| /* |
| * zcrypt 2.1.0 |
| * |
| * Copyright IBM Corp. 2001, 2012 |
| * Author(s): Robert Burroughs |
| * Eric Rossman (edrossma@us.ibm.com) |
| * |
| * Hotplug & misc device support: Jochen Roehrig (roehrig@de.ibm.com) |
| * Major cleanup & driver split: Martin Schwidefsky <schwidefsky@de.ibm.com> |
| * Ralph Wuerthner <rwuerthn@de.ibm.com> |
| * MSGTYPE restruct: Holger Dengler <hd@linux.vnet.ibm.com> |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2, or (at your option) |
| * any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| */ |
| |
| #define KMSG_COMPONENT "zcrypt" |
| #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt |
| |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/err.h> |
| #include <linux/atomic.h> |
| #include <linux/uaccess.h> |
| |
| #include "ap_bus.h" |
| #include "zcrypt_api.h" |
| #include "zcrypt_error.h" |
| #include "zcrypt_msgtype50.h" |
| |
| #define CEX3A_MAX_MOD_SIZE 512 /* 4096 bits */ |
| |
| #define CEX2A_MAX_RESPONSE_SIZE 0x110 /* max outputdatalength + type80_hdr */ |
| |
| #define CEX3A_MAX_RESPONSE_SIZE 0x210 /* 512 bit modulus |
| * (max outputdatalength) + |
| * type80_hdr*/ |
| |
| MODULE_AUTHOR("IBM Corporation"); |
| MODULE_DESCRIPTION("Cryptographic Accelerator (message type 50), " \ |
| "Copyright IBM Corp. 2001, 2012"); |
| MODULE_LICENSE("GPL"); |
| |
| /** |
| * The type 50 message family is associated with a CEX2A card. |
| * |
| * The four members of the family are described below. |
| * |
| * Note that all unsigned char arrays are right-justified and left-padded |
| * with zeroes. |
| * |
| * Note that all reserved fields must be zeroes. |
| */ |
| struct type50_hdr { |
| unsigned char reserved1; |
| unsigned char msg_type_code; /* 0x50 */ |
| unsigned short msg_len; |
| unsigned char reserved2; |
| unsigned char ignored; |
| unsigned short reserved3; |
| } __packed; |
| |
| #define TYPE50_TYPE_CODE 0x50 |
| |
| #define TYPE50_MEB1_FMT 0x0001 |
| #define TYPE50_MEB2_FMT 0x0002 |
| #define TYPE50_MEB3_FMT 0x0003 |
| #define TYPE50_CRB1_FMT 0x0011 |
| #define TYPE50_CRB2_FMT 0x0012 |
| #define TYPE50_CRB3_FMT 0x0013 |
| |
| /* Mod-Exp, with a small modulus */ |
| struct type50_meb1_msg { |
| struct type50_hdr header; |
| unsigned short keyblock_type; /* 0x0001 */ |
| unsigned char reserved[6]; |
| unsigned char exponent[128]; |
| unsigned char modulus[128]; |
| unsigned char message[128]; |
| } __packed; |
| |
| /* Mod-Exp, with a large modulus */ |
| struct type50_meb2_msg { |
| struct type50_hdr header; |
| unsigned short keyblock_type; /* 0x0002 */ |
| unsigned char reserved[6]; |
| unsigned char exponent[256]; |
| unsigned char modulus[256]; |
| unsigned char message[256]; |
| } __packed; |
| |
| /* Mod-Exp, with a larger modulus */ |
| struct type50_meb3_msg { |
| struct type50_hdr header; |
| unsigned short keyblock_type; /* 0x0003 */ |
| unsigned char reserved[6]; |
| unsigned char exponent[512]; |
| unsigned char modulus[512]; |
| unsigned char message[512]; |
| } __packed; |
| |
| /* CRT, with a small modulus */ |
| struct type50_crb1_msg { |
| struct type50_hdr header; |
| unsigned short keyblock_type; /* 0x0011 */ |
| unsigned char reserved[6]; |
| unsigned char p[64]; |
| unsigned char q[64]; |
| unsigned char dp[64]; |
| unsigned char dq[64]; |
| unsigned char u[64]; |
| unsigned char message[128]; |
| } __packed; |
| |
| /* CRT, with a large modulus */ |
| struct type50_crb2_msg { |
| struct type50_hdr header; |
| unsigned short keyblock_type; /* 0x0012 */ |
| unsigned char reserved[6]; |
| unsigned char p[128]; |
| unsigned char q[128]; |
| unsigned char dp[128]; |
| unsigned char dq[128]; |
| unsigned char u[128]; |
| unsigned char message[256]; |
| } __packed; |
| |
| /* CRT, with a larger modulus */ |
| struct type50_crb3_msg { |
| struct type50_hdr header; |
| unsigned short keyblock_type; /* 0x0013 */ |
| unsigned char reserved[6]; |
| unsigned char p[256]; |
| unsigned char q[256]; |
| unsigned char dp[256]; |
| unsigned char dq[256]; |
| unsigned char u[256]; |
| unsigned char message[512]; |
| } __packed; |
| |
| /** |
| * The type 80 response family is associated with a CEX2A card. |
| * |
| * Note that all unsigned char arrays are right-justified and left-padded |
| * with zeroes. |
| * |
| * Note that all reserved fields must be zeroes. |
| */ |
| |
| #define TYPE80_RSP_CODE 0x80 |
| |
| struct type80_hdr { |
| unsigned char reserved1; |
| unsigned char type; /* 0x80 */ |
| unsigned short len; |
| unsigned char code; /* 0x00 */ |
| unsigned char reserved2[3]; |
| unsigned char reserved3[8]; |
| } __packed; |
| |
| unsigned int get_rsa_modex_fc(struct ica_rsa_modexpo *mex, int *fcode) |
| { |
| |
| if (!mex->inputdatalength) |
| return -EINVAL; |
| |
| if (mex->inputdatalength <= 128) /* 1024 bit */ |
| *fcode = MEX_1K; |
| else if (mex->inputdatalength <= 256) /* 2048 bit */ |
| *fcode = MEX_2K; |
| else /* 4096 bit */ |
| *fcode = MEX_4K; |
| |
| return 0; |
| } |
| |
| unsigned int get_rsa_crt_fc(struct ica_rsa_modexpo_crt *crt, int *fcode) |
| { |
| |
| if (!crt->inputdatalength) |
| return -EINVAL; |
| |
| if (crt->inputdatalength <= 128) /* 1024 bit */ |
| *fcode = CRT_1K; |
| else if (crt->inputdatalength <= 256) /* 2048 bit */ |
| *fcode = CRT_2K; |
| else /* 4096 bit */ |
| *fcode = CRT_4K; |
| |
| return 0; |
| } |
| |
| /** |
| * Convert a ICAMEX message to a type50 MEX message. |
| * |
| * @zq: crypto queue pointer |
| * @ap_msg: crypto request pointer |
| * @mex: pointer to user input data |
| * |
| * Returns 0 on success or -EFAULT. |
| */ |
| static int ICAMEX_msg_to_type50MEX_msg(struct zcrypt_queue *zq, |
| struct ap_message *ap_msg, |
| struct ica_rsa_modexpo *mex) |
| { |
| unsigned char *mod, *exp, *inp; |
| int mod_len; |
| |
| mod_len = mex->inputdatalength; |
| |
| if (mod_len <= 128) { |
| struct type50_meb1_msg *meb1 = ap_msg->message; |
| memset(meb1, 0, sizeof(*meb1)); |
| ap_msg->length = sizeof(*meb1); |
| meb1->header.msg_type_code = TYPE50_TYPE_CODE; |
| meb1->header.msg_len = sizeof(*meb1); |
| meb1->keyblock_type = TYPE50_MEB1_FMT; |
| mod = meb1->modulus + sizeof(meb1->modulus) - mod_len; |
| exp = meb1->exponent + sizeof(meb1->exponent) - mod_len; |
| inp = meb1->message + sizeof(meb1->message) - mod_len; |
| } else if (mod_len <= 256) { |
| struct type50_meb2_msg *meb2 = ap_msg->message; |
| memset(meb2, 0, sizeof(*meb2)); |
| ap_msg->length = sizeof(*meb2); |
| meb2->header.msg_type_code = TYPE50_TYPE_CODE; |
| meb2->header.msg_len = sizeof(*meb2); |
| meb2->keyblock_type = TYPE50_MEB2_FMT; |
| mod = meb2->modulus + sizeof(meb2->modulus) - mod_len; |
| exp = meb2->exponent + sizeof(meb2->exponent) - mod_len; |
| inp = meb2->message + sizeof(meb2->message) - mod_len; |
| } else { |
| /* mod_len > 256 = 4096 bit RSA Key */ |
| struct type50_meb3_msg *meb3 = ap_msg->message; |
| memset(meb3, 0, sizeof(*meb3)); |
| ap_msg->length = sizeof(*meb3); |
| meb3->header.msg_type_code = TYPE50_TYPE_CODE; |
| meb3->header.msg_len = sizeof(*meb3); |
| meb3->keyblock_type = TYPE50_MEB3_FMT; |
| mod = meb3->modulus + sizeof(meb3->modulus) - mod_len; |
| exp = meb3->exponent + sizeof(meb3->exponent) - mod_len; |
| inp = meb3->message + sizeof(meb3->message) - mod_len; |
| } |
| |
| if (copy_from_user(mod, mex->n_modulus, mod_len) || |
| copy_from_user(exp, mex->b_key, mod_len) || |
| copy_from_user(inp, mex->inputdata, mod_len)) |
| return -EFAULT; |
| return 0; |
| } |
| |
| /** |
| * Convert a ICACRT message to a type50 CRT message. |
| * |
| * @zq: crypto queue pointer |
| * @ap_msg: crypto request pointer |
| * @crt: pointer to user input data |
| * |
| * Returns 0 on success or -EFAULT. |
| */ |
| static int ICACRT_msg_to_type50CRT_msg(struct zcrypt_queue *zq, |
| struct ap_message *ap_msg, |
| struct ica_rsa_modexpo_crt *crt) |
| { |
| int mod_len, short_len; |
| unsigned char *p, *q, *dp, *dq, *u, *inp; |
| |
| mod_len = crt->inputdatalength; |
| short_len = (mod_len + 1) / 2; |
| |
| /* |
| * CEX2A and CEX3A w/o FW update can handle requests up to |
| * 256 byte modulus (2k keys). |
| * CEX3A with FW update and CEX4A cards are able to handle |
| * 512 byte modulus (4k keys). |
| */ |
| if (mod_len <= 128) { /* up to 1024 bit key size */ |
| struct type50_crb1_msg *crb1 = ap_msg->message; |
| memset(crb1, 0, sizeof(*crb1)); |
| ap_msg->length = sizeof(*crb1); |
| crb1->header.msg_type_code = TYPE50_TYPE_CODE; |
| crb1->header.msg_len = sizeof(*crb1); |
| crb1->keyblock_type = TYPE50_CRB1_FMT; |
| p = crb1->p + sizeof(crb1->p) - short_len; |
| q = crb1->q + sizeof(crb1->q) - short_len; |
| dp = crb1->dp + sizeof(crb1->dp) - short_len; |
| dq = crb1->dq + sizeof(crb1->dq) - short_len; |
| u = crb1->u + sizeof(crb1->u) - short_len; |
| inp = crb1->message + sizeof(crb1->message) - mod_len; |
| } else if (mod_len <= 256) { /* up to 2048 bit key size */ |
| struct type50_crb2_msg *crb2 = ap_msg->message; |
| memset(crb2, 0, sizeof(*crb2)); |
| ap_msg->length = sizeof(*crb2); |
| crb2->header.msg_type_code = TYPE50_TYPE_CODE; |
| crb2->header.msg_len = sizeof(*crb2); |
| crb2->keyblock_type = TYPE50_CRB2_FMT; |
| p = crb2->p + sizeof(crb2->p) - short_len; |
| q = crb2->q + sizeof(crb2->q) - short_len; |
| dp = crb2->dp + sizeof(crb2->dp) - short_len; |
| dq = crb2->dq + sizeof(crb2->dq) - short_len; |
| u = crb2->u + sizeof(crb2->u) - short_len; |
| inp = crb2->message + sizeof(crb2->message) - mod_len; |
| } else if ((mod_len <= 512) && /* up to 4096 bit key size */ |
| (zq->zcard->max_mod_size == CEX3A_MAX_MOD_SIZE)) { |
| struct type50_crb3_msg *crb3 = ap_msg->message; |
| memset(crb3, 0, sizeof(*crb3)); |
| ap_msg->length = sizeof(*crb3); |
| crb3->header.msg_type_code = TYPE50_TYPE_CODE; |
| crb3->header.msg_len = sizeof(*crb3); |
| crb3->keyblock_type = TYPE50_CRB3_FMT; |
| p = crb3->p + sizeof(crb3->p) - short_len; |
| q = crb3->q + sizeof(crb3->q) - short_len; |
| dp = crb3->dp + sizeof(crb3->dp) - short_len; |
| dq = crb3->dq + sizeof(crb3->dq) - short_len; |
| u = crb3->u + sizeof(crb3->u) - short_len; |
| inp = crb3->message + sizeof(crb3->message) - mod_len; |
| } else |
| return -EINVAL; |
| |
| /* |
| * correct the offset of p, bp and mult_inv according zcrypt.h |
| * block size right aligned (skip the first byte) |
| */ |
| if (copy_from_user(p, crt->np_prime + MSGTYPE_ADJUSTMENT, short_len) || |
| copy_from_user(q, crt->nq_prime, short_len) || |
| copy_from_user(dp, crt->bp_key + MSGTYPE_ADJUSTMENT, short_len) || |
| copy_from_user(dq, crt->bq_key, short_len) || |
| copy_from_user(u, crt->u_mult_inv + MSGTYPE_ADJUSTMENT, short_len) || |
| copy_from_user(inp, crt->inputdata, mod_len)) |
| return -EFAULT; |
| |
| return 0; |
| } |
| |
| /** |
| * Copy results from a type 80 reply message back to user space. |
| * |
| * @zq: crypto device pointer |
| * @reply: reply AP message. |
| * @data: pointer to user output data |
| * @length: size of user output data |
| * |
| * Returns 0 on success or -EFAULT. |
| */ |
| static int convert_type80(struct zcrypt_queue *zq, |
| struct ap_message *reply, |
| char __user *outputdata, |
| unsigned int outputdatalength) |
| { |
| struct type80_hdr *t80h = reply->message; |
| unsigned char *data; |
| |
| if (t80h->len < sizeof(*t80h) + outputdatalength) { |
| /* The result is too short, the CEX2A card may not do that.. */ |
| zq->online = 0; |
| pr_err("Cryptographic device %02x.%04x failed and was set offline\n", |
| AP_QID_CARD(zq->queue->qid), |
| AP_QID_QUEUE(zq->queue->qid)); |
| ZCRYPT_DBF(DBF_ERR, |
| "device=%02x.%04x code=0x%02x => online=0 rc=EAGAIN\n", |
| AP_QID_CARD(zq->queue->qid), |
| AP_QID_QUEUE(zq->queue->qid), |
| t80h->code); |
| return -EAGAIN; /* repeat the request on a different device. */ |
| } |
| if (zq->zcard->user_space_type == ZCRYPT_CEX2A) |
| BUG_ON(t80h->len > CEX2A_MAX_RESPONSE_SIZE); |
| else |
| BUG_ON(t80h->len > CEX3A_MAX_RESPONSE_SIZE); |
| data = reply->message + t80h->len - outputdatalength; |
| if (copy_to_user(outputdata, data, outputdatalength)) |
| return -EFAULT; |
| return 0; |
| } |
| |
| static int convert_response(struct zcrypt_queue *zq, |
| struct ap_message *reply, |
| char __user *outputdata, |
| unsigned int outputdatalength) |
| { |
| /* Response type byte is the second byte in the response. */ |
| unsigned char rtype = ((unsigned char *) reply->message)[1]; |
| |
| switch (rtype) { |
| case TYPE82_RSP_CODE: |
| case TYPE88_RSP_CODE: |
| return convert_error(zq, reply); |
| case TYPE80_RSP_CODE: |
| return convert_type80(zq, reply, |
| outputdata, outputdatalength); |
| default: /* Unknown response type, this should NEVER EVER happen */ |
| zq->online = 0; |
| pr_err("Cryptographic device %02x.%04x failed and was set offline\n", |
| AP_QID_CARD(zq->queue->qid), |
| AP_QID_QUEUE(zq->queue->qid)); |
| ZCRYPT_DBF(DBF_ERR, |
| "device=%02x.%04x rtype=0x%02x => online=0 rc=EAGAIN\n", |
| AP_QID_CARD(zq->queue->qid), |
| AP_QID_QUEUE(zq->queue->qid), |
| (unsigned int) rtype); |
| return -EAGAIN; /* repeat the request on a different device. */ |
| } |
| } |
| |
| /** |
| * This function is called from the AP bus code after a crypto request |
| * "msg" has finished with the reply message "reply". |
| * It is called from tasklet context. |
| * @aq: pointer to the AP device |
| * @msg: pointer to the AP message |
| * @reply: pointer to the AP reply message |
| */ |
| static void zcrypt_cex2a_receive(struct ap_queue *aq, |
| struct ap_message *msg, |
| struct ap_message *reply) |
| { |
| static struct error_hdr error_reply = { |
| .type = TYPE82_RSP_CODE, |
| .reply_code = REP82_ERROR_MACHINE_FAILURE, |
| }; |
| struct type80_hdr *t80h; |
| int length; |
| |
| /* Copy the reply message to the request message buffer. */ |
| if (!reply) |
| goto out; /* ap_msg->rc indicates the error */ |
| t80h = reply->message; |
| if (t80h->type == TYPE80_RSP_CODE) { |
| if (aq->ap_dev.device_type == AP_DEVICE_TYPE_CEX2A) |
| length = min_t(int, |
| CEX2A_MAX_RESPONSE_SIZE, t80h->len); |
| else |
| length = min_t(int, |
| CEX3A_MAX_RESPONSE_SIZE, t80h->len); |
| memcpy(msg->message, reply->message, length); |
| } else |
| memcpy(msg->message, reply->message, sizeof(error_reply)); |
| out: |
| complete((struct completion *) msg->private); |
| } |
| |
| static atomic_t zcrypt_step = ATOMIC_INIT(0); |
| |
| /** |
| * The request distributor calls this function if it picked the CEX2A |
| * device to handle a modexpo request. |
| * @zq: pointer to zcrypt_queue structure that identifies the |
| * CEX2A device to the request distributor |
| * @mex: pointer to the modexpo request buffer |
| */ |
| static long zcrypt_cex2a_modexpo(struct zcrypt_queue *zq, |
| struct ica_rsa_modexpo *mex) |
| { |
| struct ap_message ap_msg; |
| struct completion work; |
| int rc; |
| |
| ap_init_message(&ap_msg); |
| if (zq->zcard->user_space_type == ZCRYPT_CEX2A) |
| ap_msg.message = kmalloc(MSGTYPE50_CRB2_MAX_MSG_SIZE, |
| GFP_KERNEL); |
| else |
| ap_msg.message = kmalloc(MSGTYPE50_CRB3_MAX_MSG_SIZE, |
| GFP_KERNEL); |
| if (!ap_msg.message) |
| return -ENOMEM; |
| ap_msg.receive = zcrypt_cex2a_receive; |
| ap_msg.psmid = (((unsigned long long) current->pid) << 32) + |
| atomic_inc_return(&zcrypt_step); |
| ap_msg.private = &work; |
| rc = ICAMEX_msg_to_type50MEX_msg(zq, &ap_msg, mex); |
| if (rc) |
| goto out_free; |
| init_completion(&work); |
| ap_queue_message(zq->queue, &ap_msg); |
| rc = wait_for_completion_interruptible(&work); |
| if (rc == 0) { |
| rc = ap_msg.rc; |
| if (rc == 0) |
| rc = convert_response(zq, &ap_msg, mex->outputdata, |
| mex->outputdatalength); |
| } else |
| /* Signal pending. */ |
| ap_cancel_message(zq->queue, &ap_msg); |
| out_free: |
| kfree(ap_msg.message); |
| return rc; |
| } |
| |
| /** |
| * The request distributor calls this function if it picked the CEX2A |
| * device to handle a modexpo_crt request. |
| * @zq: pointer to zcrypt_queue structure that identifies the |
| * CEX2A device to the request distributor |
| * @crt: pointer to the modexpoc_crt request buffer |
| */ |
| static long zcrypt_cex2a_modexpo_crt(struct zcrypt_queue *zq, |
| struct ica_rsa_modexpo_crt *crt) |
| { |
| struct ap_message ap_msg; |
| struct completion work; |
| int rc; |
| |
| ap_init_message(&ap_msg); |
| if (zq->zcard->user_space_type == ZCRYPT_CEX2A) |
| ap_msg.message = kmalloc(MSGTYPE50_CRB2_MAX_MSG_SIZE, |
| GFP_KERNEL); |
| else |
| ap_msg.message = kmalloc(MSGTYPE50_CRB3_MAX_MSG_SIZE, |
| GFP_KERNEL); |
| if (!ap_msg.message) |
| return -ENOMEM; |
| ap_msg.receive = zcrypt_cex2a_receive; |
| ap_msg.psmid = (((unsigned long long) current->pid) << 32) + |
| atomic_inc_return(&zcrypt_step); |
| ap_msg.private = &work; |
| rc = ICACRT_msg_to_type50CRT_msg(zq, &ap_msg, crt); |
| if (rc) |
| goto out_free; |
| init_completion(&work); |
| ap_queue_message(zq->queue, &ap_msg); |
| rc = wait_for_completion_interruptible(&work); |
| if (rc == 0) { |
| rc = ap_msg.rc; |
| if (rc == 0) |
| rc = convert_response(zq, &ap_msg, crt->outputdata, |
| crt->outputdatalength); |
| } else |
| /* Signal pending. */ |
| ap_cancel_message(zq->queue, &ap_msg); |
| out_free: |
| kfree(ap_msg.message); |
| return rc; |
| } |
| |
| /** |
| * The crypto operations for message type 50. |
| */ |
| static struct zcrypt_ops zcrypt_msgtype50_ops = { |
| .rsa_modexpo = zcrypt_cex2a_modexpo, |
| .rsa_modexpo_crt = zcrypt_cex2a_modexpo_crt, |
| .owner = THIS_MODULE, |
| .name = MSGTYPE50_NAME, |
| .variant = MSGTYPE50_VARIANT_DEFAULT, |
| }; |
| |
| void __init zcrypt_msgtype50_init(void) |
| { |
| zcrypt_msgtype_register(&zcrypt_msgtype50_ops); |
| } |
| |
| void __exit zcrypt_msgtype50_exit(void) |
| { |
| zcrypt_msgtype_unregister(&zcrypt_msgtype50_ops); |
| } |