",
err);
return err;
}
mutex_lock(&pmc->powergates_lock);
iounmap(pmc->base);
pmc->base = base;
mutex_unlock(&pmc->powergates_lock);
return 0;
}
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_ARM)
static int tegra_pmc_suspend(struct device *dev)
{
tegra_pmc_writel(virt_to_phys(tegra_resume), PMC_SCRATCH41);
return 0;
}
static int tegra_pmc_resume(struct device *dev)
{
tegra_pmc_writel(0x0, PMC_SCRATCH41);
return 0;
}
static SIMPLE_DEV_PM_OPS(tegra_pmc_pm_ops, tegra_pmc_suspend, tegra_pmc_resume);
#endif
static const char * const tegra20_powergates[] = {
[TEGRA_POWERGATE_CPU] = "cpu",
[TEGRA_POWERGATE_3D] = "3d",
[TEGRA_POWERGATE_VENC] = "venc",
[TEGRA_POWERGATE_VDEC] = "vdec",
[TEGRA_POWERGATE_PCIE] = "pcie",
[TEGRA_POWERGATE_L2] = "l2",
[TEGRA_POWERGATE_MPE] = "mpe",
};
static const struct tegra_pmc_soc tegra20_pmc_soc = {
.num_powergates = ARRAY_SIZE(tegra20_powergates),
.powergates = tegra20_powergates,
.num_cpu_powergates = 0,
.cpu_powergates = NULL,
.has_tsense_reset = false,
.has_gpu_clamps = false,
};
static const char * const tegra30_powergates[] = {
[TEGRA_POWERGATE_CPU] = "cpu0",
[TEGRA_POWERGATE_3D] = "3d0",
[TEGRA_POWERGATE_VENC] = "venc",
[TEGRA_POWERGATE_VDEC] = "vdec",
[TEGRA_POWERGATE_PCIE] = "pcie",
[TEGRA_POWERGATE_L2] = "l2",
[TEGRA_POWERGATE_MPE] = "mpe",
[TEGRA_POWERGATE_HEG] = "heg",
[TEGRA_POWERGATE_SATA] = "sata",
[TEGRA_POWERGATE_CPU1] = "cpu1",
[TEGRA_POWERGATE_CPU2] = "cpu2",
[TEGRA_POWERGATE_CPU3] = "cpu3",
[TEGRA_POWERGATE_CELP] = "celp",
[TEGRA_POWERGATE_3D1] = "3d1",
};
static const u8 tegra30_cpu_powergates[] = {
TEGRA_POWERGATE_CPU,
TEGRA_POWERGATE_CPU1,
TEGRA_POWERGATE_CPU2,
TEGRA_POWERGATE_CPU3,
};
static const struct tegra_pmc_soc tegra30_pmc_soc = {
.num_powergates = ARRAY_SIZE(tegra30_powergates),
.powergates = tegra30_powergates,
.num_cpu_powergates = ARRAY_SIZE(tegra30_cpu_powergates),
.cpu_powergates = tegra30_cpu_powergates,
.has_tsense_reset = true,
.has_gpu_clamps = false,
};
static const char * const tegra114_powergates[] = {
[TEGRA_POWERGATE_CPU] = "crail",
[TEGRA_POWERGATE_3D] = "3d",
[TEGRA_POWERGATE_VENC] = "venc",
[TEGRA_POWERGATE_VDEC] = "vdec",
[TEGRA_POWERGATE_MPE] = "mpe",
[TEGRA_POWERGATE_HEG] = "heg",
[TEGRA_POWERGATE_CPU1] = "cpu1",
[TEGRA_POWERGATE_CPU2] = "cpu2",
[TEGRA_POWERGATE_CPU3] = "cpu3",
[TEGRA_POWERGATE_CELP] = "celp",
[TEGRA_POWERGATE_CPU0] = "cpu0",
[TEGRA_POWERGATE_C0NC] = "c0nc",
[TEGRA_POWERGATE_C1NC] = "c1nc",
[TEGRA_POWERGATE_DIS] = "dis",
[TEGRA_POWERGATE_DISB] = "disb",
[TEGRA_POWERGATE_XUSBA] = "xusba",
[TEGRA_POWERGATE_XUSBB] = "xusbb",
[TEGRA_POWERGATE_XUSBC] = "xusbc",
};
static const u8 tegra114_cpu_powergates[] = {
TEGRA_POWERGATE_CPU0,
TEGRA_POWERGATE_CPU1,
TEGRA_POWERGATE_CPU2,
TEGRA_POWERGATE_CPU3,
};
static const struct tegra_pmc_soc tegra114_pmc_soc = {
.num_powergates = ARRAY_SIZE(tegra114_powergates),
.powergates = tegra114_powergates,
.num_cpu_powergates = ARRAY_SIZE(tegra114_cpu_powergates),
.cpu_powergates = tegra114_cpu_powergates,
.has_tsense_reset = true,
.has_gpu_clamps = false,
};
static const char * const tegra124_powergates[] = {
[TEGRA_POWERGATE_CPU] = "crail",
[TEGRA_POWERGATE_3D] = "3d",
[TEGRA_POWERGATE_VENC] = "venc",
[TEGRA_POWERGATE_PCIE] = "pcie",
[TEGRA_POWERGATE_VDEC] = "vdec",
[TEGRA_POWERGATE_MPE] = "mpe",
[TEGRA_POWERGATE_HEG] = "heg",
[TEGRA_POWERGATE_SATA] = "sata",
[TEGRA_POWERGATE_CPU1] = "cpu1",
[TEGRA_POWERGATE_CPU2] = "cpu2",
[TEGRA_POWERGATE_CPU3] = "cpu3",
[TEGRA_POWERGATE_CELP] = "celp",
[TEGRA_POWERGATE_CPU0] = "cpu0",
[TEGRA_POWERGATE_C0NC] = "c0nc",
[TEGRA_POWERGATE_C1NC] = "c1nc",
[TEGRA_POWERGATE_SOR] = "sor",
[TEGRA_POWERGATE_DIS] = "dis",
[TEGRA_POWERGATE_DISB] = "disb",
[TEGRA_POWERGATE_XUSBA] = "xusba",
[TEGRA_POWERGATE_XUSBB] = "xusbb",
[TEGRA_POWERGATE_XUSBC] = "xusbc",
[TEGRA_POWERGATE_VIC] = "vic",
[TEGRA_POWERGATE_IRAM] = "iram",
};
static const u8 tegra124_cpu_powergates[] = {
TEGRA_POWERGATE_CPU0,
TEGRA_POWERGATE_CPU1,
TEGRA_POWERGATE_CPU2,
TEGRA_POWERGATE_CPU3,
};
static const struct tegra_io_pad_soc tegra124_io_pads[] = {
{ .id = TEGRA_IO_PAD_AUDIO, .dpd = 17, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_BB, .dpd = 15, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_CAM, .dpd = 36, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_COMP, .dpd = 22, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_CSIA, .dpd = 0, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_CSIB, .dpd = 1, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_CSIE, .dpd = 44, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_DSI, .dpd = 2, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_DSIB, .dpd = 39, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_DSIC, .dpd = 40, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_DSID, .dpd = 41, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_HDMI, .dpd = 28, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_HSIC, .dpd = 19, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_HV, .dpd = 38, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_LVDS, .dpd = 57, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_MIPI_BIAS, .dpd = 3, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_NAND, .dpd = 13, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_PEX_BIAS, .dpd = 4, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_PEX_CLK1, .dpd = 5, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_PEX_CLK2, .dpd = 6, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_PEX_CNTRL, .dpd = 32, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_SDMMC1, .dpd = 33, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_SDMMC3, .dpd = 34, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_SDMMC4, .dpd = 35, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_SYS_DDC, .dpd = 58, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_UART, .dpd = 14, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_USB0, .dpd = 9, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_USB1, .dpd = 10, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_USB2, .dpd = 11, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_USB_BIAS, .dpd = 12, .voltage = UINT_MAX },
};
static const struct tegra_pmc_soc tegra124_pmc_soc = {
.num_powergates = ARRAY_SIZE(tegra124_powergates),
.powergates = tegra124_powergates,
.num_cpu_powergates = ARRAY_SIZE(tegra124_cpu_powergates),
.cpu_powergates = tegra124_cpu_powergates,
.has_tsense_reset = true,
.has_gpu_clamps = true,
.num_io_pads = ARRAY_SIZE(tegra124_io_pads),
.io_pads = tegra124_io_pads,
};
static const char * const tegra210_powergates[] = {
[TEGRA_POWERGATE_CPU] = "crail",
[TEGRA_POWERGATE_3D] = "3d",
[TEGRA_POWERGATE_VENC] = "venc",
[TEGRA_POWERGATE_PCIE] = "pcie",
[TEGRA_POWERGATE_MPE] = "mpe",
[TEGRA_POWERGATE_SATA] = "sata",
[TEGRA_POWERGATE_CPU1] = "cpu1",
[TEGRA_POWERGATE_CPU2] = "cpu2",
[TEGRA_POWERGATE_CPU3] = "cpu3",
[TEGRA_POWERGATE_CPU0] = "cpu0",
[TEGRA_POWERGATE_C0NC] = "c0nc",
[TEGRA_POWERGATE_SOR] = "sor",
[TEGRA_POWERGATE_DIS] = "dis",
[TEGRA_POWERGATE_DISB] = "disb",
[TEGRA_POWERGATE_XUSBA] = "xusba",
[TEGRA_POWERGATE_XUSBB] = "xusbb",
[TEGRA_POWERGATE_XUSBC] = "xusbc",
[TEGRA_POWERGATE_VIC] = "vic",
[TEGRA_POWERGATE_IRAM] = "iram",
[TEGRA_POWERGATE_NVDEC] = "nvdec",
[TEGRA_POWERGATE_NVJPG] = "nvjpg",
[TEGRA_POWERGATE_AUD] = "aud",
[TEGRA_POWERGATE_DFD] = "dfd",
[TEGRA_POWERGATE_VE2] = "ve2",
};
static const u8 tegra210_cpu_powergates[] = {
TEGRA_POWERGATE_CPU0,
TEGRA_POWERGATE_CPU1,
TEGRA_POWERGATE_CPU2,
TEGRA_POWERGATE_CPU3,
};
static const struct tegra_io_pad_soc tegra210_io_pads[] = {
{ .id = TEGRA_IO_PAD_AUDIO, .dpd = 17, .voltage = 5 },
{ .id = TEGRA_IO_PAD_AUDIO_HV, .dpd = 61, .voltage = 18 },
{ .id = TEGRA_IO_PAD_CAM, .dpd = 36, .voltage = 10 },
{ .id = TEGRA_IO_PAD_CSIA, .dpd = 0, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_CSIB, .dpd = 1, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_CSIC, .dpd = 42, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_CSID, .dpd = 43, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_CSIE, .dpd = 44, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_CSIF, .dpd = 45, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_DBG, .dpd = 25, .voltage = 19 },
{ .id = TEGRA_IO_PAD_DEBUG_NONAO, .dpd = 26, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_DMIC, .dpd = 50, .voltage = 20 },
{ .id = TEGRA_IO_PAD_DP, .dpd = 51, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_DSI, .dpd = 2, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_DSIB, .dpd = 39, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_DSIC, .dpd = 40, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_DSID, .dpd = 41, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_EMMC, .dpd = 35, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_EMMC2, .dpd = 37, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_GPIO, .dpd = 27, .voltage = 21 },
{ .id = TEGRA_IO_PAD_HDMI, .dpd = 28, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_HSIC, .dpd = 19, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_LVDS, .dpd = 57, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_MIPI_BIAS, .dpd = 3, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_PEX_BIAS, .dpd = 4, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_PEX_CLK1, .dpd = 5, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_PEX_CLK2, .dpd = 6, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_PEX_CNTRL, .dpd = UINT_MAX, .voltage = 11 },
{ .id = TEGRA_IO_PAD_SDMMC1, .dpd = 33, .voltage = 12 },
{ .id = TEGRA_IO_PAD_SDMMC3, .dpd = 34, .voltage = 13 },
{ .id = TEGRA_IO_PAD_SPI, .dpd = 46, .voltage = 22 },
{ .id = TEGRA_IO_PAD_SPI_HV, .dpd = 47, .voltage = 23 },
{ .id = TEGRA_IO_PAD_UART, .dpd = 14, .voltage = 2 },
{ .id = TEGRA_IO_PAD_USB0, .dpd = 9, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_USB1, .dpd = 10, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_USB2, .dpd = 11, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_USB3, .dpd = 18, .voltage = UINT_MAX },
{ .id = TEGRA_IO_PAD_USB_BIAS, .dpd = 12, .voltage = UINT_MAX },
};
static const struct tegra_pmc_soc tegra210_pmc_soc = {
.num_powergates = ARRAY_SIZE(tegra210_powergates),
.powergates = tegra210_powergates,
.num_cpu_powergates = ARRAY_SIZE(tegra210_cpu_powergates),
.cpu_powergates = tegra210_cpu_powergates,
.has_tsense_reset = true,
.has_gpu_clamps = true,
.num_io_pads = ARRAY_SIZE(tegra210_io_pads),
.io_pads = tegra210_io_pads,
};
static const struct of_device_id tegra_pmc_match[] = {
{ .compatible = "nvidia,tegra210-pmc", .data = &tegra210_pmc_soc },
{ .compatible = "nvidia,tegra132-pmc", .data = &tegra124_pmc_soc },
{ .compatible = "nvidia,tegra124-pmc", .data = &tegra124_pmc_soc },
{ .compatible = "nvidia,tegra114-pmc", .data = &tegra114_pmc_soc },
{ .compatible = "nvidia,tegra30-pmc", .data = &tegra30_pmc_soc },
{ .compatible = "nvidia,tegra20-pmc", .data = &tegra20_pmc_soc },
{ }
};
static struct platform_driver tegra_pmc_driver = {
.driver = {
.name = "tegra-pmc",
.suppress_bind_attrs = true,
.of_match_table = tegra_pmc_match,
#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_ARM)
.pm = &tegra_pmc_pm_ops,
#endif
},
.probe = tegra_pmc_probe,
};
builtin_platform_driver(tegra_pmc_driver);
/*
* Early initialization to allow access to registers in the very early boot
* process.
*/
static int __init tegra_pmc_early_init(void)
{
const struct of_device_id *match;
struct device_node *np;
struct resource regs;
bool invert;
u32 value;
mutex_init(&pmc->powergates_lock);
np = of_find_matching_node_and_match(NULL, tegra_pmc_match, &match);
if (!np) {
/*
* Fall back to legacy initialization for 32-bit ARM only. All
* 64-bit ARM device tree files for Tegra are required to have
* a PMC node.
*
* This is for backwards-compatibility with old device trees
* that didn't contain a PMC node. Note that in this case the
* SoC data can't be matched and therefore powergating is
* disabled.
*/
if (IS_ENABLED(CONFIG_ARM) && soc_is_tegra()) {
pr_warn("DT node not found, powergating disabled\n");
regs.start = 0x7000e400;
regs.end = 0x7000e7ff;
regs.flags = IORESOURCE_MEM;
pr_warn("Using memory region %pR\n", &regs);
} else {
/*
* At this point we're not running on Tegra, so play
* nice with multi-platform kernels.
*/
return 0;
}
} else {
/*
* Extract information from the device tree if we've found a
* matching node.
*/
if (of_address_to_resource(np, 0, &regs) < 0) {
pr_err("failed to get PMC registers\n");
of_node_put(np);
return -ENXIO;
}
}
pmc->base = ioremap_nocache(regs.start, resource_size(&regs));
if (!pmc->base) {
pr_err("failed to map PMC registers\n");
of_node_put(np);
return -ENXIO;
}
if (np) {
pmc->soc = match->data;
tegra_powergate_init(pmc, np);
/*
* Invert the interrupt polarity if a PMC device tree node
* exists and contains the nvidia,invert-interrupt property.
*/
invert = of_property_read_bool(np, "nvidia,invert-interrupt");
value = tegra_pmc_readl(PMC_CNTRL);
if (invert)
value |= PMC_CNTRL_INTR_POLARITY;
else
value &= ~PMC_CNTRL_INTR_POLARITY;
tegra_pmc_writel(value, PMC_CNTRL);
of_node_put(np);
}
return 0;
}
early_initcall(tegra_pmc_early_init);