blob: 1d32cd20009a3bd35cf77bc11027354c00eb8812 [file] [log] [blame]
/*
* Copyright (C) 2005-2010 IBM Corporation
*
* Authors:
* Mimi Zohar <zohar@us.ibm.com>
* Kylene Hall <kjhall@us.ibm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 2 of the License.
*
* File: evm_crypto.c
* Using root's kernel master key (kmk), calculate the HMAC
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/crypto.h>
#include <linux/xattr.h>
#include <linux/evm.h>
#include <keys/encrypted-type.h>
#include <crypto/hash.h>
#include "evm.h"
#define EVMKEY "evm-key"
#define MAX_KEY_SIZE 128
static unsigned char evmkey[MAX_KEY_SIZE];
static int evmkey_len = MAX_KEY_SIZE;
struct crypto_shash *hmac_tfm;
struct crypto_shash *hash_tfm;
static DEFINE_MUTEX(mutex);
#define EVM_SET_KEY_BUSY 0
static unsigned long evm_set_key_flags;
/**
* evm_set_key() - set EVM HMAC key from the kernel
* @key: pointer to a buffer with the key data
* @size: length of the key data
*
* This function allows setting the EVM HMAC key from the kernel
* without using the "encrypted" key subsystem keys. It can be used
* by the crypto HW kernel module which has its own way of managing
* keys.
*
* key length should be between 32 and 128 bytes long
*/
int evm_set_key(void *key, size_t keylen)
{
int rc;
rc = -EBUSY;
if (test_and_set_bit(EVM_SET_KEY_BUSY, &evm_set_key_flags))
goto busy;
rc = -EINVAL;
if (keylen > MAX_KEY_SIZE)
goto inval;
memcpy(evmkey, key, keylen);
evm_initialized |= EVM_INIT_HMAC;
pr_info("key initialized\n");
return 0;
inval:
clear_bit(EVM_SET_KEY_BUSY, &evm_set_key_flags);
busy:
pr_err("key initialization failed\n");
return rc;
}
EXPORT_SYMBOL_GPL(evm_set_key);
static struct shash_desc *init_desc(char type)
{
long rc;
char *algo;
struct crypto_shash **tfm;
struct shash_desc *desc;
if (type == EVM_XATTR_HMAC) {
if (!(evm_initialized & EVM_INIT_HMAC)) {
pr_err("HMAC key is not set\n");
return ERR_PTR(-ENOKEY);
}
tfm = &hmac_tfm;
algo = evm_hmac;
} else {
tfm = &hash_tfm;
algo = evm_hash;
}
if (*tfm == NULL) {
mutex_lock(&mutex);
if (*tfm)
goto out;
*tfm = crypto_alloc_shash(algo, 0, CRYPTO_ALG_ASYNC);
if (IS_ERR(*tfm)) {
rc = PTR_ERR(*tfm);
pr_err("Can not allocate %s (reason: %ld)\n", algo, rc);
*tfm = NULL;
mutex_unlock(&mutex);
return ERR_PTR(rc);
}
if (type == EVM_XATTR_HMAC) {
rc = crypto_shash_setkey(*tfm, evmkey, evmkey_len);
if (rc) {
crypto_free_shash(*tfm);
*tfm = NULL;
mutex_unlock(&mutex);
return ERR_PTR(rc);
}
}
out:
mutex_unlock(&mutex);
}
desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(*tfm),
GFP_KERNEL);
if (!desc)
return ERR_PTR(-ENOMEM);
desc->tfm = *tfm;
desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
rc = crypto_shash_init(desc);
if (rc) {
kfree(desc);
return ERR_PTR(rc);
}
return desc;
}
/* Protect against 'cutting & pasting' security.evm xattr, include inode
* specific info.
*
* (Additional directory/file metadata needs to be added for more complete
* protection.)
*/
static void hmac_add_misc(struct shash_desc *desc, struct inode *inode,
char *digest)
{
struct h_misc {
unsigned long ino;
__u32 generation;
uid_t uid;
gid_t gid;
umode_t mode;
} hmac_misc;
memset(&hmac_misc, 0, sizeof(hmac_misc));
hmac_misc.ino = inode->i_ino;
hmac_misc.generation = inode->i_generation;
/* The hmac uid and gid must be encoded in the initial user
* namespace (not the filesystems user namespace) as encoding
* them in the filesystems user namespace allows an attack
* where first they are written in an unprivileged fuse mount
* of a filesystem and then the system is tricked to mount the
* filesystem for real on next boot and trust it because
* everything is signed.
*/
hmac_misc.uid = from_kuid(&init_user_ns, inode->i_uid);
hmac_misc.gid = from_kgid(&init_user_ns, inode->i_gid);
hmac_misc.mode = inode->i_mode;
crypto_shash_update(desc, (const u8 *)&hmac_misc, sizeof(hmac_misc));
if (evm_hmac_attrs & EVM_ATTR_FSUUID)
crypto_shash_update(desc, &inode->i_sb->s_uuid.b[0],
sizeof(inode->i_sb->s_uuid));
crypto_shash_final(desc, digest);
}
/*
* Calculate the HMAC value across the set of protected security xattrs.
*
* Instead of retrieving the requested xattr, for performance, calculate
* the hmac using the requested xattr value. Don't alloc/free memory for
* each xattr, but attempt to re-use the previously allocated memory.
*/
static int evm_calc_hmac_or_hash(struct dentry *dentry,
const char *req_xattr_name,
const char *req_xattr_value,
size_t req_xattr_value_len,
char type, char *digest)
{
struct inode *inode = d_backing_inode(dentry);
struct shash_desc *desc;
char **xattrname;
size_t xattr_size = 0;
char *xattr_value = NULL;
int error;
int size;
if (!(inode->i_opflags & IOP_XATTR))
return -EOPNOTSUPP;
desc = init_desc(type);
if (IS_ERR(desc))
return PTR_ERR(desc);
error = -ENODATA;
for (xattrname = evm_config_xattrnames; *xattrname != NULL; xattrname++) {
if ((req_xattr_name && req_xattr_value)
&& !strcmp(*xattrname, req_xattr_name)) {
error = 0;
crypto_shash_update(desc, (const u8 *)req_xattr_value,
req_xattr_value_len);
continue;
}
size = vfs_getxattr_alloc(dentry, *xattrname,
&xattr_value, xattr_size, GFP_NOFS);
if (size == -ENOMEM) {
error = -ENOMEM;
goto out;
}
if (size < 0)
continue;
error = 0;
xattr_size = size;
crypto_shash_update(desc, (const u8 *)xattr_value, xattr_size);
}
hmac_add_misc(desc, inode, digest);
out:
kfree(xattr_value);
kfree(desc);
return error;
}
int evm_calc_hmac(struct dentry *dentry, const char *req_xattr_name,
const char *req_xattr_value, size_t req_xattr_value_len,
char *digest)
{
return evm_calc_hmac_or_hash(dentry, req_xattr_name, req_xattr_value,
req_xattr_value_len, EVM_XATTR_HMAC, digest);
}
int evm_calc_hash(struct dentry *dentry, const char *req_xattr_name,
const char *req_xattr_value, size_t req_xattr_value_len,
char *digest)
{
return evm_calc_hmac_or_hash(dentry, req_xattr_name, req_xattr_value,
req_xattr_value_len, IMA_XATTR_DIGEST, digest);
}
/*
* Calculate the hmac and update security.evm xattr
*
* Expects to be called with i_mutex locked.
*/
int evm_update_evmxattr(struct dentry *dentry, const char *xattr_name,
const char *xattr_value, size_t xattr_value_len)
{
struct inode *inode = d_backing_inode(dentry);
struct evm_ima_xattr_data xattr_data;
int rc = 0;
rc = evm_calc_hmac(dentry, xattr_name, xattr_value,
xattr_value_len, xattr_data.digest);
if (rc == 0) {
xattr_data.type = EVM_XATTR_HMAC;
rc = __vfs_setxattr_noperm(dentry, XATTR_NAME_EVM,
&xattr_data,
sizeof(xattr_data), 0);
} else if (rc == -ENODATA && (inode->i_opflags & IOP_XATTR)) {
rc = __vfs_removexattr(dentry, XATTR_NAME_EVM);
}
return rc;
}
int evm_init_hmac(struct inode *inode, const struct xattr *lsm_xattr,
char *hmac_val)
{
struct shash_desc *desc;
desc = init_desc(EVM_XATTR_HMAC);
if (IS_ERR(desc)) {
pr_info("init_desc failed\n");
return PTR_ERR(desc);
}
crypto_shash_update(desc, lsm_xattr->value, lsm_xattr->value_len);
hmac_add_misc(desc, inode, hmac_val);
kfree(desc);
return 0;
}
/*
* Get the key from the TPM for the SHA1-HMAC
*/
int evm_init_key(void)
{
struct key *evm_key;
struct encrypted_key_payload *ekp;
int rc;
evm_key = request_key(&key_type_encrypted, EVMKEY, NULL);
if (IS_ERR(evm_key))
return -ENOENT;
down_read(&evm_key->sem);
ekp = evm_key->payload.data[0];
rc = evm_set_key(ekp->decrypted_data, ekp->decrypted_datalen);
/* burn the original key contents */
memset(ekp->decrypted_data, 0, ekp->decrypted_datalen);
up_read(&evm_key->sem);
key_put(evm_key);
return rc;
}