blob: 05b9da30990dcd4f3b78c4d3907a29320c661e6a [file] [log] [blame]
/*
* ALSA driver for RME Digi96, Digi96/8 and Digi96/8 PRO/PAD/PST audio
* interfaces
*
* Copyright (c) 2000, 2001 Anders Torger <torger@ludd.luth.se>
*
* Thanks to Henk Hesselink <henk@anda.nl> for the analog volume control
* code.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/io.h>
#include <sound/core.h>
#include <sound/info.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/asoundef.h>
#include <sound/initval.h>
/* note, two last pcis should be equal, it is not a bug */
MODULE_AUTHOR("Anders Torger <torger@ludd.luth.se>");
MODULE_DESCRIPTION("RME Digi96, Digi96/8, Digi96/8 PRO, Digi96/8 PST, "
"Digi96/8 PAD");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{RME,Digi96},"
"{RME,Digi96/8},"
"{RME,Digi96/8 PRO},"
"{RME,Digi96/8 PST},"
"{RME,Digi96/8 PAD}}");
static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */
static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */
module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for RME Digi96 soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for RME Digi96 soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable RME Digi96 soundcard.");
/*
* Defines for RME Digi96 series, from internal RME reference documents
* dated 12.01.00
*/
#define RME96_SPDIF_NCHANNELS 2
/* Playback and capture buffer size */
#define RME96_BUFFER_SIZE 0x10000
/* IO area size */
#define RME96_IO_SIZE 0x60000
/* IO area offsets */
#define RME96_IO_PLAY_BUFFER 0x0
#define RME96_IO_REC_BUFFER 0x10000
#define RME96_IO_CONTROL_REGISTER 0x20000
#define RME96_IO_ADDITIONAL_REG 0x20004
#define RME96_IO_CONFIRM_PLAY_IRQ 0x20008
#define RME96_IO_CONFIRM_REC_IRQ 0x2000C
#define RME96_IO_SET_PLAY_POS 0x40000
#define RME96_IO_RESET_PLAY_POS 0x4FFFC
#define RME96_IO_SET_REC_POS 0x50000
#define RME96_IO_RESET_REC_POS 0x5FFFC
#define RME96_IO_GET_PLAY_POS 0x20000
#define RME96_IO_GET_REC_POS 0x30000
/* Write control register bits */
#define RME96_WCR_START (1 << 0)
#define RME96_WCR_START_2 (1 << 1)
#define RME96_WCR_GAIN_0 (1 << 2)
#define RME96_WCR_GAIN_1 (1 << 3)
#define RME96_WCR_MODE24 (1 << 4)
#define RME96_WCR_MODE24_2 (1 << 5)
#define RME96_WCR_BM (1 << 6)
#define RME96_WCR_BM_2 (1 << 7)
#define RME96_WCR_ADAT (1 << 8)
#define RME96_WCR_FREQ_0 (1 << 9)
#define RME96_WCR_FREQ_1 (1 << 10)
#define RME96_WCR_DS (1 << 11)
#define RME96_WCR_PRO (1 << 12)
#define RME96_WCR_EMP (1 << 13)
#define RME96_WCR_SEL (1 << 14)
#define RME96_WCR_MASTER (1 << 15)
#define RME96_WCR_PD (1 << 16)
#define RME96_WCR_INP_0 (1 << 17)
#define RME96_WCR_INP_1 (1 << 18)
#define RME96_WCR_THRU_0 (1 << 19)
#define RME96_WCR_THRU_1 (1 << 20)
#define RME96_WCR_THRU_2 (1 << 21)
#define RME96_WCR_THRU_3 (1 << 22)
#define RME96_WCR_THRU_4 (1 << 23)
#define RME96_WCR_THRU_5 (1 << 24)
#define RME96_WCR_THRU_6 (1 << 25)
#define RME96_WCR_THRU_7 (1 << 26)
#define RME96_WCR_DOLBY (1 << 27)
#define RME96_WCR_MONITOR_0 (1 << 28)
#define RME96_WCR_MONITOR_1 (1 << 29)
#define RME96_WCR_ISEL (1 << 30)
#define RME96_WCR_IDIS (1 << 31)
#define RME96_WCR_BITPOS_GAIN_0 2
#define RME96_WCR_BITPOS_GAIN_1 3
#define RME96_WCR_BITPOS_FREQ_0 9
#define RME96_WCR_BITPOS_FREQ_1 10
#define RME96_WCR_BITPOS_INP_0 17
#define RME96_WCR_BITPOS_INP_1 18
#define RME96_WCR_BITPOS_MONITOR_0 28
#define RME96_WCR_BITPOS_MONITOR_1 29
/* Read control register bits */
#define RME96_RCR_AUDIO_ADDR_MASK 0xFFFF
#define RME96_RCR_IRQ_2 (1 << 16)
#define RME96_RCR_T_OUT (1 << 17)
#define RME96_RCR_DEV_ID_0 (1 << 21)
#define RME96_RCR_DEV_ID_1 (1 << 22)
#define RME96_RCR_LOCK (1 << 23)
#define RME96_RCR_VERF (1 << 26)
#define RME96_RCR_F0 (1 << 27)
#define RME96_RCR_F1 (1 << 28)
#define RME96_RCR_F2 (1 << 29)
#define RME96_RCR_AUTOSYNC (1 << 30)
#define RME96_RCR_IRQ (1 << 31)
#define RME96_RCR_BITPOS_F0 27
#define RME96_RCR_BITPOS_F1 28
#define RME96_RCR_BITPOS_F2 29
/* Additional register bits */
#define RME96_AR_WSEL (1 << 0)
#define RME96_AR_ANALOG (1 << 1)
#define RME96_AR_FREQPAD_0 (1 << 2)
#define RME96_AR_FREQPAD_1 (1 << 3)
#define RME96_AR_FREQPAD_2 (1 << 4)
#define RME96_AR_PD2 (1 << 5)
#define RME96_AR_DAC_EN (1 << 6)
#define RME96_AR_CLATCH (1 << 7)
#define RME96_AR_CCLK (1 << 8)
#define RME96_AR_CDATA (1 << 9)
#define RME96_AR_BITPOS_F0 2
#define RME96_AR_BITPOS_F1 3
#define RME96_AR_BITPOS_F2 4
/* Monitor tracks */
#define RME96_MONITOR_TRACKS_1_2 0
#define RME96_MONITOR_TRACKS_3_4 1
#define RME96_MONITOR_TRACKS_5_6 2
#define RME96_MONITOR_TRACKS_7_8 3
/* Attenuation */
#define RME96_ATTENUATION_0 0
#define RME96_ATTENUATION_6 1
#define RME96_ATTENUATION_12 2
#define RME96_ATTENUATION_18 3
/* Input types */
#define RME96_INPUT_OPTICAL 0
#define RME96_INPUT_COAXIAL 1
#define RME96_INPUT_INTERNAL 2
#define RME96_INPUT_XLR 3
#define RME96_INPUT_ANALOG 4
/* Clock modes */
#define RME96_CLOCKMODE_SLAVE 0
#define RME96_CLOCKMODE_MASTER 1
#define RME96_CLOCKMODE_WORDCLOCK 2
/* Block sizes in bytes */
#define RME96_SMALL_BLOCK_SIZE 2048
#define RME96_LARGE_BLOCK_SIZE 8192
/* Volume control */
#define RME96_AD1852_VOL_BITS 14
#define RME96_AD1855_VOL_BITS 10
/* Defines for snd_rme96_trigger */
#define RME96_TB_START_PLAYBACK 1
#define RME96_TB_START_CAPTURE 2
#define RME96_TB_STOP_PLAYBACK 4
#define RME96_TB_STOP_CAPTURE 8
#define RME96_TB_RESET_PLAYPOS 16
#define RME96_TB_RESET_CAPTUREPOS 32
#define RME96_TB_CLEAR_PLAYBACK_IRQ 64
#define RME96_TB_CLEAR_CAPTURE_IRQ 128
#define RME96_RESUME_PLAYBACK (RME96_TB_START_PLAYBACK)
#define RME96_RESUME_CAPTURE (RME96_TB_START_CAPTURE)
#define RME96_RESUME_BOTH (RME96_RESUME_PLAYBACK \
| RME96_RESUME_CAPTURE)
#define RME96_START_PLAYBACK (RME96_TB_START_PLAYBACK \
| RME96_TB_RESET_PLAYPOS)
#define RME96_START_CAPTURE (RME96_TB_START_CAPTURE \
| RME96_TB_RESET_CAPTUREPOS)
#define RME96_START_BOTH (RME96_START_PLAYBACK \
| RME96_START_CAPTURE)
#define RME96_STOP_PLAYBACK (RME96_TB_STOP_PLAYBACK \
| RME96_TB_CLEAR_PLAYBACK_IRQ)
#define RME96_STOP_CAPTURE (RME96_TB_STOP_CAPTURE \
| RME96_TB_CLEAR_CAPTURE_IRQ)
#define RME96_STOP_BOTH (RME96_STOP_PLAYBACK \
| RME96_STOP_CAPTURE)
struct rme96 {
spinlock_t lock;
int irq;
unsigned long port;
void __iomem *iobase;
u32 wcreg; /* cached write control register value */
u32 wcreg_spdif; /* S/PDIF setup */
u32 wcreg_spdif_stream; /* S/PDIF setup (temporary) */
u32 rcreg; /* cached read control register value */
u32 areg; /* cached additional register value */
u16 vol[2]; /* cached volume of analog output */
u8 rev; /* card revision number */
#ifdef CONFIG_PM_SLEEP
u32 playback_pointer;
u32 capture_pointer;
void *playback_suspend_buffer;
void *capture_suspend_buffer;
#endif
struct snd_pcm_substream *playback_substream;
struct snd_pcm_substream *capture_substream;
int playback_frlog; /* log2 of framesize */
int capture_frlog;
size_t playback_periodsize; /* in bytes, zero if not used */
size_t capture_periodsize; /* in bytes, zero if not used */
struct snd_card *card;
struct snd_pcm *spdif_pcm;
struct snd_pcm *adat_pcm;
struct pci_dev *pci;
struct snd_kcontrol *spdif_ctl;
};
static const struct pci_device_id snd_rme96_ids[] = {
{ PCI_VDEVICE(XILINX, PCI_DEVICE_ID_RME_DIGI96), 0, },
{ PCI_VDEVICE(XILINX, PCI_DEVICE_ID_RME_DIGI96_8), 0, },
{ PCI_VDEVICE(XILINX, PCI_DEVICE_ID_RME_DIGI96_8_PRO), 0, },
{ PCI_VDEVICE(XILINX, PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST), 0, },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, snd_rme96_ids);
#define RME96_ISPLAYING(rme96) ((rme96)->wcreg & RME96_WCR_START)
#define RME96_ISRECORDING(rme96) ((rme96)->wcreg & RME96_WCR_START_2)
#define RME96_HAS_ANALOG_IN(rme96) ((rme96)->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST)
#define RME96_HAS_ANALOG_OUT(rme96) ((rme96)->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PRO || \
(rme96)->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST)
#define RME96_DAC_IS_1852(rme96) (RME96_HAS_ANALOG_OUT(rme96) && (rme96)->rev >= 4)
#define RME96_DAC_IS_1855(rme96) (((rme96)->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST && (rme96)->rev < 4) || \
((rme96)->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PRO && (rme96)->rev == 2))
#define RME96_185X_MAX_OUT(rme96) ((1 << (RME96_DAC_IS_1852(rme96) ? RME96_AD1852_VOL_BITS : RME96_AD1855_VOL_BITS)) - 1)
static int
snd_rme96_playback_prepare(struct snd_pcm_substream *substream);
static int
snd_rme96_capture_prepare(struct snd_pcm_substream *substream);
static int
snd_rme96_playback_trigger(struct snd_pcm_substream *substream,
int cmd);
static int
snd_rme96_capture_trigger(struct snd_pcm_substream *substream,
int cmd);
static snd_pcm_uframes_t
snd_rme96_playback_pointer(struct snd_pcm_substream *substream);
static snd_pcm_uframes_t
snd_rme96_capture_pointer(struct snd_pcm_substream *substream);
static void snd_rme96_proc_init(struct rme96 *rme96);
static int
snd_rme96_create_switches(struct snd_card *card,
struct rme96 *rme96);
static int
snd_rme96_getinputtype(struct rme96 *rme96);
static inline unsigned int
snd_rme96_playback_ptr(struct rme96 *rme96)
{
return (readl(rme96->iobase + RME96_IO_GET_PLAY_POS)
& RME96_RCR_AUDIO_ADDR_MASK) >> rme96->playback_frlog;
}
static inline unsigned int
snd_rme96_capture_ptr(struct rme96 *rme96)
{
return (readl(rme96->iobase + RME96_IO_GET_REC_POS)
& RME96_RCR_AUDIO_ADDR_MASK) >> rme96->capture_frlog;
}
static int
snd_rme96_playback_silence(struct snd_pcm_substream *substream,
int channel, /* not used (interleaved data) */
snd_pcm_uframes_t pos,
snd_pcm_uframes_t count)
{
struct rme96 *rme96 = snd_pcm_substream_chip(substream);
count <<= rme96->playback_frlog;
pos <<= rme96->playback_frlog;
memset_io(rme96->iobase + RME96_IO_PLAY_BUFFER + pos,
0, count);
return 0;
}
static int
snd_rme96_playback_copy(struct snd_pcm_substream *substream,
int channel, /* not used (interleaved data) */
snd_pcm_uframes_t pos,
void __user *src,
snd_pcm_uframes_t count)
{
struct rme96 *rme96 = snd_pcm_substream_chip(substream);
count <<= rme96->playback_frlog;
pos <<= rme96->playback_frlog;
return copy_from_user_toio(rme96->iobase + RME96_IO_PLAY_BUFFER + pos, src,
count);
}
static int
snd_rme96_capture_copy(struct snd_pcm_substream *substream,
int channel, /* not used (interleaved data) */
snd_pcm_uframes_t pos,
void __user *dst,
snd_pcm_uframes_t count)
{
struct rme96 *rme96 = snd_pcm_substream_chip(substream);
count <<= rme96->capture_frlog;
pos <<= rme96->capture_frlog;
return copy_to_user_fromio(dst, rme96->iobase + RME96_IO_REC_BUFFER + pos,
count);
}
/*
* Digital output capabilities (S/PDIF)
*/
static struct snd_pcm_hardware snd_rme96_playback_spdif_info =
{
.info = (SNDRV_PCM_INFO_MMAP_IOMEM |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_SYNC_START |
SNDRV_PCM_INFO_RESUME |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_PAUSE),
.formats = (SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S32_LE),
.rates = (SNDRV_PCM_RATE_32000 |
SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000 |
SNDRV_PCM_RATE_64000 |
SNDRV_PCM_RATE_88200 |
SNDRV_PCM_RATE_96000),
.rate_min = 32000,
.rate_max = 96000,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = RME96_BUFFER_SIZE,
.period_bytes_min = RME96_SMALL_BLOCK_SIZE,
.period_bytes_max = RME96_LARGE_BLOCK_SIZE,
.periods_min = RME96_BUFFER_SIZE / RME96_LARGE_BLOCK_SIZE,
.periods_max = RME96_BUFFER_SIZE / RME96_SMALL_BLOCK_SIZE,
.fifo_size = 0,
};
/*
* Digital input capabilities (S/PDIF)
*/
static struct snd_pcm_hardware snd_rme96_capture_spdif_info =
{
.info = (SNDRV_PCM_INFO_MMAP_IOMEM |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_SYNC_START |
SNDRV_PCM_INFO_RESUME |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_PAUSE),
.formats = (SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S32_LE),
.rates = (SNDRV_PCM_RATE_32000 |
SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000 |
SNDRV_PCM_RATE_64000 |
SNDRV_PCM_RATE_88200 |
SNDRV_PCM_RATE_96000),
.rate_min = 32000,
.rate_max = 96000,
.channels_min = 2,
.channels_max = 2,
.buffer_bytes_max = RME96_BUFFER_SIZE,
.period_bytes_min = RME96_SMALL_BLOCK_SIZE,
.period_bytes_max = RME96_LARGE_BLOCK_SIZE,
.periods_min = RME96_BUFFER_SIZE / RME96_LARGE_BLOCK_SIZE,
.periods_max = RME96_BUFFER_SIZE / RME96_SMALL_BLOCK_SIZE,
.fifo_size = 0,
};
/*
* Digital output capabilities (ADAT)
*/
static struct snd_pcm_hardware snd_rme96_playback_adat_info =
{
.info = (SNDRV_PCM_INFO_MMAP_IOMEM |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_SYNC_START |
SNDRV_PCM_INFO_RESUME |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_PAUSE),
.formats = (SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S32_LE),
.rates = (SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000),
.rate_min = 44100,
.rate_max = 48000,
.channels_min = 8,
.channels_max = 8,
.buffer_bytes_max = RME96_BUFFER_SIZE,
.period_bytes_min = RME96_SMALL_BLOCK_SIZE,
.period_bytes_max = RME96_LARGE_BLOCK_SIZE,
.periods_min = RME96_BUFFER_SIZE / RME96_LARGE_BLOCK_SIZE,
.periods_max = RME96_BUFFER_SIZE / RME96_SMALL_BLOCK_SIZE,
.fifo_size = 0,
};
/*
* Digital input capabilities (ADAT)
*/
static struct snd_pcm_hardware snd_rme96_capture_adat_info =
{
.info = (SNDRV_PCM_INFO_MMAP_IOMEM |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_SYNC_START |
SNDRV_PCM_INFO_RESUME |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_PAUSE),
.formats = (SNDRV_PCM_FMTBIT_S16_LE |
SNDRV_PCM_FMTBIT_S32_LE),
.rates = (SNDRV_PCM_RATE_44100 |
SNDRV_PCM_RATE_48000),
.rate_min = 44100,
.rate_max = 48000,
.channels_min = 8,
.channels_max = 8,
.buffer_bytes_max = RME96_BUFFER_SIZE,
.period_bytes_min = RME96_SMALL_BLOCK_SIZE,
.period_bytes_max = RME96_LARGE_BLOCK_SIZE,
.periods_min = RME96_BUFFER_SIZE / RME96_LARGE_BLOCK_SIZE,
.periods_max = RME96_BUFFER_SIZE / RME96_SMALL_BLOCK_SIZE,
.fifo_size = 0,
};
/*
* The CDATA, CCLK and CLATCH bits can be used to write to the SPI interface
* of the AD1852 or AD1852 D/A converter on the board. CDATA must be set up
* on the falling edge of CCLK and be stable on the rising edge. The rising
* edge of CLATCH after the last data bit clocks in the whole data word.
* A fast processor could probably drive the SPI interface faster than the
* DAC can handle (3MHz for the 1855, unknown for the 1852). The udelay(1)
* limits the data rate to 500KHz and only causes a delay of 33 microsecs.
*
* NOTE: increased delay from 1 to 10, since there where problems setting
* the volume.
*/
static void
snd_rme96_write_SPI(struct rme96 *rme96, u16 val)
{
int i;
for (i = 0; i < 16; i++) {
if (val & 0x8000) {
rme96->areg |= RME96_AR_CDATA;
} else {
rme96->areg &= ~RME96_AR_CDATA;
}
rme96->areg &= ~(RME96_AR_CCLK | RME96_AR_CLATCH);
writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
udelay(10);
rme96->areg |= RME96_AR_CCLK;
writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
udelay(10);
val <<= 1;
}
rme96->areg &= ~(RME96_AR_CCLK | RME96_AR_CDATA);
rme96->areg |= RME96_AR_CLATCH;
writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
udelay(10);
rme96->areg &= ~RME96_AR_CLATCH;
writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
}
static void
snd_rme96_apply_dac_volume(struct rme96 *rme96)
{
if (RME96_DAC_IS_1852(rme96)) {
snd_rme96_write_SPI(rme96, (rme96->vol[0] << 2) | 0x0);
snd_rme96_write_SPI(rme96, (rme96->vol[1] << 2) | 0x2);
} else if (RME96_DAC_IS_1855(rme96)) {
snd_rme96_write_SPI(rme96, (rme96->vol[0] & 0x3FF) | 0x000);
snd_rme96_write_SPI(rme96, (rme96->vol[1] & 0x3FF) | 0x400);
}
}
static void
snd_rme96_reset_dac(struct rme96 *rme96)
{
writel(rme96->wcreg | RME96_WCR_PD,
rme96->iobase + RME96_IO_CONTROL_REGISTER);
writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
}
static int
snd_rme96_getmontracks(struct rme96 *rme96)
{
return ((rme96->wcreg >> RME96_WCR_BITPOS_MONITOR_0) & 1) +
(((rme96->wcreg >> RME96_WCR_BITPOS_MONITOR_1) & 1) << 1);
}
static int
snd_rme96_setmontracks(struct rme96 *rme96,
int montracks)
{
if (montracks & 1) {
rme96->wcreg |= RME96_WCR_MONITOR_0;
} else {
rme96->wcreg &= ~RME96_WCR_MONITOR_0;
}
if (montracks & 2) {
rme96->wcreg |= RME96_WCR_MONITOR_1;
} else {
rme96->wcreg &= ~RME96_WCR_MONITOR_1;
}
writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
return 0;
}
static int
snd_rme96_getattenuation(struct rme96 *rme96)
{
return ((rme96->wcreg >> RME96_WCR_BITPOS_GAIN_0) & 1) +
(((rme96->wcreg >> RME96_WCR_BITPOS_GAIN_1) & 1) << 1);
}
static int
snd_rme96_setattenuation(struct rme96 *rme96,
int attenuation)
{
switch (attenuation) {
case 0:
rme96->wcreg = (rme96->wcreg & ~RME96_WCR_GAIN_0) &
~RME96_WCR_GAIN_1;
break;
case 1:
rme96->wcreg = (rme96->wcreg | RME96_WCR_GAIN_0) &
~RME96_WCR_GAIN_1;
break;
case 2:
rme96->wcreg = (rme96->wcreg & ~RME96_WCR_GAIN_0) |
RME96_WCR_GAIN_1;
break;
case 3:
rme96->wcreg = (rme96->wcreg | RME96_WCR_GAIN_0) |
RME96_WCR_GAIN_1;
break;
default:
return -EINVAL;
}
writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
return 0;
}
static int
snd_rme96_capture_getrate(struct rme96 *rme96,
int *is_adat)
{
int n, rate;
*is_adat = 0;
if (rme96->areg & RME96_AR_ANALOG) {
/* Analog input, overrides S/PDIF setting */
n = ((rme96->areg >> RME96_AR_BITPOS_F0) & 1) +
(((rme96->areg >> RME96_AR_BITPOS_F1) & 1) << 1);
switch (n) {
case 1:
rate = 32000;
break;
case 2:
rate = 44100;
break;
case 3:
rate = 48000;
break;
default:
return -1;
}
return (rme96->areg & RME96_AR_BITPOS_F2) ? rate << 1 : rate;
}
rme96->rcreg = readl(rme96->iobase + RME96_IO_CONTROL_REGISTER);
if (rme96->rcreg & RME96_RCR_LOCK) {
/* ADAT rate */
*is_adat = 1;
if (rme96->rcreg & RME96_RCR_T_OUT) {
return 48000;
}
return 44100;
}
if (rme96->rcreg & RME96_RCR_VERF) {
return -1;
}
/* S/PDIF rate */
n = ((rme96->rcreg >> RME96_RCR_BITPOS_F0) & 1) +
(((rme96->rcreg >> RME96_RCR_BITPOS_F1) & 1) << 1) +
(((rme96->rcreg >> RME96_RCR_BITPOS_F2) & 1) << 2);
switch (n) {
case 0:
if (rme96->rcreg & RME96_RCR_T_OUT) {
return 64000;
}
return -1;
case 3: return 96000;
case 4: return 88200;
case 5: return 48000;
case 6: return 44100;
case 7: return 32000;
default:
break;
}
return -1;
}
static int
snd_rme96_playback_getrate(struct rme96 *rme96)
{
int rate, dummy;
if (!(rme96->wcreg & RME96_WCR_MASTER) &&
snd_rme96_getinputtype(rme96) != RME96_INPUT_ANALOG &&
(rate = snd_rme96_capture_getrate(rme96, &dummy)) > 0)
{
/* slave clock */
return rate;
}
rate = ((rme96->wcreg >> RME96_WCR_BITPOS_FREQ_0) & 1) +
(((rme96->wcreg >> RME96_WCR_BITPOS_FREQ_1) & 1) << 1);
switch (rate) {
case 1:
rate = 32000;
break;
case 2:
rate = 44100;
break;
case 3:
rate = 48000;
break;
default:
return -1;
}
return (rme96->wcreg & RME96_WCR_DS) ? rate << 1 : rate;
}
static int
snd_rme96_playback_setrate(struct rme96 *rme96,
int rate)
{
int ds;
ds = rme96->wcreg & RME96_WCR_DS;
switch (rate) {
case 32000:
rme96->wcreg &= ~RME96_WCR_DS;
rme96->wcreg = (rme96->wcreg | RME96_WCR_FREQ_0) &
~RME96_WCR_FREQ_1;
break;
case 44100:
rme96->wcreg &= ~RME96_WCR_DS;
rme96->wcreg = (rme96->wcreg | RME96_WCR_FREQ_1) &
~RME96_WCR_FREQ_0;
break;
case 48000:
rme96->wcreg &= ~RME96_WCR_DS;
rme96->wcreg = (rme96->wcreg | RME96_WCR_FREQ_0) |
RME96_WCR_FREQ_1;
break;
case 64000:
rme96->wcreg |= RME96_WCR_DS;
rme96->wcreg = (rme96->wcreg | RME96_WCR_FREQ_0) &
~RME96_WCR_FREQ_1;
break;
case 88200:
rme96->wcreg |= RME96_WCR_DS;
rme96->wcreg = (rme96->wcreg | RME96_WCR_FREQ_1) &
~RME96_WCR_FREQ_0;
break;
case 96000:
rme96->wcreg |= RME96_WCR_DS;
rme96->wcreg = (rme96->wcreg | RME96_WCR_FREQ_0) |
RME96_WCR_FREQ_1;
break;
default:
return -EINVAL;
}
if ((!ds && rme96->wcreg & RME96_WCR_DS) ||
(ds && !(rme96->wcreg & RME96_WCR_DS)))
{
/* change to/from double-speed: reset the DAC (if available) */
snd_rme96_reset_dac(rme96);
return 1; /* need to restore volume */
} else {
writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
return 0;
}
}
static int
snd_rme96_capture_analog_setrate(struct rme96 *rme96,
int rate)
{
switch (rate) {
case 32000:
rme96->areg = ((rme96->areg | RME96_AR_FREQPAD_0) &
~RME96_AR_FREQPAD_1) & ~RME96_AR_FREQPAD_2;
break;
case 44100:
rme96->areg = ((rme96->areg & ~RME96_AR_FREQPAD_0) |
RME96_AR_FREQPAD_1) & ~RME96_AR_FREQPAD_2;
break;
case 48000:
rme96->areg = ((rme96->areg | RME96_AR_FREQPAD_0) |
RME96_AR_FREQPAD_1) & ~RME96_AR_FREQPAD_2;
break;
case 64000:
if (rme96->rev < 4) {
return -EINVAL;
}
rme96->areg = ((rme96->areg | RME96_AR_FREQPAD_0) &
~RME96_AR_FREQPAD_1) | RME96_AR_FREQPAD_2;
break;
case 88200:
if (rme96->rev < 4) {
return -EINVAL;
}
rme96->areg = ((rme96->areg & ~RME96_AR_FREQPAD_0) |
RME96_AR_FREQPAD_1) | RME96_AR_FREQPAD_2;
break;
case 96000:
rme96->areg = ((rme96->areg | RME96_AR_FREQPAD_0) |
RME96_AR_FREQPAD_1) | RME96_AR_FREQPAD_2;
break;
default:
return -EINVAL;
}
writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
return 0;
}
static int
snd_rme96_setclockmode(struct rme96 *rme96,
int mode)
{
switch (mode) {
case RME96_CLOCKMODE_SLAVE:
/* AutoSync */
rme96->wcreg &= ~RME96_WCR_MASTER;
rme96->areg &= ~RME96_AR_WSEL;
break;
case RME96_CLOCKMODE_MASTER:
/* Internal */
rme96->wcreg |= RME96_WCR_MASTER;
rme96->areg &= ~RME96_AR_WSEL;
break;
case RME96_CLOCKMODE_WORDCLOCK:
/* Word clock is a master mode */
rme96->wcreg |= RME96_WCR_MASTER;
rme96->areg |= RME96_AR_WSEL;
break;
default:
return -EINVAL;
}
writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
return 0;
}
static int
snd_rme96_getclockmode(struct rme96 *rme96)
{
if (rme96->areg & RME96_AR_WSEL) {
return RME96_CLOCKMODE_WORDCLOCK;
}
return (rme96->wcreg & RME96_WCR_MASTER) ? RME96_CLOCKMODE_MASTER :
RME96_CLOCKMODE_SLAVE;
}
static int
snd_rme96_setinputtype(struct rme96 *rme96,
int type)
{
int n;
switch (type) {
case RME96_INPUT_OPTICAL:
rme96->wcreg = (rme96->wcreg & ~RME96_WCR_INP_0) &
~RME96_WCR_INP_1;
break;
case RME96_INPUT_COAXIAL:
rme96->wcreg = (rme96->wcreg | RME96_WCR_INP_0) &
~RME96_WCR_INP_1;
break;
case RME96_INPUT_INTERNAL:
rme96->wcreg = (rme96->wcreg & ~RME96_WCR_INP_0) |
RME96_WCR_INP_1;
break;
case RME96_INPUT_XLR:
if ((rme96->pci->device != PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST &&
rme96->pci->device != PCI_DEVICE_ID_RME_DIGI96_8_PRO) ||
(rme96->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST &&
rme96->rev > 4))
{
/* Only Digi96/8 PRO and Digi96/8 PAD supports XLR */
return -EINVAL;
}
rme96->wcreg = (rme96->wcreg | RME96_WCR_INP_0) |
RME96_WCR_INP_1;
break;
case RME96_INPUT_ANALOG:
if (!RME96_HAS_ANALOG_IN(rme96)) {
return -EINVAL;
}
rme96->areg |= RME96_AR_ANALOG;
writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
if (rme96->rev < 4) {
/*
* Revision less than 004 does not support 64 and
* 88.2 kHz
*/
if (snd_rme96_capture_getrate(rme96, &n) == 88200) {
snd_rme96_capture_analog_setrate(rme96, 44100);
}
if (snd_rme96_capture_getrate(rme96, &n) == 64000) {
snd_rme96_capture_analog_setrate(rme96, 32000);
}
}
return 0;
default:
return -EINVAL;
}
if (type != RME96_INPUT_ANALOG && RME96_HAS_ANALOG_IN(rme96)) {
rme96->areg &= ~RME96_AR_ANALOG;
writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
}
writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
return 0;
}
static int
snd_rme96_getinputtype(struct rme96 *rme96)
{
if (rme96->areg & RME96_AR_ANALOG) {
return RME96_INPUT_ANALOG;
}
return ((rme96->wcreg >> RME96_WCR_BITPOS_INP_0) & 1) +
(((rme96->wcreg >> RME96_WCR_BITPOS_INP_1) & 1) << 1);
}
static void
snd_rme96_setframelog(struct rme96 *rme96,
int n_channels,
int is_playback)
{
int frlog;
if (n_channels == 2) {
frlog = 1;
} else {
/* assume 8 channels */
frlog = 3;
}
if (is_playback) {
frlog += (rme96->wcreg & RME96_WCR_MODE24) ? 2 : 1;
rme96->playback_frlog = frlog;
} else {
frlog += (rme96->wcreg & RME96_WCR_MODE24_2) ? 2 : 1;
rme96->capture_frlog = frlog;
}
}
static int
snd_rme96_playback_setformat(struct rme96 *rme96, snd_pcm_format_t format)
{
switch (format) {
case SNDRV_PCM_FORMAT_S16_LE:
rme96->wcreg &= ~RME96_WCR_MODE24;
break;
case SNDRV_PCM_FORMAT_S32_LE:
rme96->wcreg |= RME96_WCR_MODE24;
break;
default:
return -EINVAL;
}
writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
return 0;
}
static int
snd_rme96_capture_setformat(struct rme96 *rme96, snd_pcm_format_t format)
{
switch (format) {
case SNDRV_PCM_FORMAT_S16_LE:
rme96->wcreg &= ~RME96_WCR_MODE24_2;
break;
case SNDRV_PCM_FORMAT_S32_LE:
rme96->wcreg |= RME96_WCR_MODE24_2;
break;
default:
return -EINVAL;
}
writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
return 0;
}
static void
snd_rme96_set_period_properties(struct rme96 *rme96,
size_t period_bytes)
{
switch (period_bytes) {
case RME96_LARGE_BLOCK_SIZE:
rme96->wcreg &= ~RME96_WCR_ISEL;
break;
case RME96_SMALL_BLOCK_SIZE:
rme96->wcreg |= RME96_WCR_ISEL;
break;
default:
snd_BUG();
break;
}
rme96->wcreg &= ~RME96_WCR_IDIS;
writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
}
static int
snd_rme96_playback_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
struct rme96 *rme96 = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
int err, rate, dummy;
bool apply_dac_volume = false;
runtime->dma_area = (void __force *)(rme96->iobase +
RME96_IO_PLAY_BUFFER);
runtime->dma_addr = rme96->port + RME96_IO_PLAY_BUFFER;
runtime->dma_bytes = RME96_BUFFER_SIZE;
spin_lock_irq(&rme96->lock);
if (!(rme96->wcreg & RME96_WCR_MASTER) &&
snd_rme96_getinputtype(rme96) != RME96_INPUT_ANALOG &&
(rate = snd_rme96_capture_getrate(rme96, &dummy)) > 0)
{
/* slave clock */
if ((int)params_rate(params) != rate) {
err = -EIO;
goto error;
}
} else {
err = snd_rme96_playback_setrate(rme96, params_rate(params));
if (err < 0)
goto error;
apply_dac_volume = err > 0; /* need to restore volume later? */
}
err = snd_rme96_playback_setformat(rme96, params_format(params));
if (err < 0)
goto error;
snd_rme96_setframelog(rme96, params_channels(params), 1);
if (rme96->capture_periodsize != 0) {
if (params_period_size(params) << rme96->playback_frlog !=
rme96->capture_periodsize)
{
err = -EBUSY;
goto error;
}
}
rme96->playback_periodsize =
params_period_size(params) << rme96->playback_frlog;
snd_rme96_set_period_properties(rme96, rme96->playback_periodsize);
/* S/PDIF setup */
if ((rme96->wcreg & RME96_WCR_ADAT) == 0) {
rme96->wcreg &= ~(RME96_WCR_PRO | RME96_WCR_DOLBY | RME96_WCR_EMP);
writel(rme96->wcreg |= rme96->wcreg_spdif_stream, rme96->iobase + RME96_IO_CONTROL_REGISTER);
}
err = 0;
error:
spin_unlock_irq(&rme96->lock);
if (apply_dac_volume) {
usleep_range(3000, 10000);
snd_rme96_apply_dac_volume(rme96);
}
return err;
}
static int
snd_rme96_capture_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
struct rme96 *rme96 = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
int err, isadat, rate;
runtime->dma_area = (void __force *)(rme96->iobase +
RME96_IO_REC_BUFFER);
runtime->dma_addr = rme96->port + RME96_IO_REC_BUFFER;
runtime->dma_bytes = RME96_BUFFER_SIZE;
spin_lock_irq(&rme96->lock);
if ((err = snd_rme96_capture_setformat(rme96, params_format(params))) < 0) {
spin_unlock_irq(&rme96->lock);
return err;
}
if (snd_rme96_getinputtype(rme96) == RME96_INPUT_ANALOG) {
if ((err = snd_rme96_capture_analog_setrate(rme96,
params_rate(params))) < 0)
{
spin_unlock_irq(&rme96->lock);
return err;
}
} else if ((rate = snd_rme96_capture_getrate(rme96, &isadat)) > 0) {
if ((int)params_rate(params) != rate) {
spin_unlock_irq(&rme96->lock);
return -EIO;
}
if ((isadat && runtime->hw.channels_min == 2) ||
(!isadat && runtime->hw.channels_min == 8))
{
spin_unlock_irq(&rme96->lock);
return -EIO;
}
}
snd_rme96_setframelog(rme96, params_channels(params), 0);
if (rme96->playback_periodsize != 0) {
if (params_period_size(params) << rme96->capture_frlog !=
rme96->playback_periodsize)
{
spin_unlock_irq(&rme96->lock);
return -EBUSY;
}
}
rme96->capture_periodsize =
params_period_size(params) << rme96->capture_frlog;
snd_rme96_set_period_properties(rme96, rme96->capture_periodsize);
spin_unlock_irq(&rme96->lock);
return 0;
}
static void
snd_rme96_trigger(struct rme96 *rme96,
int op)
{
if (op & RME96_TB_RESET_PLAYPOS)
writel(0, rme96->iobase + RME96_IO_RESET_PLAY_POS);
if (op & RME96_TB_RESET_CAPTUREPOS)
writel(0, rme96->iobase + RME96_IO_RESET_REC_POS);
if (op & RME96_TB_CLEAR_PLAYBACK_IRQ) {
rme96->rcreg = readl(rme96->iobase + RME96_IO_CONTROL_REGISTER);
if (rme96->rcreg & RME96_RCR_IRQ)
writel(0, rme96->iobase + RME96_IO_CONFIRM_PLAY_IRQ);
}
if (op & RME96_TB_CLEAR_CAPTURE_IRQ) {
rme96->rcreg = readl(rme96->iobase + RME96_IO_CONTROL_REGISTER);
if (rme96->rcreg & RME96_RCR_IRQ_2)
writel(0, rme96->iobase + RME96_IO_CONFIRM_REC_IRQ);
}
if (op & RME96_TB_START_PLAYBACK)
rme96->wcreg |= RME96_WCR_START;
if (op & RME96_TB_STOP_PLAYBACK)
rme96->wcreg &= ~RME96_WCR_START;
if (op & RME96_TB_START_CAPTURE)
rme96->wcreg |= RME96_WCR_START_2;
if (op & RME96_TB_STOP_CAPTURE)
rme96->wcreg &= ~RME96_WCR_START_2;
writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
}
static irqreturn_t
snd_rme96_interrupt(int irq,
void *dev_id)
{
struct rme96 *rme96 = (struct rme96 *)dev_id;
rme96->rcreg = readl(rme96->iobase + RME96_IO_CONTROL_REGISTER);
/* fastpath out, to ease interrupt sharing */
if (!((rme96->rcreg & RME96_RCR_IRQ) ||
(rme96->rcreg & RME96_RCR_IRQ_2)))
{
return IRQ_NONE;
}
if (rme96->rcreg & RME96_RCR_IRQ) {
/* playback */
snd_pcm_period_elapsed(rme96->playback_substream);
writel(0, rme96->iobase + RME96_IO_CONFIRM_PLAY_IRQ);
}
if (rme96->rcreg & RME96_RCR_IRQ_2) {
/* capture */
snd_pcm_period_elapsed(rme96->capture_substream);
writel(0, rme96->iobase + RME96_IO_CONFIRM_REC_IRQ);
}
return IRQ_HANDLED;
}
static unsigned int period_bytes[] = { RME96_SMALL_BLOCK_SIZE, RME96_LARGE_BLOCK_SIZE };
static struct snd_pcm_hw_constraint_list hw_constraints_period_bytes = {
.count = ARRAY_SIZE(period_bytes),
.list = period_bytes,
.mask = 0
};
static void
rme96_set_buffer_size_constraint(struct rme96 *rme96,
struct snd_pcm_runtime *runtime)
{
unsigned int size;
snd_pcm_hw_constraint_single(runtime, SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
RME96_BUFFER_SIZE);
if ((size = rme96->playback_periodsize) != 0 ||
(size = rme96->capture_periodsize) != 0)
snd_pcm_hw_constraint_single(runtime,
SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
size);
else
snd_pcm_hw_constraint_list(runtime, 0,
SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
&hw_constraints_period_bytes);
}
static int
snd_rme96_playback_spdif_open(struct snd_pcm_substream *substream)
{
int rate, dummy;
struct rme96 *rme96 = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
snd_pcm_set_sync(substream);
spin_lock_irq(&rme96->lock);
if (rme96->playback_substream != NULL) {
spin_unlock_irq(&rme96->lock);
return -EBUSY;
}
rme96->wcreg &= ~RME96_WCR_ADAT;
writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
rme96->playback_substream = substream;
spin_unlock_irq(&rme96->lock);
runtime->hw = snd_rme96_playback_spdif_info;
if (!(rme96->wcreg & RME96_WCR_MASTER) &&
snd_rme96_getinputtype(rme96) != RME96_INPUT_ANALOG &&
(rate = snd_rme96_capture_getrate(rme96, &dummy)) > 0)
{
/* slave clock */
runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
runtime->hw.rate_min = rate;
runtime->hw.rate_max = rate;
}
rme96_set_buffer_size_constraint(rme96, runtime);
rme96->wcreg_spdif_stream = rme96->wcreg_spdif;
rme96->spdif_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
snd_ctl_notify(rme96->card, SNDRV_CTL_EVENT_MASK_VALUE |
SNDRV_CTL_EVENT_MASK_INFO, &rme96->spdif_ctl->id);
return 0;
}
static int
snd_rme96_capture_spdif_open(struct snd_pcm_substream *substream)
{
int isadat, rate;
struct rme96 *rme96 = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
snd_pcm_set_sync(substream);
runtime->hw = snd_rme96_capture_spdif_info;
if (snd_rme96_getinputtype(rme96) != RME96_INPUT_ANALOG &&
(rate = snd_rme96_capture_getrate(rme96, &isadat)) > 0)
{
if (isadat) {
return -EIO;
}
runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
runtime->hw.rate_min = rate;
runtime->hw.rate_max = rate;
}
spin_lock_irq(&rme96->lock);
if (rme96->capture_substream != NULL) {
spin_unlock_irq(&rme96->lock);
return -EBUSY;
}
rme96->capture_substream = substream;
spin_unlock_irq(&rme96->lock);
rme96_set_buffer_size_constraint(rme96, runtime);
return 0;
}
static int
snd_rme96_playback_adat_open(struct snd_pcm_substream *substream)
{
int rate, dummy;
struct rme96 *rme96 = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
snd_pcm_set_sync(substream);
spin_lock_irq(&rme96->lock);
if (rme96->playback_substream != NULL) {
spin_unlock_irq(&rme96->lock);
return -EBUSY;
}
rme96->wcreg |= RME96_WCR_ADAT;
writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
rme96->playback_substream = substream;
spin_unlock_irq(&rme96->lock);
runtime->hw = snd_rme96_playback_adat_info;
if (!(rme96->wcreg & RME96_WCR_MASTER) &&
snd_rme96_getinputtype(rme96) != RME96_INPUT_ANALOG &&
(rate = snd_rme96_capture_getrate(rme96, &dummy)) > 0)
{
/* slave clock */
runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
runtime->hw.rate_min = rate;
runtime->hw.rate_max = rate;
}
rme96_set_buffer_size_constraint(rme96, runtime);
return 0;
}
static int
snd_rme96_capture_adat_open(struct snd_pcm_substream *substream)
{
int isadat, rate;
struct rme96 *rme96 = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
snd_pcm_set_sync(substream);
runtime->hw = snd_rme96_capture_adat_info;
if (snd_rme96_getinputtype(rme96) == RME96_INPUT_ANALOG) {
/* makes no sense to use analog input. Note that analog
expension cards AEB4/8-I are RME96_INPUT_INTERNAL */
return -EIO;
}
if ((rate = snd_rme96_capture_getrate(rme96, &isadat)) > 0) {
if (!isadat) {
return -EIO;
}
runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
runtime->hw.rate_min = rate;
runtime->hw.rate_max = rate;
}
spin_lock_irq(&rme96->lock);
if (rme96->capture_substream != NULL) {
spin_unlock_irq(&rme96->lock);
return -EBUSY;
}
rme96->capture_substream = substream;
spin_unlock_irq(&rme96->lock);
rme96_set_buffer_size_constraint(rme96, runtime);
return 0;
}
static int
snd_rme96_playback_close(struct snd_pcm_substream *substream)
{
struct rme96 *rme96 = snd_pcm_substream_chip(substream);
int spdif = 0;
spin_lock_irq(&rme96->lock);
if (RME96_ISPLAYING(rme96)) {
snd_rme96_trigger(rme96, RME96_STOP_PLAYBACK);
}
rme96->playback_substream = NULL;
rme96->playback_periodsize = 0;
spdif = (rme96->wcreg & RME96_WCR_ADAT) == 0;
spin_unlock_irq(&rme96->lock);
if (spdif) {
rme96->spdif_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
snd_ctl_notify(rme96->card, SNDRV_CTL_EVENT_MASK_VALUE |
SNDRV_CTL_EVENT_MASK_INFO, &rme96->spdif_ctl->id);
}
return 0;
}
static int
snd_rme96_capture_close(struct snd_pcm_substream *substream)
{
struct rme96 *rme96 = snd_pcm_substream_chip(substream);
spin_lock_irq(&rme96->lock);
if (RME96_ISRECORDING(rme96)) {
snd_rme96_trigger(rme96, RME96_STOP_CAPTURE);
}
rme96->capture_substream = NULL;
rme96->capture_periodsize = 0;
spin_unlock_irq(&rme96->lock);
return 0;
}
static int
snd_rme96_playback_prepare(struct snd_pcm_substream *substream)
{
struct rme96 *rme96 = snd_pcm_substream_chip(substream);
spin_lock_irq(&rme96->lock);
if (RME96_ISPLAYING(rme96)) {
snd_rme96_trigger(rme96, RME96_STOP_PLAYBACK);
}
writel(0, rme96->iobase + RME96_IO_RESET_PLAY_POS);
spin_unlock_irq(&rme96->lock);
return 0;
}
static int
snd_rme96_capture_prepare(struct snd_pcm_substream *substream)
{
struct rme96 *rme96 = snd_pcm_substream_chip(substream);
spin_lock_irq(&rme96->lock);
if (RME96_ISRECORDING(rme96)) {
snd_rme96_trigger(rme96, RME96_STOP_CAPTURE);
}
writel(0, rme96->iobase + RME96_IO_RESET_REC_POS);
spin_unlock_irq(&rme96->lock);
return 0;
}
static int
snd_rme96_playback_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct rme96 *rme96 = snd_pcm_substream_chip(substream);
struct snd_pcm_substream *s;
bool sync;
snd_pcm_group_for_each_entry(s, substream) {
if (snd_pcm_substream_chip(s) == rme96)
snd_pcm_trigger_done(s, substream);
}
sync = (rme96->playback_substream && rme96->capture_substream) &&
(rme96->playback_substream->group ==
rme96->capture_substream->group);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
if (!RME96_ISPLAYING(rme96)) {
if (substream != rme96->playback_substream)
return -EBUSY;
snd_rme96_trigger(rme96, sync ? RME96_START_BOTH
: RME96_START_PLAYBACK);
}
break;
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_STOP:
if (RME96_ISPLAYING(rme96)) {
if (substream != rme96->playback_substream)
return -EBUSY;
snd_rme96_trigger(rme96, sync ? RME96_STOP_BOTH
: RME96_STOP_PLAYBACK);
}
break;
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
if (RME96_ISPLAYING(rme96))
snd_rme96_trigger(rme96, sync ? RME96_STOP_BOTH
: RME96_STOP_PLAYBACK);
break;
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
if (!RME96_ISPLAYING(rme96))
snd_rme96_trigger(rme96, sync ? RME96_RESUME_BOTH
: RME96_RESUME_PLAYBACK);
break;
default:
return -EINVAL;
}
return 0;
}
static int
snd_rme96_capture_trigger(struct snd_pcm_substream *substream,
int cmd)
{
struct rme96 *rme96 = snd_pcm_substream_chip(substream);
struct snd_pcm_substream *s;
bool sync;
snd_pcm_group_for_each_entry(s, substream) {
if (snd_pcm_substream_chip(s) == rme96)
snd_pcm_trigger_done(s, substream);
}
sync = (rme96->playback_substream && rme96->capture_substream) &&
(rme96->playback_substream->group ==
rme96->capture_substream->group);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
if (!RME96_ISRECORDING(rme96)) {
if (substream != rme96->capture_substream)
return -EBUSY;
snd_rme96_trigger(rme96, sync ? RME96_START_BOTH
: RME96_START_CAPTURE);
}
break;
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_STOP:
if (RME96_ISRECORDING(rme96)) {
if (substream != rme96->capture_substream)
return -EBUSY;
snd_rme96_trigger(rme96, sync ? RME96_STOP_BOTH
: RME96_STOP_CAPTURE);
}
break;
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
if (RME96_ISRECORDING(rme96))
snd_rme96_trigger(rme96, sync ? RME96_STOP_BOTH
: RME96_STOP_CAPTURE);
break;
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
if (!RME96_ISRECORDING(rme96))
snd_rme96_trigger(rme96, sync ? RME96_RESUME_BOTH
: RME96_RESUME_CAPTURE);
break;
default:
return -EINVAL;
}
return 0;
}
static snd_pcm_uframes_t
snd_rme96_playback_pointer(struct snd_pcm_substream *substream)
{
struct rme96 *rme96 = snd_pcm_substream_chip(substream);
return snd_rme96_playback_ptr(rme96);
}
static snd_pcm_uframes_t
snd_rme96_capture_pointer(struct snd_pcm_substream *substream)
{
struct rme96 *rme96 = snd_pcm_substream_chip(substream);
return snd_rme96_capture_ptr(rme96);
}
static const struct snd_pcm_ops snd_rme96_playback_spdif_ops = {
.open = snd_rme96_playback_spdif_open,
.close = snd_rme96_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_rme96_playback_hw_params,
.prepare = snd_rme96_playback_prepare,
.trigger = snd_rme96_playback_trigger,
.pointer = snd_rme96_playback_pointer,
.copy = snd_rme96_playback_copy,
.silence = snd_rme96_playback_silence,
.mmap = snd_pcm_lib_mmap_iomem,
};
static const struct snd_pcm_ops snd_rme96_capture_spdif_ops = {
.open = snd_rme96_capture_spdif_open,
.close = snd_rme96_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_rme96_capture_hw_params,
.prepare = snd_rme96_capture_prepare,
.trigger = snd_rme96_capture_trigger,
.pointer = snd_rme96_capture_pointer,
.copy = snd_rme96_capture_copy,
.mmap = snd_pcm_lib_mmap_iomem,
};
static const struct snd_pcm_ops snd_rme96_playback_adat_ops = {
.open = snd_rme96_playback_adat_open,
.close = snd_rme96_playback_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_rme96_playback_hw_params,
.prepare = snd_rme96_playback_prepare,
.trigger = snd_rme96_playback_trigger,
.pointer = snd_rme96_playback_pointer,
.copy = snd_rme96_playback_copy,
.silence = snd_rme96_playback_silence,
.mmap = snd_pcm_lib_mmap_iomem,
};
static const struct snd_pcm_ops snd_rme96_capture_adat_ops = {
.open = snd_rme96_capture_adat_open,
.close = snd_rme96_capture_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = snd_rme96_capture_hw_params,
.prepare = snd_rme96_capture_prepare,
.trigger = snd_rme96_capture_trigger,
.pointer = snd_rme96_capture_pointer,
.copy = snd_rme96_capture_copy,
.mmap = snd_pcm_lib_mmap_iomem,
};
static void
snd_rme96_free(void *private_data)
{
struct rme96 *rme96 = (struct rme96 *)private_data;
if (rme96 == NULL) {
return;
}
if (rme96->irq >= 0) {
snd_rme96_trigger(rme96, RME96_STOP_BOTH);
rme96->areg &= ~RME96_AR_DAC_EN;
writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
free_irq(rme96->irq, (void *)rme96);
rme96->irq = -1;
}
if (rme96->iobase) {
iounmap(rme96->iobase);
rme96->iobase = NULL;
}
if (rme96->port) {
pci_release_regions(rme96->pci);
rme96->port = 0;
}
#ifdef CONFIG_PM_SLEEP
vfree(rme96->playback_suspend_buffer);
vfree(rme96->capture_suspend_buffer);
#endif
pci_disable_device(rme96->pci);
}
static void
snd_rme96_free_spdif_pcm(struct snd_pcm *pcm)
{
struct rme96 *rme96 = pcm->private_data;
rme96->spdif_pcm = NULL;
}
static void
snd_rme96_free_adat_pcm(struct snd_pcm *pcm)
{
struct rme96 *rme96 = pcm->private_data;
rme96->adat_pcm = NULL;
}
static int
snd_rme96_create(struct rme96 *rme96)
{
struct pci_dev *pci = rme96->pci;
int err;
rme96->irq = -1;
spin_lock_init(&rme96->lock);
if ((err = pci_enable_device(pci)) < 0)
return err;
if ((err = pci_request_regions(pci, "RME96")) < 0)
return err;
rme96->port = pci_resource_start(rme96->pci, 0);
rme96->iobase = ioremap_nocache(rme96->port, RME96_IO_SIZE);
if (!rme96->iobase) {
dev_err(rme96->card->dev,
"unable to remap memory region 0x%lx-0x%lx\n",
rme96->port, rme96->port + RME96_IO_SIZE - 1);
return -ENOMEM;
}
if (request_irq(pci->irq, snd_rme96_interrupt, IRQF_SHARED,
KBUILD_MODNAME, rme96)) {
dev_err(rme96->card->dev, "unable to grab IRQ %d\n", pci->irq);
return -EBUSY;
}
rme96->irq = pci->irq;
/* read the card's revision number */
pci_read_config_byte(pci, 8, &rme96->rev);
/* set up ALSA pcm device for S/PDIF */
if ((err = snd_pcm_new(rme96->card, "Digi96 IEC958", 0,
1, 1, &rme96->spdif_pcm)) < 0)
{
return err;
}
rme96->spdif_pcm->private_data = rme96;
rme96->spdif_pcm->private_free = snd_rme96_free_spdif_pcm;
strcpy(rme96->spdif_pcm->name, "Digi96 IEC958");
snd_pcm_set_ops(rme96->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_rme96_playback_spdif_ops);
snd_pcm_set_ops(rme96->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_rme96_capture_spdif_ops);
rme96->spdif_pcm->info_flags = 0;
/* set up ALSA pcm device for ADAT */
if (pci->device == PCI_DEVICE_ID_RME_DIGI96) {
/* ADAT is not available on the base model */
rme96->adat_pcm = NULL;
} else {
if ((err = snd_pcm_new(rme96->card, "Digi96 ADAT", 1,
1, 1, &rme96->adat_pcm)) < 0)
{
return err;
}
rme96->adat_pcm->private_data = rme96;
rme96->adat_pcm->private_free = snd_rme96_free_adat_pcm;
strcpy(rme96->adat_pcm->name, "Digi96 ADAT");
snd_pcm_set_ops(rme96->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_rme96_playback_adat_ops);
snd_pcm_set_ops(rme96->adat_pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_rme96_capture_adat_ops);
rme96->adat_pcm->info_flags = 0;
}
rme96->playback_periodsize = 0;
rme96->capture_periodsize = 0;
/* make sure playback/capture is stopped, if by some reason active */
snd_rme96_trigger(rme96, RME96_STOP_BOTH);
/* set default values in registers */
rme96->wcreg =
RME96_WCR_FREQ_1 | /* set 44.1 kHz playback */
RME96_WCR_SEL | /* normal playback */
RME96_WCR_MASTER | /* set to master clock mode */
RME96_WCR_INP_0; /* set coaxial input */
rme96->areg = RME96_AR_FREQPAD_1; /* set 44.1 kHz analog capture */
writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
/* reset the ADC */
writel(rme96->areg | RME96_AR_PD2,
rme96->iobase + RME96_IO_ADDITIONAL_REG);
writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
/* reset and enable the DAC (order is important). */
snd_rme96_reset_dac(rme96);
rme96->areg |= RME96_AR_DAC_EN;
writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
/* reset playback and record buffer pointers */
writel(0, rme96->iobase + RME96_IO_RESET_PLAY_POS);
writel(0, rme96->iobase + RME96_IO_RESET_REC_POS);
/* reset volume */
rme96->vol[0] = rme96->vol[1] = 0;
if (RME96_HAS_ANALOG_OUT(rme96)) {
snd_rme96_apply_dac_volume(rme96);
}
/* init switch interface */
if ((err = snd_rme96_create_switches(rme96->card, rme96)) < 0) {
return err;
}
/* init proc interface */
snd_rme96_proc_init(rme96);
return 0;
}
/*
* proc interface
*/
static void
snd_rme96_proc_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer)
{
int n;
struct rme96 *rme96 = entry->private_data;
rme96->rcreg = readl(rme96->iobase + RME96_IO_CONTROL_REGISTER);
snd_iprintf(buffer, rme96->card->longname);
snd_iprintf(buffer, " (index #%d)\n", rme96->card->number + 1);
snd_iprintf(buffer, "\nGeneral settings\n");
if (rme96->wcreg & RME96_WCR_IDIS) {
snd_iprintf(buffer, " period size: N/A (interrupts "
"disabled)\n");
} else if (rme96->wcreg & RME96_WCR_ISEL) {
snd_iprintf(buffer, " period size: 2048 bytes\n");
} else {
snd_iprintf(buffer, " period size: 8192 bytes\n");
}
snd_iprintf(buffer, "\nInput settings\n");
switch (snd_rme96_getinputtype(rme96)) {
case RME96_INPUT_OPTICAL:
snd_iprintf(buffer, " input: optical");
break;
case RME96_INPUT_COAXIAL:
snd_iprintf(buffer, " input: coaxial");
break;
case RME96_INPUT_INTERNAL:
snd_iprintf(buffer, " input: internal");
break;
case RME96_INPUT_XLR:
snd_iprintf(buffer, " input: XLR");
break;
case RME96_INPUT_ANALOG:
snd_iprintf(buffer, " input: analog");
break;
}
if (snd_rme96_capture_getrate(rme96, &n) < 0) {
snd_iprintf(buffer, "\n sample rate: no valid signal\n");
} else {
if (n) {
snd_iprintf(buffer, " (8 channels)\n");
} else {
snd_iprintf(buffer, " (2 channels)\n");
}
snd_iprintf(buffer, " sample rate: %d Hz\n",
snd_rme96_capture_getrate(rme96, &n));
}
if (rme96->wcreg & RME96_WCR_MODE24_2) {
snd_iprintf(buffer, " sample format: 24 bit\n");
} else {
snd_iprintf(buffer, " sample format: 16 bit\n");
}
snd_iprintf(buffer, "\nOutput settings\n");
if (rme96->wcreg & RME96_WCR_SEL) {
snd_iprintf(buffer, " output signal: normal playback\n");
} else {
snd_iprintf(buffer, " output signal: same as input\n");
}
snd_iprintf(buffer, " sample rate: %d Hz\n",
snd_rme96_playback_getrate(rme96));
if (rme96->wcreg & RME96_WCR_MODE24) {
snd_iprintf(buffer, " sample format: 24 bit\n");
} else {
snd_iprintf(buffer, " sample format: 16 bit\n");
}
if (rme96->areg & RME96_AR_WSEL) {
snd_iprintf(buffer, " sample clock source: word clock\n");
} else if (rme96->wcreg & RME96_WCR_MASTER) {
snd_iprintf(buffer, " sample clock source: internal\n");
} else if (snd_rme96_getinputtype(rme96) == RME96_INPUT_ANALOG) {
snd_iprintf(buffer, " sample clock source: autosync (internal anyway due to analog input setting)\n");
} else if (snd_rme96_capture_getrate(rme96, &n) < 0) {
snd_iprintf(buffer, " sample clock source: autosync (internal anyway due to no valid signal)\n");
} else {
snd_iprintf(buffer, " sample clock source: autosync\n");
}
if (rme96->wcreg & RME96_WCR_PRO) {
snd_iprintf(buffer, " format: AES/EBU (professional)\n");
} else {
snd_iprintf(buffer, " format: IEC958 (consumer)\n");
}
if (rme96->wcreg & RME96_WCR_EMP) {
snd_iprintf(buffer, " emphasis: on\n");
} else {
snd_iprintf(buffer, " emphasis: off\n");
}
if (rme96->wcreg & RME96_WCR_DOLBY) {
snd_iprintf(buffer, " non-audio (dolby): on\n");
} else {
snd_iprintf(buffer, " non-audio (dolby): off\n");
}
if (RME96_HAS_ANALOG_IN(rme96)) {
snd_iprintf(buffer, "\nAnalog output settings\n");
switch (snd_rme96_getmontracks(rme96)) {
case RME96_MONITOR_TRACKS_1_2:
snd_iprintf(buffer, " monitored ADAT tracks: 1+2\n");
break;
case RME96_MONITOR_TRACKS_3_4:
snd_iprintf(buffer, " monitored ADAT tracks: 3+4\n");
break;
case RME96_MONITOR_TRACKS_5_6:
snd_iprintf(buffer, " monitored ADAT tracks: 5+6\n");
break;
case RME96_MONITOR_TRACKS_7_8:
snd_iprintf(buffer, " monitored ADAT tracks: 7+8\n");
break;
}
switch (snd_rme96_getattenuation(rme96)) {
case RME96_ATTENUATION_0:
snd_iprintf(buffer, " attenuation: 0 dB\n");
break;
case RME96_ATTENUATION_6:
snd_iprintf(buffer, " attenuation: -6 dB\n");
break;
case RME96_ATTENUATION_12:
snd_iprintf(buffer, " attenuation: -12 dB\n");
break;
case RME96_ATTENUATION_18:
snd_iprintf(buffer, " attenuation: -18 dB\n");
break;
}
snd_iprintf(buffer, " volume left: %u\n", rme96->vol[0]);
snd_iprintf(buffer, " volume right: %u\n", rme96->vol[1]);
}
}
static void snd_rme96_proc_init(struct rme96 *rme96)
{
struct snd_info_entry *entry;
if (! snd_card_proc_new(rme96->card, "rme96", &entry))
snd_info_set_text_ops(entry, rme96, snd_rme96_proc_read);
}
/*
* control interface
*/
#define snd_rme96_info_loopback_control snd_ctl_boolean_mono_info
static int
snd_rme96_get_loopback_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
spin_lock_irq(&rme96->lock);
ucontrol->value.integer.value[0] = rme96->wcreg & RME96_WCR_SEL ? 0 : 1;
spin_unlock_irq(&rme96->lock);
return 0;
}
static int
snd_rme96_put_loopback_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
unsigned int val;
int change;
val = ucontrol->value.integer.value[0] ? 0 : RME96_WCR_SEL;
spin_lock_irq(&rme96->lock);
val = (rme96->wcreg & ~RME96_WCR_SEL) | val;
change = val != rme96->wcreg;
rme96->wcreg = val;
writel(val, rme96->iobase + RME96_IO_CONTROL_REGISTER);
spin_unlock_irq(&rme96->lock);
return change;
}
static int
snd_rme96_info_inputtype_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
static const char * const _texts[5] = {
"Optical", "Coaxial", "Internal", "XLR", "Analog"
};
struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
const char *texts[5] = {
_texts[0], _texts[1], _texts[2], _texts[3], _texts[4]
};
int num_items;
switch (rme96->pci->device) {
case PCI_DEVICE_ID_RME_DIGI96:
case PCI_DEVICE_ID_RME_DIGI96_8:
num_items = 3;
break;
case PCI_DEVICE_ID_RME_DIGI96_8_PRO:
num_items = 4;
break;
case PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST:
if (rme96->rev > 4) {
/* PST */
num_items = 4;
texts[3] = _texts[4]; /* Analog instead of XLR */
} else {
/* PAD */
num_items = 5;
}
break;
default:
snd_BUG();
return -EINVAL;
}
return snd_ctl_enum_info(uinfo, 1, num_items, texts);
}
static int
snd_rme96_get_inputtype_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
unsigned int items = 3;
spin_lock_irq(&rme96->lock);
ucontrol->value.enumerated.item[0] = snd_rme96_getinputtype(rme96);
switch (rme96->pci->device) {
case PCI_DEVICE_ID_RME_DIGI96:
case PCI_DEVICE_ID_RME_DIGI96_8:
items = 3;
break;
case PCI_DEVICE_ID_RME_DIGI96_8_PRO:
items = 4;
break;
case PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST:
if (rme96->rev > 4) {
/* for handling PST case, (INPUT_ANALOG is moved to INPUT_XLR */
if (ucontrol->value.enumerated.item[0] == RME96_INPUT_ANALOG) {
ucontrol->value.enumerated.item[0] = RME96_INPUT_XLR;
}
items = 4;
} else {
items = 5;
}
break;
default:
snd_BUG();
break;
}
if (ucontrol->value.enumerated.item[0] >= items) {
ucontrol->value.enumerated.item[0] = items - 1;
}
spin_unlock_irq(&rme96->lock);
return 0;
}
static int
snd_rme96_put_inputtype_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
unsigned int val;
int change, items = 3;
switch (rme96->pci->device) {
case PCI_DEVICE_ID_RME_DIGI96:
case PCI_DEVICE_ID_RME_DIGI96_8:
items = 3;
break;
case PCI_DEVICE_ID_RME_DIGI96_8_PRO:
items = 4;
break;
case PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST:
if (rme96->rev > 4) {
items = 4;
} else {
items = 5;
}
break;
default:
snd_BUG();
break;
}
val = ucontrol->value.enumerated.item[0] % items;
/* special case for PST */
if (rme96->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST && rme96->rev > 4) {
if (val == RME96_INPUT_XLR) {
val = RME96_INPUT_ANALOG;
}
}
spin_lock_irq(&rme96->lock);
change = (int)val != snd_rme96_getinputtype(rme96);
snd_rme96_setinputtype(rme96, val);
spin_unlock_irq(&rme96->lock);
return change;
}
static int
snd_rme96_info_clockmode_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
static const char * const texts[3] = { "AutoSync", "Internal", "Word" };
return snd_ctl_enum_info(uinfo, 1, 3, texts);
}
static int
snd_rme96_get_clockmode_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
spin_lock_irq(&rme96->lock);
ucontrol->value.enumerated.item[0] = snd_rme96_getclockmode(rme96);
spin_unlock_irq(&rme96->lock);
return 0;
}
static int
snd_rme96_put_clockmode_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
unsigned int val;
int change;
val = ucontrol->value.enumerated.item[0] % 3;
spin_lock_irq(&rme96->lock);
change = (int)val != snd_rme96_getclockmode(rme96);
snd_rme96_setclockmode(rme96, val);
spin_unlock_irq(&rme96->lock);
return change;
}
static int
snd_rme96_info_attenuation_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
static const char * const texts[4] = {
"0 dB", "-6 dB", "-12 dB", "-18 dB"
};
return snd_ctl_enum_info(uinfo, 1, 4, texts);
}
static int
snd_rme96_get_attenuation_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
spin_lock_irq(&rme96->lock);
ucontrol->value.enumerated.item[0] = snd_rme96_getattenuation(rme96);
spin_unlock_irq(&rme96->lock);
return 0;
}
static int
snd_rme96_put_attenuation_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
unsigned int val;
int change;
val = ucontrol->value.enumerated.item[0] % 4;
spin_lock_irq(&rme96->lock);
change = (int)val != snd_rme96_getattenuation(rme96);
snd_rme96_setattenuation(rme96, val);
spin_unlock_irq(&rme96->lock);
return change;
}
static int
snd_rme96_info_montracks_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
static const char * const texts[4] = { "1+2", "3+4", "5+6", "7+8" };
return snd_ctl_enum_info(uinfo, 1, 4, texts);
}
static int
snd_rme96_get_montracks_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
spin_lock_irq(&rme96->lock);
ucontrol->value.enumerated.item[0] = snd_rme96_getmontracks(rme96);
spin_unlock_irq(&rme96->lock);
return 0;
}
static int
snd_rme96_put_montracks_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
unsigned int val;
int change;
val = ucontrol->value.enumerated.item[0] % 4;
spin_lock_irq(&rme96->lock);
change = (int)val != snd_rme96_getmontracks(rme96);
snd_rme96_setmontracks(rme96, val);
spin_unlock_irq(&rme96->lock);
return change;
}
static u32 snd_rme96_convert_from_aes(struct snd_aes_iec958 *aes)
{
u32 val = 0;
val |= (aes->status[0] & IEC958_AES0_PROFESSIONAL) ? RME96_WCR_PRO : 0;
val |= (aes->status[0] & IEC958_AES0_NONAUDIO) ? RME96_WCR_DOLBY : 0;
if (val & RME96_WCR_PRO)
val |= (aes->status[0] & IEC958_AES0_PRO_EMPHASIS_5015) ? RME96_WCR_EMP : 0;
else
val |= (aes->status[0] & IEC958_AES0_CON_EMPHASIS_5015) ? RME96_WCR_EMP : 0;
return val;
}
static void snd_rme96_convert_to_aes(struct snd_aes_iec958 *aes, u32 val)
{
aes->status[0] = ((val & RME96_WCR_PRO) ? IEC958_AES0_PROFESSIONAL : 0) |
((val & RME96_WCR_DOLBY) ? IEC958_AES0_NONAUDIO : 0);
if (val & RME96_WCR_PRO)
aes->status[0] |= (val & RME96_WCR_EMP) ? IEC958_AES0_PRO_EMPHASIS_5015 : 0;
else
aes->status[0] |= (val & RME96_WCR_EMP) ? IEC958_AES0_CON_EMPHASIS_5015 : 0;
}
static int snd_rme96_control_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_rme96_control_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
snd_rme96_convert_to_aes(&ucontrol->value.iec958, rme96->wcreg_spdif);
return 0;
}
static int snd_rme96_control_spdif_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
int change;
u32 val;
val = snd_rme96_convert_from_aes(&ucontrol->value.iec958);
spin_lock_irq(&rme96->lock);
change = val != rme96->wcreg_spdif;
rme96->wcreg_spdif = val;
spin_unlock_irq(&rme96->lock);
return change;
}
static int snd_rme96_control_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_rme96_control_spdif_stream_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
snd_rme96_convert_to_aes(&ucontrol->value.iec958, rme96->wcreg_spdif_stream);
return 0;
}
static int snd_rme96_control_spdif_stream_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
int change;
u32 val;
val = snd_rme96_convert_from_aes(&ucontrol->value.iec958);
spin_lock_irq(&rme96->lock);
change = val != rme96->wcreg_spdif_stream;
rme96->wcreg_spdif_stream = val;
rme96->wcreg &= ~(RME96_WCR_PRO | RME96_WCR_DOLBY | RME96_WCR_EMP);
rme96->wcreg |= val;
writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
spin_unlock_irq(&rme96->lock);
return change;
}
static int snd_rme96_control_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
uinfo->count = 1;
return 0;
}
static int snd_rme96_control_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
ucontrol->value.iec958.status[0] = kcontrol->private_value;
return 0;
}
static int
snd_rme96_dac_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
uinfo->count = 2;
uinfo->value.integer.min = 0;
uinfo->value.integer.max = RME96_185X_MAX_OUT(rme96);
return 0;
}
static int
snd_rme96_dac_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *u)
{
struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
spin_lock_irq(&rme96->lock);
u->value.integer.value[0] = rme96->vol[0];
u->value.integer.value[1] = rme96->vol[1];
spin_unlock_irq(&rme96->lock);
return 0;
}
static int
snd_rme96_dac_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *u)
{
struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
int change = 0;
unsigned int vol, maxvol;
if (!RME96_HAS_ANALOG_OUT(rme96))
return -EINVAL;
maxvol = RME96_185X_MAX_OUT(rme96);
spin_lock_irq(&rme96->lock);
vol = u->value.integer.value[0];
if (vol != rme96->vol[0] && vol <= maxvol) {
rme96->vol[0] = vol;
change = 1;
}
vol = u->value.integer.value[1];
if (vol != rme96->vol[1] && vol <= maxvol) {
rme96->vol[1] = vol;
change = 1;
}
if (change)
snd_rme96_apply_dac_volume(rme96);
spin_unlock_irq(&rme96->lock);
return change;
}
static struct snd_kcontrol_new snd_rme96_controls[] = {
{
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
.info = snd_rme96_control_spdif_info,
.get = snd_rme96_control_spdif_get,
.put = snd_rme96_control_spdif_put
},
{
.access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
.info = snd_rme96_control_spdif_stream_info,
.get = snd_rme96_control_spdif_stream_get,
.put = snd_rme96_control_spdif_stream_put
},
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
.info = snd_rme96_control_spdif_mask_info,
.get = snd_rme96_control_spdif_mask_get,
.private_value = IEC958_AES0_NONAUDIO |
IEC958_AES0_PROFESSIONAL |
IEC958_AES0_CON_EMPHASIS
},
{
.access = SNDRV_CTL_ELEM_ACCESS_READ,
.iface = SNDRV_CTL_ELEM_IFACE_PCM,
.name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
.info = snd_rme96_control_spdif_mask_info,
.get = snd_rme96_control_spdif_mask_get,
.private_value = IEC958_AES0_NONAUDIO |
IEC958_AES0_PROFESSIONAL |
IEC958_AES0_PRO_EMPHASIS
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Input Connector",
.info = snd_rme96_info_inputtype_control,
.get = snd_rme96_get_inputtype_control,
.put = snd_rme96_put_inputtype_control
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Loopback Input",
.info = snd_rme96_info_loopback_control,
.get = snd_rme96_get_loopback_control,
.put = snd_rme96_put_loopback_control
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Sample Clock Source",
.info = snd_rme96_info_clockmode_control,
.get = snd_rme96_get_clockmode_control,
.put = snd_rme96_put_clockmode_control
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Monitor Tracks",
.info = snd_rme96_info_montracks_control,
.get = snd_rme96_get_montracks_control,
.put = snd_rme96_put_montracks_control
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "Attenuation",
.info = snd_rme96_info_attenuation_control,
.get = snd_rme96_get_attenuation_control,
.put = snd_rme96_put_attenuation_control
},
{
.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
.name = "DAC Playback Volume",
.info = snd_rme96_dac_volume_info,
.get = snd_rme96_dac_volume_get,
.put = snd_rme96_dac_volume_put
}
};
static int
snd_rme96_create_switches(struct snd_card *card,
struct rme96 *rme96)
{
int idx, err;
struct snd_kcontrol *kctl;
for (idx = 0; idx < 7; idx++) {
if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_rme96_controls[idx], rme96))) < 0)
return err;
if (idx == 1) /* IEC958 (S/PDIF) Stream */
rme96->spdif_ctl = kctl;
}
if (RME96_HAS_ANALOG_OUT(rme96)) {
for (idx = 7; idx < 10; idx++)
if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_rme96_controls[idx], rme96))) < 0)
return err;
}
return 0;
}
/*
* Card initialisation
*/
#ifdef CONFIG_PM_SLEEP
static int rme96_suspend(struct device *dev)
{
struct snd_card *card = dev_get_drvdata(dev);
struct rme96 *rme96 = card->private_data;
snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
snd_pcm_suspend(rme96->playback_substream);
snd_pcm_suspend(rme96->capture_substream);
/* save capture & playback pointers */
rme96->playback_pointer = readl(rme96->iobase + RME96_IO_GET_PLAY_POS)
& RME96_RCR_AUDIO_ADDR_MASK;
rme96->capture_pointer = readl(rme96->iobase + RME96_IO_GET_REC_POS)
& RME96_RCR_AUDIO_ADDR_MASK;
/* save playback and capture buffers */
memcpy_fromio(rme96->playback_suspend_buffer,
rme96->iobase + RME96_IO_PLAY_BUFFER, RME96_BUFFER_SIZE);
memcpy_fromio(rme96->capture_suspend_buffer,
rme96->iobase + RME96_IO_REC_BUFFER, RME96_BUFFER_SIZE);
/* disable the DAC */
rme96->areg &= ~RME96_AR_DAC_EN;
writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
return 0;
}
static int rme96_resume(struct device *dev)
{
struct snd_card *card = dev_get_drvdata(dev);
struct rme96 *rme96 = card->private_data;
/* reset playback and record buffer pointers */
writel(0, rme96->iobase + RME96_IO_SET_PLAY_POS
+ rme96->playback_pointer);
writel(0, rme96->iobase + RME96_IO_SET_REC_POS
+ rme96->capture_pointer);
/* restore playback and capture buffers */
memcpy_toio(rme96->iobase + RME96_IO_PLAY_BUFFER,
rme96->playback_suspend_buffer, RME96_BUFFER_SIZE);
memcpy_toio(rme96->iobase + RME96_IO_REC_BUFFER,
rme96->capture_suspend_buffer, RME96_BUFFER_SIZE);
/* reset the ADC */
writel(rme96->areg | RME96_AR_PD2,
rme96->iobase + RME96_IO_ADDITIONAL_REG);
writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
/* reset and enable DAC, restore analog volume */
snd_rme96_reset_dac(rme96);
rme96->areg |= RME96_AR_DAC_EN;
writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
if (RME96_HAS_ANALOG_OUT(rme96)) {
usleep_range(3000, 10000);
snd_rme96_apply_dac_volume(rme96);
}
snd_power_change_state(card, SNDRV_CTL_POWER_D0);
return 0;
}
static SIMPLE_DEV_PM_OPS(rme96_pm, rme96_suspend, rme96_resume);
#define RME96_PM_OPS &rme96_pm
#else
#define RME96_PM_OPS NULL
#endif /* CONFIG_PM_SLEEP */
static void snd_rme96_card_free(struct snd_card *card)
{
snd_rme96_free(card->private_data);
}
static int
snd_rme96_probe(struct pci_dev *pci,
const struct pci_device_id *pci_id)
{
static int dev;
struct rme96 *rme96;
struct snd_card *card;
int err;
u8 val;
if (dev >= SNDRV_CARDS) {
return -ENODEV;
}
if (!enable[dev]) {
dev++;
return -ENOENT;
}
err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
sizeof(struct rme96), &card);
if (err < 0)
return err;
card->private_free = snd_rme96_card_free;
rme96 = card->private_data;
rme96->card = card;
rme96->pci = pci;
if ((err = snd_rme96_create(rme96)) < 0) {
snd_card_free(card);
return err;
}
#ifdef CONFIG_PM_SLEEP
rme96->playback_suspend_buffer = vmalloc(RME96_BUFFER_SIZE);
if (!rme96->playback_suspend_buffer) {
dev_err(card->dev,
"Failed to allocate playback suspend buffer!\n");
snd_card_free(card);
return -ENOMEM;
}
rme96->capture_suspend_buffer = vmalloc(RME96_BUFFER_SIZE);
if (!rme96->capture_suspend_buffer) {
dev_err(card->dev,
"Failed to allocate capture suspend buffer!\n");
snd_card_free(card);
return -ENOMEM;
}
#endif
strcpy(card->driver, "Digi96");
switch (rme96->pci->device) {
case PCI_DEVICE_ID_RME_DIGI96:
strcpy(card->shortname, "RME Digi96");
break;
case PCI_DEVICE_ID_RME_DIGI96_8:
strcpy(card->shortname, "RME Digi96/8");
break;
case PCI_DEVICE_ID_RME_DIGI96_8_PRO:
strcpy(card->shortname, "RME Digi96/8 PRO");
break;
case PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST:
pci_read_config_byte(rme96->pci, 8, &val);
if (val < 5) {
strcpy(card->shortname, "RME Digi96/8 PAD");
} else {
strcpy(card->shortname, "RME Digi96/8 PST");
}
break;
}
sprintf(card->longname, "%s at 0x%lx, irq %d", card->shortname,
rme96->port, rme96->irq);
if ((err = snd_card_register(card)) < 0) {
snd_card_free(card);
return err;
}
pci_set_drvdata(pci, card);
dev++;
return 0;
}
static void snd_rme96_remove(struct pci_dev *pci)
{
snd_card_free(pci_get_drvdata(pci));
}
static struct pci_driver rme96_driver = {
.name = KBUILD_MODNAME,
.id_table = snd_rme96_ids,
.probe = snd_rme96_probe,
.remove = snd_rme96_remove,
.driver = {
.pm = RME96_PM_OPS,
},
};
module_pci_driver(rme96_driver);