| /* SPDX-License-Identifier: GPL-2.0 */ |
| /* |
| * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for |
| * licensing and copyright details |
| */ |
| |
| #include <linux/reiserfs_fs.h> |
| |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| #include <linux/sched.h> |
| #include <linux/bug.h> |
| #include <linux/workqueue.h> |
| #include <asm/unaligned.h> |
| #include <linux/bitops.h> |
| #include <linux/proc_fs.h> |
| #include <linux/buffer_head.h> |
| |
| /* the 32 bit compat definitions with int argument */ |
| #define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int) |
| #define REISERFS_IOC32_GETFLAGS FS_IOC32_GETFLAGS |
| #define REISERFS_IOC32_SETFLAGS FS_IOC32_SETFLAGS |
| #define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION |
| #define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION |
| |
| struct reiserfs_journal_list; |
| |
| /* bitmasks for i_flags field in reiserfs-specific part of inode */ |
| typedef enum { |
| /* |
| * this says what format of key do all items (but stat data) of |
| * an object have. If this is set, that format is 3.6 otherwise - 3.5 |
| */ |
| i_item_key_version_mask = 0x0001, |
| |
| /* |
| * If this is unset, object has 3.5 stat data, otherwise, |
| * it has 3.6 stat data with 64bit size, 32bit nlink etc. |
| */ |
| i_stat_data_version_mask = 0x0002, |
| |
| /* file might need tail packing on close */ |
| i_pack_on_close_mask = 0x0004, |
| |
| /* don't pack tail of file */ |
| i_nopack_mask = 0x0008, |
| |
| /* |
| * If either of these are set, "safe link" was created for this |
| * file during truncate or unlink. Safe link is used to avoid |
| * leakage of disk space on crash with some files open, but unlinked. |
| */ |
| i_link_saved_unlink_mask = 0x0010, |
| i_link_saved_truncate_mask = 0x0020, |
| |
| i_has_xattr_dir = 0x0040, |
| i_data_log = 0x0080, |
| } reiserfs_inode_flags; |
| |
| struct reiserfs_inode_info { |
| __u32 i_key[4]; /* key is still 4 32 bit integers */ |
| |
| /* |
| * transient inode flags that are never stored on disk. Bitmasks |
| * for this field are defined above. |
| */ |
| __u32 i_flags; |
| |
| /* offset of first byte stored in direct item. */ |
| __u32 i_first_direct_byte; |
| |
| /* copy of persistent inode flags read from sd_attrs. */ |
| __u32 i_attrs; |
| |
| /* first unused block of a sequence of unused blocks */ |
| int i_prealloc_block; |
| int i_prealloc_count; /* length of that sequence */ |
| |
| /* per-transaction list of inodes which have preallocated blocks */ |
| struct list_head i_prealloc_list; |
| |
| /* |
| * new_packing_locality is created; new blocks for the contents |
| * of this directory should be displaced |
| */ |
| unsigned new_packing_locality:1; |
| |
| /* |
| * we use these for fsync or O_SYNC to decide which transaction |
| * needs to be committed in order for this inode to be properly |
| * flushed |
| */ |
| unsigned int i_trans_id; |
| |
| struct reiserfs_journal_list *i_jl; |
| atomic_t openers; |
| struct mutex tailpack; |
| #ifdef CONFIG_REISERFS_FS_XATTR |
| struct rw_semaphore i_xattr_sem; |
| #endif |
| #ifdef CONFIG_QUOTA |
| struct dquot *i_dquot[MAXQUOTAS]; |
| #endif |
| |
| struct inode vfs_inode; |
| }; |
| |
| typedef enum { |
| reiserfs_attrs_cleared = 0x00000001, |
| } reiserfs_super_block_flags; |
| |
| /* |
| * struct reiserfs_super_block accessors/mutators since this is a disk |
| * structure, it will always be in little endian format. |
| */ |
| #define sb_block_count(sbp) (le32_to_cpu((sbp)->s_v1.s_block_count)) |
| #define set_sb_block_count(sbp,v) ((sbp)->s_v1.s_block_count = cpu_to_le32(v)) |
| #define sb_free_blocks(sbp) (le32_to_cpu((sbp)->s_v1.s_free_blocks)) |
| #define set_sb_free_blocks(sbp,v) ((sbp)->s_v1.s_free_blocks = cpu_to_le32(v)) |
| #define sb_root_block(sbp) (le32_to_cpu((sbp)->s_v1.s_root_block)) |
| #define set_sb_root_block(sbp,v) ((sbp)->s_v1.s_root_block = cpu_to_le32(v)) |
| |
| #define sb_jp_journal_1st_block(sbp) \ |
| (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_1st_block)) |
| #define set_sb_jp_journal_1st_block(sbp,v) \ |
| ((sbp)->s_v1.s_journal.jp_journal_1st_block = cpu_to_le32(v)) |
| #define sb_jp_journal_dev(sbp) \ |
| (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_dev)) |
| #define set_sb_jp_journal_dev(sbp,v) \ |
| ((sbp)->s_v1.s_journal.jp_journal_dev = cpu_to_le32(v)) |
| #define sb_jp_journal_size(sbp) \ |
| (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_size)) |
| #define set_sb_jp_journal_size(sbp,v) \ |
| ((sbp)->s_v1.s_journal.jp_journal_size = cpu_to_le32(v)) |
| #define sb_jp_journal_trans_max(sbp) \ |
| (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_trans_max)) |
| #define set_sb_jp_journal_trans_max(sbp,v) \ |
| ((sbp)->s_v1.s_journal.jp_journal_trans_max = cpu_to_le32(v)) |
| #define sb_jp_journal_magic(sbp) \ |
| (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_magic)) |
| #define set_sb_jp_journal_magic(sbp,v) \ |
| ((sbp)->s_v1.s_journal.jp_journal_magic = cpu_to_le32(v)) |
| #define sb_jp_journal_max_batch(sbp) \ |
| (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_batch)) |
| #define set_sb_jp_journal_max_batch(sbp,v) \ |
| ((sbp)->s_v1.s_journal.jp_journal_max_batch = cpu_to_le32(v)) |
| #define sb_jp_jourmal_max_commit_age(sbp) \ |
| (le32_to_cpu((sbp)->s_v1.s_journal.jp_journal_max_commit_age)) |
| #define set_sb_jp_journal_max_commit_age(sbp,v) \ |
| ((sbp)->s_v1.s_journal.jp_journal_max_commit_age = cpu_to_le32(v)) |
| |
| #define sb_blocksize(sbp) (le16_to_cpu((sbp)->s_v1.s_blocksize)) |
| #define set_sb_blocksize(sbp,v) ((sbp)->s_v1.s_blocksize = cpu_to_le16(v)) |
| #define sb_oid_maxsize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_maxsize)) |
| #define set_sb_oid_maxsize(sbp,v) ((sbp)->s_v1.s_oid_maxsize = cpu_to_le16(v)) |
| #define sb_oid_cursize(sbp) (le16_to_cpu((sbp)->s_v1.s_oid_cursize)) |
| #define set_sb_oid_cursize(sbp,v) ((sbp)->s_v1.s_oid_cursize = cpu_to_le16(v)) |
| #define sb_umount_state(sbp) (le16_to_cpu((sbp)->s_v1.s_umount_state)) |
| #define set_sb_umount_state(sbp,v) ((sbp)->s_v1.s_umount_state = cpu_to_le16(v)) |
| #define sb_fs_state(sbp) (le16_to_cpu((sbp)->s_v1.s_fs_state)) |
| #define set_sb_fs_state(sbp,v) ((sbp)->s_v1.s_fs_state = cpu_to_le16(v)) |
| #define sb_hash_function_code(sbp) \ |
| (le32_to_cpu((sbp)->s_v1.s_hash_function_code)) |
| #define set_sb_hash_function_code(sbp,v) \ |
| ((sbp)->s_v1.s_hash_function_code = cpu_to_le32(v)) |
| #define sb_tree_height(sbp) (le16_to_cpu((sbp)->s_v1.s_tree_height)) |
| #define set_sb_tree_height(sbp,v) ((sbp)->s_v1.s_tree_height = cpu_to_le16(v)) |
| #define sb_bmap_nr(sbp) (le16_to_cpu((sbp)->s_v1.s_bmap_nr)) |
| #define set_sb_bmap_nr(sbp,v) ((sbp)->s_v1.s_bmap_nr = cpu_to_le16(v)) |
| #define sb_version(sbp) (le16_to_cpu((sbp)->s_v1.s_version)) |
| #define set_sb_version(sbp,v) ((sbp)->s_v1.s_version = cpu_to_le16(v)) |
| |
| #define sb_mnt_count(sbp) (le16_to_cpu((sbp)->s_mnt_count)) |
| #define set_sb_mnt_count(sbp, v) ((sbp)->s_mnt_count = cpu_to_le16(v)) |
| |
| #define sb_reserved_for_journal(sbp) \ |
| (le16_to_cpu((sbp)->s_v1.s_reserved_for_journal)) |
| #define set_sb_reserved_for_journal(sbp,v) \ |
| ((sbp)->s_v1.s_reserved_for_journal = cpu_to_le16(v)) |
| |
| /* LOGGING -- */ |
| |
| /* |
| * These all interelate for performance. |
| * |
| * If the journal block count is smaller than n transactions, you lose speed. |
| * I don't know what n is yet, I'm guessing 8-16. |
| * |
| * typical transaction size depends on the application, how often fsync is |
| * called, and how many metadata blocks you dirty in a 30 second period. |
| * The more small files (<16k) you use, the larger your transactions will |
| * be. |
| * |
| * If your journal fills faster than dirty buffers get flushed to disk, it |
| * must flush them before allowing the journal to wrap, which slows things |
| * down. If you need high speed meta data updates, the journal should be |
| * big enough to prevent wrapping before dirty meta blocks get to disk. |
| * |
| * If the batch max is smaller than the transaction max, you'll waste space |
| * at the end of the journal because journal_end sets the next transaction |
| * to start at 0 if the next transaction has any chance of wrapping. |
| * |
| * The large the batch max age, the better the speed, and the more meta |
| * data changes you'll lose after a crash. |
| */ |
| |
| /* don't mess with these for a while */ |
| /* we have a node size define somewhere in reiserfs_fs.h. -Hans */ |
| #define JOURNAL_BLOCK_SIZE 4096 /* BUG gotta get rid of this */ |
| #define JOURNAL_MAX_CNODE 1500 /* max cnodes to allocate. */ |
| #define JOURNAL_HASH_SIZE 8192 |
| |
| /* number of copies of the bitmaps to have floating. Must be >= 2 */ |
| #define JOURNAL_NUM_BITMAPS 5 |
| |
| /* |
| * One of these for every block in every transaction |
| * Each one is in two hash tables. First, a hash of the current transaction, |
| * and after journal_end, a hash of all the in memory transactions. |
| * next and prev are used by the current transaction (journal_hash). |
| * hnext and hprev are used by journal_list_hash. If a block is in more |
| * than one transaction, the journal_list_hash links it in multiple times. |
| * This allows flush_journal_list to remove just the cnode belonging to a |
| * given transaction. |
| */ |
| struct reiserfs_journal_cnode { |
| struct buffer_head *bh; /* real buffer head */ |
| struct super_block *sb; /* dev of real buffer head */ |
| |
| /* block number of real buffer head, == 0 when buffer on disk */ |
| __u32 blocknr; |
| |
| unsigned long state; |
| |
| /* journal list this cnode lives in */ |
| struct reiserfs_journal_list *jlist; |
| |
| struct reiserfs_journal_cnode *next; /* next in transaction list */ |
| struct reiserfs_journal_cnode *prev; /* prev in transaction list */ |
| struct reiserfs_journal_cnode *hprev; /* prev in hash list */ |
| struct reiserfs_journal_cnode *hnext; /* next in hash list */ |
| }; |
| |
| struct reiserfs_bitmap_node { |
| int id; |
| char *data; |
| struct list_head list; |
| }; |
| |
| struct reiserfs_list_bitmap { |
| struct reiserfs_journal_list *journal_list; |
| struct reiserfs_bitmap_node **bitmaps; |
| }; |
| |
| /* |
| * one of these for each transaction. The most important part here is the |
| * j_realblock. this list of cnodes is used to hash all the blocks in all |
| * the commits, to mark all the real buffer heads dirty once all the commits |
| * hit the disk, and to make sure every real block in a transaction is on |
| * disk before allowing the log area to be overwritten |
| */ |
| struct reiserfs_journal_list { |
| unsigned long j_start; |
| unsigned long j_state; |
| unsigned long j_len; |
| atomic_t j_nonzerolen; |
| atomic_t j_commit_left; |
| |
| /* all commits older than this on disk */ |
| atomic_t j_older_commits_done; |
| |
| struct mutex j_commit_mutex; |
| unsigned int j_trans_id; |
| time_t j_timestamp; |
| struct reiserfs_list_bitmap *j_list_bitmap; |
| struct buffer_head *j_commit_bh; /* commit buffer head */ |
| struct reiserfs_journal_cnode *j_realblock; |
| struct reiserfs_journal_cnode *j_freedlist; /* list of buffers that were freed during this trans. free each of these on flush */ |
| /* time ordered list of all active transactions */ |
| struct list_head j_list; |
| |
| /* |
| * time ordered list of all transactions we haven't tried |
| * to flush yet |
| */ |
| struct list_head j_working_list; |
| |
| /* list of tail conversion targets in need of flush before commit */ |
| struct list_head j_tail_bh_list; |
| |
| /* list of data=ordered buffers in need of flush before commit */ |
| struct list_head j_bh_list; |
| int j_refcount; |
| }; |
| |
| struct reiserfs_journal { |
| struct buffer_head **j_ap_blocks; /* journal blocks on disk */ |
| /* newest journal block */ |
| struct reiserfs_journal_cnode *j_last; |
| |
| /* oldest journal block. start here for traverse */ |
| struct reiserfs_journal_cnode *j_first; |
| |
| struct block_device *j_dev_bd; |
| fmode_t j_dev_mode; |
| |
| /* first block on s_dev of reserved area journal */ |
| int j_1st_reserved_block; |
| |
| unsigned long j_state; |
| unsigned int j_trans_id; |
| unsigned long j_mount_id; |
| |
| /* start of current waiting commit (index into j_ap_blocks) */ |
| unsigned long j_start; |
| unsigned long j_len; /* length of current waiting commit */ |
| |
| /* number of buffers requested by journal_begin() */ |
| unsigned long j_len_alloc; |
| |
| atomic_t j_wcount; /* count of writers for current commit */ |
| |
| /* batch count. allows turning X transactions into 1 */ |
| unsigned long j_bcount; |
| |
| /* first unflushed transactions offset */ |
| unsigned long j_first_unflushed_offset; |
| |
| /* last fully flushed journal timestamp */ |
| unsigned j_last_flush_trans_id; |
| |
| struct buffer_head *j_header_bh; |
| |
| time_t j_trans_start_time; /* time this transaction started */ |
| struct mutex j_mutex; |
| struct mutex j_flush_mutex; |
| |
| /* wait for current transaction to finish before starting new one */ |
| wait_queue_head_t j_join_wait; |
| |
| atomic_t j_jlock; /* lock for j_join_wait */ |
| int j_list_bitmap_index; /* number of next list bitmap to use */ |
| |
| /* no more journal begins allowed. MUST sleep on j_join_wait */ |
| int j_must_wait; |
| |
| /* next journal_end will flush all journal list */ |
| int j_next_full_flush; |
| |
| /* next journal_end will flush all async commits */ |
| int j_next_async_flush; |
| |
| int j_cnode_used; /* number of cnodes on the used list */ |
| int j_cnode_free; /* number of cnodes on the free list */ |
| |
| /* max number of blocks in a transaction. */ |
| unsigned int j_trans_max; |
| |
| /* max number of blocks to batch into a trans */ |
| unsigned int j_max_batch; |
| |
| /* in seconds, how old can an async commit be */ |
| unsigned int j_max_commit_age; |
| |
| /* in seconds, how old can a transaction be */ |
| unsigned int j_max_trans_age; |
| |
| /* the default for the max commit age */ |
| unsigned int j_default_max_commit_age; |
| |
| struct reiserfs_journal_cnode *j_cnode_free_list; |
| |
| /* orig pointer returned from vmalloc */ |
| struct reiserfs_journal_cnode *j_cnode_free_orig; |
| |
| struct reiserfs_journal_list *j_current_jl; |
| int j_free_bitmap_nodes; |
| int j_used_bitmap_nodes; |
| |
| int j_num_lists; /* total number of active transactions */ |
| int j_num_work_lists; /* number that need attention from kreiserfsd */ |
| |
| /* debugging to make sure things are flushed in order */ |
| unsigned int j_last_flush_id; |
| |
| /* debugging to make sure things are committed in order */ |
| unsigned int j_last_commit_id; |
| |
| struct list_head j_bitmap_nodes; |
| struct list_head j_dirty_buffers; |
| spinlock_t j_dirty_buffers_lock; /* protects j_dirty_buffers */ |
| |
| /* list of all active transactions */ |
| struct list_head j_journal_list; |
| |
| /* lists that haven't been touched by writeback attempts */ |
| struct list_head j_working_list; |
| |
| /* hash table for real buffer heads in current trans */ |
| struct reiserfs_journal_cnode *j_hash_table[JOURNAL_HASH_SIZE]; |
| |
| /* hash table for all the real buffer heads in all the transactions */ |
| struct reiserfs_journal_cnode *j_list_hash_table[JOURNAL_HASH_SIZE]; |
| |
| /* array of bitmaps to record the deleted blocks */ |
| struct reiserfs_list_bitmap j_list_bitmap[JOURNAL_NUM_BITMAPS]; |
| |
| /* list of inodes which have preallocated blocks */ |
| struct list_head j_prealloc_list; |
| int j_persistent_trans; |
| unsigned long j_max_trans_size; |
| unsigned long j_max_batch_size; |
| |
| int j_errno; |
| |
| /* when flushing ordered buffers, throttle new ordered writers */ |
| struct delayed_work j_work; |
| struct super_block *j_work_sb; |
| atomic_t j_async_throttle; |
| }; |
| |
| enum journal_state_bits { |
| J_WRITERS_BLOCKED = 1, /* set when new writers not allowed */ |
| J_WRITERS_QUEUED, /* set when log is full due to too many writers */ |
| J_ABORTED, /* set when log is aborted */ |
| }; |
| |
| /* ick. magic string to find desc blocks in the journal */ |
| #define JOURNAL_DESC_MAGIC "ReIsErLB" |
| |
| typedef __u32(*hashf_t) (const signed char *, int); |
| |
| struct reiserfs_bitmap_info { |
| __u32 free_count; |
| }; |
| |
| struct proc_dir_entry; |
| |
| #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO ) |
| typedef unsigned long int stat_cnt_t; |
| typedef struct reiserfs_proc_info_data { |
| spinlock_t lock; |
| int exiting; |
| int max_hash_collisions; |
| |
| stat_cnt_t breads; |
| stat_cnt_t bread_miss; |
| stat_cnt_t search_by_key; |
| stat_cnt_t search_by_key_fs_changed; |
| stat_cnt_t search_by_key_restarted; |
| |
| stat_cnt_t insert_item_restarted; |
| stat_cnt_t paste_into_item_restarted; |
| stat_cnt_t cut_from_item_restarted; |
| stat_cnt_t delete_solid_item_restarted; |
| stat_cnt_t delete_item_restarted; |
| |
| stat_cnt_t leaked_oid; |
| stat_cnt_t leaves_removable; |
| |
| /* |
| * balances per level. |
| * Use explicit 5 as MAX_HEIGHT is not visible yet. |
| */ |
| stat_cnt_t balance_at[5]; /* XXX */ |
| /* sbk == search_by_key */ |
| stat_cnt_t sbk_read_at[5]; /* XXX */ |
| stat_cnt_t sbk_fs_changed[5]; |
| stat_cnt_t sbk_restarted[5]; |
| stat_cnt_t items_at[5]; /* XXX */ |
| stat_cnt_t free_at[5]; /* XXX */ |
| stat_cnt_t can_node_be_removed[5]; /* XXX */ |
| long int lnum[5]; /* XXX */ |
| long int rnum[5]; /* XXX */ |
| long int lbytes[5]; /* XXX */ |
| long int rbytes[5]; /* XXX */ |
| stat_cnt_t get_neighbors[5]; |
| stat_cnt_t get_neighbors_restart[5]; |
| stat_cnt_t need_l_neighbor[5]; |
| stat_cnt_t need_r_neighbor[5]; |
| |
| stat_cnt_t free_block; |
| struct __scan_bitmap_stats { |
| stat_cnt_t call; |
| stat_cnt_t wait; |
| stat_cnt_t bmap; |
| stat_cnt_t retry; |
| stat_cnt_t in_journal_hint; |
| stat_cnt_t in_journal_nohint; |
| stat_cnt_t stolen; |
| } scan_bitmap; |
| struct __journal_stats { |
| stat_cnt_t in_journal; |
| stat_cnt_t in_journal_bitmap; |
| stat_cnt_t in_journal_reusable; |
| stat_cnt_t lock_journal; |
| stat_cnt_t lock_journal_wait; |
| stat_cnt_t journal_being; |
| stat_cnt_t journal_relock_writers; |
| stat_cnt_t journal_relock_wcount; |
| stat_cnt_t mark_dirty; |
| stat_cnt_t mark_dirty_already; |
| stat_cnt_t mark_dirty_notjournal; |
| stat_cnt_t restore_prepared; |
| stat_cnt_t prepare; |
| stat_cnt_t prepare_retry; |
| } journal; |
| } reiserfs_proc_info_data_t; |
| #else |
| typedef struct reiserfs_proc_info_data { |
| } reiserfs_proc_info_data_t; |
| #endif |
| |
| /* Number of quota types we support */ |
| #define REISERFS_MAXQUOTAS 2 |
| |
| /* reiserfs union of in-core super block data */ |
| struct reiserfs_sb_info { |
| /* Buffer containing the super block */ |
| struct buffer_head *s_sbh; |
| |
| /* Pointer to the on-disk super block in the buffer */ |
| struct reiserfs_super_block *s_rs; |
| struct reiserfs_bitmap_info *s_ap_bitmap; |
| |
| /* pointer to journal information */ |
| struct reiserfs_journal *s_journal; |
| |
| unsigned short s_mount_state; /* reiserfs state (valid, invalid) */ |
| |
| /* Serialize writers access, replace the old bkl */ |
| struct mutex lock; |
| |
| /* Owner of the lock (can be recursive) */ |
| struct task_struct *lock_owner; |
| |
| /* Depth of the lock, start from -1 like the bkl */ |
| int lock_depth; |
| |
| struct workqueue_struct *commit_wq; |
| |
| /* Comment? -Hans */ |
| void (*end_io_handler) (struct buffer_head *, int); |
| |
| /* |
| * pointer to function which is used to sort names in directory. |
| * Set on mount |
| */ |
| hashf_t s_hash_function; |
| |
| /* reiserfs's mount options are set here */ |
| unsigned long s_mount_opt; |
| |
| /* This is a structure that describes block allocator options */ |
| struct { |
| /* Bitfield for enable/disable kind of options */ |
| unsigned long bits; |
| |
| /* |
| * size started from which we consider file |
| * to be a large one (in blocks) |
| */ |
| unsigned long large_file_size; |
| |
| int border; /* percentage of disk, border takes */ |
| |
| /* |
| * Minimal file size (in blocks) starting |
| * from which we do preallocations |
| */ |
| int preallocmin; |
| |
| /* |
| * Number of blocks we try to prealloc when file |
| * reaches preallocmin size (in blocks) or prealloc_list |
| is empty. |
| */ |
| int preallocsize; |
| } s_alloc_options; |
| |
| /* Comment? -Hans */ |
| wait_queue_head_t s_wait; |
| /* increased by one every time the tree gets re-balanced */ |
| atomic_t s_generation_counter; |
| |
| /* File system properties. Currently holds on-disk FS format */ |
| unsigned long s_properties; |
| |
| /* session statistics */ |
| int s_disk_reads; |
| int s_disk_writes; |
| int s_fix_nodes; |
| int s_do_balance; |
| int s_unneeded_left_neighbor; |
| int s_good_search_by_key_reada; |
| int s_bmaps; |
| int s_bmaps_without_search; |
| int s_direct2indirect; |
| int s_indirect2direct; |
| |
| /* |
| * set up when it's ok for reiserfs_read_inode2() to read from |
| * disk inode with nlink==0. Currently this is only used during |
| * finish_unfinished() processing at mount time |
| */ |
| int s_is_unlinked_ok; |
| |
| reiserfs_proc_info_data_t s_proc_info_data; |
| struct proc_dir_entry *procdir; |
| |
| /* amount of blocks reserved for further allocations */ |
| int reserved_blocks; |
| |
| |
| /* this lock on now only used to protect reserved_blocks variable */ |
| spinlock_t bitmap_lock; |
| struct dentry *priv_root; /* root of /.reiserfs_priv */ |
| struct dentry *xattr_root; /* root of /.reiserfs_priv/xattrs */ |
| int j_errno; |
| |
| int work_queued; /* non-zero delayed work is queued */ |
| struct delayed_work old_work; /* old transactions flush delayed work */ |
| spinlock_t old_work_lock; /* protects old_work and work_queued */ |
| |
| #ifdef CONFIG_QUOTA |
| char *s_qf_names[REISERFS_MAXQUOTAS]; |
| int s_jquota_fmt; |
| #endif |
| char *s_jdev; /* Stored jdev for mount option showing */ |
| #ifdef CONFIG_REISERFS_CHECK |
| |
| /* |
| * Detects whether more than one copy of tb exists per superblock |
| * as a means of checking whether do_balance is executing |
| * concurrently against another tree reader/writer on a same |
| * mount point. |
| */ |
| struct tree_balance *cur_tb; |
| #endif |
| }; |
| |
| /* Definitions of reiserfs on-disk properties: */ |
| #define REISERFS_3_5 0 |
| #define REISERFS_3_6 1 |
| #define REISERFS_OLD_FORMAT 2 |
| |
| /* Mount options */ |
| enum reiserfs_mount_options { |
| /* large tails will be created in a session */ |
| REISERFS_LARGETAIL, |
| /* |
| * small (for files less than block size) tails will |
| * be created in a session |
| */ |
| REISERFS_SMALLTAIL, |
| |
| /* replay journal and return 0. Use by fsck */ |
| REPLAYONLY, |
| |
| /* |
| * -o conv: causes conversion of old format super block to the |
| * new format. If not specified - old partition will be dealt |
| * with in a manner of 3.5.x |
| */ |
| REISERFS_CONVERT, |
| |
| /* |
| * -o hash={tea, rupasov, r5, detect} is meant for properly mounting |
| * reiserfs disks from 3.5.19 or earlier. 99% of the time, this |
| * option is not required. If the normal autodection code can't |
| * determine which hash to use (because both hashes had the same |
| * value for a file) use this option to force a specific hash. |
| * It won't allow you to override the existing hash on the FS, so |
| * if you have a tea hash disk, and mount with -o hash=rupasov, |
| * the mount will fail. |
| */ |
| FORCE_TEA_HASH, /* try to force tea hash on mount */ |
| FORCE_RUPASOV_HASH, /* try to force rupasov hash on mount */ |
| FORCE_R5_HASH, /* try to force rupasov hash on mount */ |
| FORCE_HASH_DETECT, /* try to detect hash function on mount */ |
| |
| REISERFS_DATA_LOG, |
| REISERFS_DATA_ORDERED, |
| REISERFS_DATA_WRITEBACK, |
| |
| /* |
| * used for testing experimental features, makes benchmarking new |
| * features with and without more convenient, should never be used by |
| * users in any code shipped to users (ideally) |
| */ |
| |
| REISERFS_NO_BORDER, |
| REISERFS_NO_UNHASHED_RELOCATION, |
| REISERFS_HASHED_RELOCATION, |
| REISERFS_ATTRS, |
| REISERFS_XATTRS_USER, |
| REISERFS_POSIXACL, |
| REISERFS_EXPOSE_PRIVROOT, |
| REISERFS_BARRIER_NONE, |
| REISERFS_BARRIER_FLUSH, |
| |
| /* Actions on error */ |
| REISERFS_ERROR_PANIC, |
| REISERFS_ERROR_RO, |
| REISERFS_ERROR_CONTINUE, |
| |
| REISERFS_USRQUOTA, /* User quota option specified */ |
| REISERFS_GRPQUOTA, /* Group quota option specified */ |
| |
| REISERFS_TEST1, |
| REISERFS_TEST2, |
| REISERFS_TEST3, |
| REISERFS_TEST4, |
| REISERFS_UNSUPPORTED_OPT, |
| }; |
| |
| #define reiserfs_r5_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_R5_HASH)) |
| #define reiserfs_rupasov_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_RUPASOV_HASH)) |
| #define reiserfs_tea_hash(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_TEA_HASH)) |
| #define reiserfs_hash_detect(s) (REISERFS_SB(s)->s_mount_opt & (1 << FORCE_HASH_DETECT)) |
| #define reiserfs_no_border(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_BORDER)) |
| #define reiserfs_no_unhashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_NO_UNHASHED_RELOCATION)) |
| #define reiserfs_hashed_relocation(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_HASHED_RELOCATION)) |
| #define reiserfs_test4(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_TEST4)) |
| |
| #define have_large_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_LARGETAIL)) |
| #define have_small_tails(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_SMALLTAIL)) |
| #define replay_only(s) (REISERFS_SB(s)->s_mount_opt & (1 << REPLAYONLY)) |
| #define reiserfs_attrs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ATTRS)) |
| #define old_format_only(s) (REISERFS_SB(s)->s_properties & (1 << REISERFS_3_5)) |
| #define convert_reiserfs(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_CONVERT)) |
| #define reiserfs_data_log(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_LOG)) |
| #define reiserfs_data_ordered(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_ORDERED)) |
| #define reiserfs_data_writeback(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_DATA_WRITEBACK)) |
| #define reiserfs_xattrs_user(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_XATTRS_USER)) |
| #define reiserfs_posixacl(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_POSIXACL)) |
| #define reiserfs_expose_privroot(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_EXPOSE_PRIVROOT)) |
| #define reiserfs_xattrs_optional(s) (reiserfs_xattrs_user(s) || reiserfs_posixacl(s)) |
| #define reiserfs_barrier_none(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_NONE)) |
| #define reiserfs_barrier_flush(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_BARRIER_FLUSH)) |
| |
| #define reiserfs_error_panic(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_PANIC)) |
| #define reiserfs_error_ro(s) (REISERFS_SB(s)->s_mount_opt & (1 << REISERFS_ERROR_RO)) |
| |
| void reiserfs_file_buffer(struct buffer_head *bh, int list); |
| extern struct file_system_type reiserfs_fs_type; |
| int reiserfs_resize(struct super_block *, unsigned long); |
| |
| #define CARRY_ON 0 |
| #define SCHEDULE_OCCURRED 1 |
| |
| #define SB_BUFFER_WITH_SB(s) (REISERFS_SB(s)->s_sbh) |
| #define SB_JOURNAL(s) (REISERFS_SB(s)->s_journal) |
| #define SB_JOURNAL_1st_RESERVED_BLOCK(s) (SB_JOURNAL(s)->j_1st_reserved_block) |
| #define SB_JOURNAL_LEN_FREE(s) (SB_JOURNAL(s)->j_journal_len_free) |
| #define SB_AP_BITMAP(s) (REISERFS_SB(s)->s_ap_bitmap) |
| |
| #define SB_DISK_JOURNAL_HEAD(s) (SB_JOURNAL(s)->j_header_bh->) |
| |
| #define reiserfs_is_journal_aborted(journal) (unlikely (__reiserfs_is_journal_aborted (journal))) |
| static inline int __reiserfs_is_journal_aborted(struct reiserfs_journal |
| *journal) |
| { |
| return test_bit(J_ABORTED, &journal->j_state); |
| } |
| |
| /* |
| * Locking primitives. The write lock is a per superblock |
| * special mutex that has properties close to the Big Kernel Lock |
| * which was used in the previous locking scheme. |
| */ |
| void reiserfs_write_lock(struct super_block *s); |
| void reiserfs_write_unlock(struct super_block *s); |
| int __must_check reiserfs_write_unlock_nested(struct super_block *s); |
| void reiserfs_write_lock_nested(struct super_block *s, int depth); |
| |
| #ifdef CONFIG_REISERFS_CHECK |
| void reiserfs_lock_check_recursive(struct super_block *s); |
| #else |
| static inline void reiserfs_lock_check_recursive(struct super_block *s) { } |
| #endif |
| |
| /* |
| * Several mutexes depend on the write lock. |
| * However sometimes we want to relax the write lock while we hold |
| * these mutexes, according to the release/reacquire on schedule() |
| * properties of the Bkl that were used. |
| * Reiserfs performances and locking were based on this scheme. |
| * Now that the write lock is a mutex and not the bkl anymore, doing so |
| * may result in a deadlock: |
| * |
| * A acquire write_lock |
| * A acquire j_commit_mutex |
| * A release write_lock and wait for something |
| * B acquire write_lock |
| * B can't acquire j_commit_mutex and sleep |
| * A can't acquire write lock anymore |
| * deadlock |
| * |
| * What we do here is avoiding such deadlock by playing the same game |
| * than the Bkl: if we can't acquire a mutex that depends on the write lock, |
| * we release the write lock, wait a bit and then retry. |
| * |
| * The mutexes concerned by this hack are: |
| * - The commit mutex of a journal list |
| * - The flush mutex |
| * - The journal lock |
| * - The inode mutex |
| */ |
| static inline void reiserfs_mutex_lock_safe(struct mutex *m, |
| struct super_block *s) |
| { |
| int depth; |
| |
| depth = reiserfs_write_unlock_nested(s); |
| mutex_lock(m); |
| reiserfs_write_lock_nested(s, depth); |
| } |
| |
| static inline void |
| reiserfs_mutex_lock_nested_safe(struct mutex *m, unsigned int subclass, |
| struct super_block *s) |
| { |
| int depth; |
| |
| depth = reiserfs_write_unlock_nested(s); |
| mutex_lock_nested(m, subclass); |
| reiserfs_write_lock_nested(s, depth); |
| } |
| |
| static inline void |
| reiserfs_down_read_safe(struct rw_semaphore *sem, struct super_block *s) |
| { |
| int depth; |
| depth = reiserfs_write_unlock_nested(s); |
| down_read(sem); |
| reiserfs_write_lock_nested(s, depth); |
| } |
| |
| /* |
| * When we schedule, we usually want to also release the write lock, |
| * according to the previous bkl based locking scheme of reiserfs. |
| */ |
| static inline void reiserfs_cond_resched(struct super_block *s) |
| { |
| if (need_resched()) { |
| int depth; |
| |
| depth = reiserfs_write_unlock_nested(s); |
| schedule(); |
| reiserfs_write_lock_nested(s, depth); |
| } |
| } |
| |
| struct fid; |
| |
| /* |
| * in reading the #defines, it may help to understand that they employ |
| * the following abbreviations: |
| * |
| * B = Buffer |
| * I = Item header |
| * H = Height within the tree (should be changed to LEV) |
| * N = Number of the item in the node |
| * STAT = stat data |
| * DEH = Directory Entry Header |
| * EC = Entry Count |
| * E = Entry number |
| * UL = Unsigned Long |
| * BLKH = BLocK Header |
| * UNFM = UNForMatted node |
| * DC = Disk Child |
| * P = Path |
| * |
| * These #defines are named by concatenating these abbreviations, |
| * where first comes the arguments, and last comes the return value, |
| * of the macro. |
| */ |
| |
| #define USE_INODE_GENERATION_COUNTER |
| |
| #define REISERFS_PREALLOCATE |
| #define DISPLACE_NEW_PACKING_LOCALITIES |
| #define PREALLOCATION_SIZE 9 |
| |
| /* n must be power of 2 */ |
| #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u)) |
| |
| /* |
| * to be ok for alpha and others we have to align structures to 8 byte |
| * boundary. |
| * FIXME: do not change 4 by anything else: there is code which relies on that |
| */ |
| #define ROUND_UP(x) _ROUND_UP(x,8LL) |
| |
| /* |
| * debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug |
| * messages. |
| */ |
| #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */ |
| |
| void __reiserfs_warning(struct super_block *s, const char *id, |
| const char *func, const char *fmt, ...); |
| #define reiserfs_warning(s, id, fmt, args...) \ |
| __reiserfs_warning(s, id, __func__, fmt, ##args) |
| /* assertions handling */ |
| |
| /* always check a condition and panic if it's false. */ |
| #define __RASSERT(cond, scond, format, args...) \ |
| do { \ |
| if (!(cond)) \ |
| reiserfs_panic(NULL, "assertion failure", "(" #cond ") at " \ |
| __FILE__ ":%i:%s: " format "\n", \ |
| __LINE__, __func__ , ##args); \ |
| } while (0) |
| |
| #define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args) |
| |
| #if defined( CONFIG_REISERFS_CHECK ) |
| #define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args) |
| #else |
| #define RFALSE( cond, format, args... ) do {;} while( 0 ) |
| #endif |
| |
| #define CONSTF __attribute_const__ |
| /* |
| * Disk Data Structures |
| */ |
| |
| /*************************************************************************** |
| * SUPER BLOCK * |
| ***************************************************************************/ |
| |
| /* |
| * Structure of super block on disk, a version of which in RAM is often |
| * accessed as REISERFS_SB(s)->s_rs. The version in RAM is part of a larger |
| * structure containing fields never written to disk. |
| */ |
| #define UNSET_HASH 0 /* Detect hash on disk */ |
| #define TEA_HASH 1 |
| #define YURA_HASH 2 |
| #define R5_HASH 3 |
| #define DEFAULT_HASH R5_HASH |
| |
| struct journal_params { |
| /* where does journal start from on its * device */ |
| __le32 jp_journal_1st_block; |
| |
| /* journal device st_rdev */ |
| __le32 jp_journal_dev; |
| |
| /* size of the journal */ |
| __le32 jp_journal_size; |
| |
| /* max number of blocks in a transaction. */ |
| __le32 jp_journal_trans_max; |
| |
| /* |
| * random value made on fs creation |
| * (this was sb_journal_block_count) |
| */ |
| __le32 jp_journal_magic; |
| |
| /* max number of blocks to batch into a trans */ |
| __le32 jp_journal_max_batch; |
| |
| /* in seconds, how old can an async commit be */ |
| __le32 jp_journal_max_commit_age; |
| |
| /* in seconds, how old can a transaction be */ |
| __le32 jp_journal_max_trans_age; |
| }; |
| |
| /* this is the super from 3.5.X, where X >= 10 */ |
| struct reiserfs_super_block_v1 { |
| __le32 s_block_count; /* blocks count */ |
| __le32 s_free_blocks; /* free blocks count */ |
| __le32 s_root_block; /* root block number */ |
| struct journal_params s_journal; |
| __le16 s_blocksize; /* block size */ |
| |
| /* max size of object id array, see get_objectid() commentary */ |
| __le16 s_oid_maxsize; |
| __le16 s_oid_cursize; /* current size of object id array */ |
| |
| /* this is set to 1 when filesystem was umounted, to 2 - when not */ |
| __le16 s_umount_state; |
| |
| /* |
| * reiserfs magic string indicates that file system is reiserfs: |
| * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" |
| */ |
| char s_magic[10]; |
| |
| /* |
| * it is set to used by fsck to mark which |
| * phase of rebuilding is done |
| */ |
| __le16 s_fs_state; |
| /* |
| * indicate, what hash function is being use |
| * to sort names in a directory |
| */ |
| __le32 s_hash_function_code; |
| __le16 s_tree_height; /* height of disk tree */ |
| |
| /* |
| * amount of bitmap blocks needed to address |
| * each block of file system |
| */ |
| __le16 s_bmap_nr; |
| |
| /* |
| * this field is only reliable on filesystem with non-standard journal |
| */ |
| __le16 s_version; |
| |
| /* |
| * size in blocks of journal area on main device, we need to |
| * keep after making fs with non-standard journal |
| */ |
| __le16 s_reserved_for_journal; |
| } __attribute__ ((__packed__)); |
| |
| #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1)) |
| |
| /* this is the on disk super block */ |
| struct reiserfs_super_block { |
| struct reiserfs_super_block_v1 s_v1; |
| __le32 s_inode_generation; |
| |
| /* Right now used only by inode-attributes, if enabled */ |
| __le32 s_flags; |
| |
| unsigned char s_uuid[16]; /* filesystem unique identifier */ |
| unsigned char s_label[16]; /* filesystem volume label */ |
| __le16 s_mnt_count; /* Count of mounts since last fsck */ |
| __le16 s_max_mnt_count; /* Maximum mounts before check */ |
| __le32 s_lastcheck; /* Timestamp of last fsck */ |
| __le32 s_check_interval; /* Interval between checks */ |
| |
| /* |
| * zero filled by mkreiserfs and reiserfs_convert_objectid_map_v1() |
| * so any additions must be updated there as well. */ |
| char s_unused[76]; |
| } __attribute__ ((__packed__)); |
| |
| #define SB_SIZE (sizeof(struct reiserfs_super_block)) |
| |
| #define REISERFS_VERSION_1 0 |
| #define REISERFS_VERSION_2 2 |
| |
| /* on-disk super block fields converted to cpu form */ |
| #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs) |
| #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1)) |
| #define SB_BLOCKSIZE(s) \ |
| le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize)) |
| #define SB_BLOCK_COUNT(s) \ |
| le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count)) |
| #define SB_FREE_BLOCKS(s) \ |
| le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks)) |
| #define SB_REISERFS_MAGIC(s) \ |
| (SB_V1_DISK_SUPER_BLOCK(s)->s_magic) |
| #define SB_ROOT_BLOCK(s) \ |
| le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block)) |
| #define SB_TREE_HEIGHT(s) \ |
| le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height)) |
| #define SB_REISERFS_STATE(s) \ |
| le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state)) |
| #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version)) |
| #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr)) |
| |
| #define PUT_SB_BLOCK_COUNT(s, val) \ |
| do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0) |
| #define PUT_SB_FREE_BLOCKS(s, val) \ |
| do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0) |
| #define PUT_SB_ROOT_BLOCK(s, val) \ |
| do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0) |
| #define PUT_SB_TREE_HEIGHT(s, val) \ |
| do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0) |
| #define PUT_SB_REISERFS_STATE(s, val) \ |
| do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0) |
| #define PUT_SB_VERSION(s, val) \ |
| do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0) |
| #define PUT_SB_BMAP_NR(s, val) \ |
| do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0) |
| |
| #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal) |
| #define SB_ONDISK_JOURNAL_SIZE(s) \ |
| le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size)) |
| #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \ |
| le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block)) |
| #define SB_ONDISK_JOURNAL_DEVICE(s) \ |
| le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev)) |
| #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \ |
| le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal)) |
| |
| #define is_block_in_log_or_reserved_area(s, block) \ |
| block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \ |
| && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \ |
| ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \ |
| SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s))) |
| |
| int is_reiserfs_3_5(struct reiserfs_super_block *rs); |
| int is_reiserfs_3_6(struct reiserfs_super_block *rs); |
| int is_reiserfs_jr(struct reiserfs_super_block *rs); |
| |
| /* |
| * ReiserFS leaves the first 64k unused, so that partition labels have |
| * enough space. If someone wants to write a fancy bootloader that |
| * needs more than 64k, let us know, and this will be increased in size. |
| * This number must be larger than than the largest block size on any |
| * platform, or code will break. -Hans |
| */ |
| #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024) |
| #define REISERFS_FIRST_BLOCK unused_define |
| #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES |
| |
| /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */ |
| #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024) |
| |
| /* reiserfs internal error code (used by search_by_key and fix_nodes)) */ |
| #define CARRY_ON 0 |
| #define REPEAT_SEARCH -1 |
| #define IO_ERROR -2 |
| #define NO_DISK_SPACE -3 |
| #define NO_BALANCING_NEEDED (-4) |
| #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5) |
| #define QUOTA_EXCEEDED -6 |
| |
| typedef __u32 b_blocknr_t; |
| typedef __le32 unp_t; |
| |
| struct unfm_nodeinfo { |
| unp_t unfm_nodenum; |
| unsigned short unfm_freespace; |
| }; |
| |
| /* there are two formats of keys: 3.5 and 3.6 */ |
| #define KEY_FORMAT_3_5 0 |
| #define KEY_FORMAT_3_6 1 |
| |
| /* there are two stat datas */ |
| #define STAT_DATA_V1 0 |
| #define STAT_DATA_V2 1 |
| |
| static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode) |
| { |
| return container_of(inode, struct reiserfs_inode_info, vfs_inode); |
| } |
| |
| static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb) |
| { |
| return sb->s_fs_info; |
| } |
| |
| /* |
| * Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16 |
| * which overflows on large file systems. |
| */ |
| static inline __u32 reiserfs_bmap_count(struct super_block *sb) |
| { |
| return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1; |
| } |
| |
| static inline int bmap_would_wrap(unsigned bmap_nr) |
| { |
| return bmap_nr > ((1LL << 16) - 1); |
| } |
| |
| /* |
| * this says about version of key of all items (but stat data) the |
| * object consists of |
| */ |
| #define get_inode_item_key_version( inode ) \ |
| ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5) |
| |
| #define set_inode_item_key_version( inode, version ) \ |
| ({ if((version)==KEY_FORMAT_3_6) \ |
| REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \ |
| else \ |
| REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; }) |
| |
| #define get_inode_sd_version(inode) \ |
| ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1) |
| |
| #define set_inode_sd_version(inode, version) \ |
| ({ if((version)==STAT_DATA_V2) \ |
| REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \ |
| else \ |
| REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; }) |
| |
| /* |
| * This is an aggressive tail suppression policy, I am hoping it |
| * improves our benchmarks. The principle behind it is that percentage |
| * space saving is what matters, not absolute space saving. This is |
| * non-intuitive, but it helps to understand it if you consider that the |
| * cost to access 4 blocks is not much more than the cost to access 1 |
| * block, if you have to do a seek and rotate. A tail risks a |
| * non-linear disk access that is significant as a percentage of total |
| * time cost for a 4 block file and saves an amount of space that is |
| * less significant as a percentage of space, or so goes the hypothesis. |
| * -Hans |
| */ |
| #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \ |
| (\ |
| (!(n_tail_size)) || \ |
| (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \ |
| ( (n_file_size) >= (n_block_size) * 4 ) || \ |
| ( ( (n_file_size) >= (n_block_size) * 3 ) && \ |
| ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \ |
| ( ( (n_file_size) >= (n_block_size) * 2 ) && \ |
| ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \ |
| ( ( (n_file_size) >= (n_block_size) ) && \ |
| ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \ |
| ) |
| |
| /* |
| * Another strategy for tails, this one means only create a tail if all the |
| * file would fit into one DIRECT item. |
| * Primary intention for this one is to increase performance by decreasing |
| * seeking. |
| */ |
| #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \ |
| (\ |
| (!(n_tail_size)) || \ |
| (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \ |
| ) |
| |
| /* |
| * values for s_umount_state field |
| */ |
| #define REISERFS_VALID_FS 1 |
| #define REISERFS_ERROR_FS 2 |
| |
| /* |
| * there are 5 item types currently |
| */ |
| #define TYPE_STAT_DATA 0 |
| #define TYPE_INDIRECT 1 |
| #define TYPE_DIRECT 2 |
| #define TYPE_DIRENTRY 3 |
| #define TYPE_MAXTYPE 3 |
| #define TYPE_ANY 15 /* FIXME: comment is required */ |
| |
| /*************************************************************************** |
| * KEY & ITEM HEAD * |
| ***************************************************************************/ |
| |
| /* * directories use this key as well as old files */ |
| struct offset_v1 { |
| __le32 k_offset; |
| __le32 k_uniqueness; |
| } __attribute__ ((__packed__)); |
| |
| struct offset_v2 { |
| __le64 v; |
| } __attribute__ ((__packed__)); |
| |
| static inline __u16 offset_v2_k_type(const struct offset_v2 *v2) |
| { |
| __u8 type = le64_to_cpu(v2->v) >> 60; |
| return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY; |
| } |
| |
| static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type) |
| { |
| v2->v = |
| (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60); |
| } |
| |
| static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2) |
| { |
| return le64_to_cpu(v2->v) & (~0ULL >> 4); |
| } |
| |
| static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset) |
| { |
| offset &= (~0ULL >> 4); |
| v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset); |
| } |
| |
| /* |
| * Key of an item determines its location in the S+tree, and |
| * is composed of 4 components |
| */ |
| struct reiserfs_key { |
| /* packing locality: by default parent directory object id */ |
| __le32 k_dir_id; |
| |
| __le32 k_objectid; /* object identifier */ |
| union { |
| struct offset_v1 k_offset_v1; |
| struct offset_v2 k_offset_v2; |
| } __attribute__ ((__packed__)) u; |
| } __attribute__ ((__packed__)); |
| |
| struct in_core_key { |
| /* packing locality: by default parent directory object id */ |
| __u32 k_dir_id; |
| __u32 k_objectid; /* object identifier */ |
| __u64 k_offset; |
| __u8 k_type; |
| }; |
| |
| struct cpu_key { |
| struct in_core_key on_disk_key; |
| int version; |
| /* 3 in all cases but direct2indirect and indirect2direct conversion */ |
| int key_length; |
| }; |
| |
| /* |
| * Our function for comparing keys can compare keys of different |
| * lengths. It takes as a parameter the length of the keys it is to |
| * compare. These defines are used in determining what is to be passed |
| * to it as that parameter. |
| */ |
| #define REISERFS_FULL_KEY_LEN 4 |
| #define REISERFS_SHORT_KEY_LEN 2 |
| |
| /* The result of the key compare */ |
| #define FIRST_GREATER 1 |
| #define SECOND_GREATER -1 |
| #define KEYS_IDENTICAL 0 |
| #define KEY_FOUND 1 |
| #define KEY_NOT_FOUND 0 |
| |
| #define KEY_SIZE (sizeof(struct reiserfs_key)) |
| |
| /* return values for search_by_key and clones */ |
| #define ITEM_FOUND 1 |
| #define ITEM_NOT_FOUND 0 |
| #define ENTRY_FOUND 1 |
| #define ENTRY_NOT_FOUND 0 |
| #define DIRECTORY_NOT_FOUND -1 |
| #define REGULAR_FILE_FOUND -2 |
| #define DIRECTORY_FOUND -3 |
| #define BYTE_FOUND 1 |
| #define BYTE_NOT_FOUND 0 |
| #define FILE_NOT_FOUND -1 |
| |
| #define POSITION_FOUND 1 |
| #define POSITION_NOT_FOUND 0 |
| |
| /* return values for reiserfs_find_entry and search_by_entry_key */ |
| #define NAME_FOUND 1 |
| #define NAME_NOT_FOUND 0 |
| #define GOTO_PREVIOUS_ITEM 2 |
| #define NAME_FOUND_INVISIBLE 3 |
| |
| /* |
| * Everything in the filesystem is stored as a set of items. The |
| * item head contains the key of the item, its free space (for |
| * indirect items) and specifies the location of the item itself |
| * within the block. |
| */ |
| |
| struct item_head { |
| /* |
| * Everything in the tree is found by searching for it based on |
| * its key. |
| */ |
| struct reiserfs_key ih_key; |
| union { |
| /* |
| * The free space in the last unformatted node of an |
| * indirect item if this is an indirect item. This |
| * equals 0xFFFF iff this is a direct item or stat data |
| * item. Note that the key, not this field, is used to |
| * determine the item type, and thus which field this |
| * union contains. |
| */ |
| __le16 ih_free_space_reserved; |
| |
| /* |
| * Iff this is a directory item, this field equals the |
| * number of directory entries in the directory item. |
| */ |
| __le16 ih_entry_count; |
| } __attribute__ ((__packed__)) u; |
| __le16 ih_item_len; /* total size of the item body */ |
| |
| /* an offset to the item body within the block */ |
| __le16 ih_item_location; |
| |
| /* |
| * 0 for all old items, 2 for new ones. Highest bit is set by fsck |
| * temporary, cleaned after all done |
| */ |
| __le16 ih_version; |
| } __attribute__ ((__packed__)); |
| /* size of item header */ |
| #define IH_SIZE (sizeof(struct item_head)) |
| |
| #define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved) |
| #define ih_version(ih) le16_to_cpu((ih)->ih_version) |
| #define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count) |
| #define ih_location(ih) le16_to_cpu((ih)->ih_item_location) |
| #define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len) |
| |
| #define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0) |
| #define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0) |
| #define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0) |
| #define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0) |
| #define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0) |
| |
| #define unreachable_item(ih) (ih_version(ih) & (1 << 15)) |
| |
| #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih)) |
| #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val))) |
| |
| /* |
| * these operate on indirect items, where you've got an array of ints |
| * at a possibly unaligned location. These are a noop on ia32 |
| * |
| * p is the array of __u32, i is the index into the array, v is the value |
| * to store there. |
| */ |
| #define get_block_num(p, i) get_unaligned_le32((p) + (i)) |
| #define put_block_num(p, i, v) put_unaligned_le32((v), (p) + (i)) |
| |
| /* * in old version uniqueness field shows key type */ |
| #define V1_SD_UNIQUENESS 0 |
| #define V1_INDIRECT_UNIQUENESS 0xfffffffe |
| #define V1_DIRECT_UNIQUENESS 0xffffffff |
| #define V1_DIRENTRY_UNIQUENESS 500 |
| #define V1_ANY_UNIQUENESS 555 /* FIXME: comment is required */ |
| |
| /* here are conversion routines */ |
| static inline int uniqueness2type(__u32 uniqueness) CONSTF; |
| static inline int uniqueness2type(__u32 uniqueness) |
| { |
| switch ((int)uniqueness) { |
| case V1_SD_UNIQUENESS: |
| return TYPE_STAT_DATA; |
| case V1_INDIRECT_UNIQUENESS: |
| return TYPE_INDIRECT; |
| case V1_DIRECT_UNIQUENESS: |
| return TYPE_DIRECT; |
| case V1_DIRENTRY_UNIQUENESS: |
| return TYPE_DIRENTRY; |
| case V1_ANY_UNIQUENESS: |
| default: |
| return TYPE_ANY; |
| } |
| } |
| |
| static inline __u32 type2uniqueness(int type) CONSTF; |
| static inline __u32 type2uniqueness(int type) |
| { |
| switch (type) { |
| case TYPE_STAT_DATA: |
| return V1_SD_UNIQUENESS; |
| case TYPE_INDIRECT: |
| return V1_INDIRECT_UNIQUENESS; |
| case TYPE_DIRECT: |
| return V1_DIRECT_UNIQUENESS; |
| case TYPE_DIRENTRY: |
| return V1_DIRENTRY_UNIQUENESS; |
| case TYPE_ANY: |
| default: |
| return V1_ANY_UNIQUENESS; |
| } |
| } |
| |
| /* |
| * key is pointer to on disk key which is stored in le, result is cpu, |
| * there is no way to get version of object from key, so, provide |
| * version to these defines |
| */ |
| static inline loff_t le_key_k_offset(int version, |
| const struct reiserfs_key *key) |
| { |
| return (version == KEY_FORMAT_3_5) ? |
| le32_to_cpu(key->u.k_offset_v1.k_offset) : |
| offset_v2_k_offset(&(key->u.k_offset_v2)); |
| } |
| |
| static inline loff_t le_ih_k_offset(const struct item_head *ih) |
| { |
| return le_key_k_offset(ih_version(ih), &(ih->ih_key)); |
| } |
| |
| static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key) |
| { |
| if (version == KEY_FORMAT_3_5) { |
| loff_t val = le32_to_cpu(key->u.k_offset_v1.k_uniqueness); |
| return uniqueness2type(val); |
| } else |
| return offset_v2_k_type(&(key->u.k_offset_v2)); |
| } |
| |
| static inline loff_t le_ih_k_type(const struct item_head *ih) |
| { |
| return le_key_k_type(ih_version(ih), &(ih->ih_key)); |
| } |
| |
| static inline void set_le_key_k_offset(int version, struct reiserfs_key *key, |
| loff_t offset) |
| { |
| if (version == KEY_FORMAT_3_5) |
| key->u.k_offset_v1.k_offset = cpu_to_le32(offset); |
| else |
| set_offset_v2_k_offset(&key->u.k_offset_v2, offset); |
| } |
| |
| static inline void add_le_key_k_offset(int version, struct reiserfs_key *key, |
| loff_t offset) |
| { |
| set_le_key_k_offset(version, key, |
| le_key_k_offset(version, key) + offset); |
| } |
| |
| static inline void add_le_ih_k_offset(struct item_head *ih, loff_t offset) |
| { |
| add_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); |
| } |
| |
| static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset) |
| { |
| set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset); |
| } |
| |
| static inline void set_le_key_k_type(int version, struct reiserfs_key *key, |
| int type) |
| { |
| if (version == KEY_FORMAT_3_5) { |
| type = type2uniqueness(type); |
| key->u.k_offset_v1.k_uniqueness = cpu_to_le32(type); |
| } else |
| set_offset_v2_k_type(&key->u.k_offset_v2, type); |
| } |
| |
| static inline void set_le_ih_k_type(struct item_head *ih, int type) |
| { |
| set_le_key_k_type(ih_version(ih), &(ih->ih_key), type); |
| } |
| |
| static inline int is_direntry_le_key(int version, struct reiserfs_key *key) |
| { |
| return le_key_k_type(version, key) == TYPE_DIRENTRY; |
| } |
| |
| static inline int is_direct_le_key(int version, struct reiserfs_key *key) |
| { |
| return le_key_k_type(version, key) == TYPE_DIRECT; |
| } |
| |
| static inline int is_indirect_le_key(int version, struct reiserfs_key *key) |
| { |
| return le_key_k_type(version, key) == TYPE_INDIRECT; |
| } |
| |
| static inline int is_statdata_le_key(int version, struct reiserfs_key *key) |
| { |
| return le_key_k_type(version, key) == TYPE_STAT_DATA; |
| } |
| |
| /* item header has version. */ |
| static inline int is_direntry_le_ih(struct item_head *ih) |
| { |
| return is_direntry_le_key(ih_version(ih), &ih->ih_key); |
| } |
| |
| static inline int is_direct_le_ih(struct item_head *ih) |
| { |
| return is_direct_le_key(ih_version(ih), &ih->ih_key); |
| } |
| |
| static inline int is_indirect_le_ih(struct item_head *ih) |
| { |
| return is_indirect_le_key(ih_version(ih), &ih->ih_key); |
| } |
| |
| static inline int is_statdata_le_ih(struct item_head *ih) |
| { |
| return is_statdata_le_key(ih_version(ih), &ih->ih_key); |
| } |
| |
| /* key is pointer to cpu key, result is cpu */ |
| static inline loff_t cpu_key_k_offset(const struct cpu_key *key) |
| { |
| return key->on_disk_key.k_offset; |
| } |
| |
| static inline loff_t cpu_key_k_type(const struct cpu_key *key) |
| { |
| return key->on_disk_key.k_type; |
| } |
| |
| static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset) |
| { |
| key->on_disk_key.k_offset = offset; |
| } |
| |
| static inline void set_cpu_key_k_type(struct cpu_key *key, int type) |
| { |
| key->on_disk_key.k_type = type; |
| } |
| |
| static inline void cpu_key_k_offset_dec(struct cpu_key *key) |
| { |
| key->on_disk_key.k_offset--; |
| } |
| |
| #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY) |
| #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT) |
| #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT) |
| #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA) |
| |
| /* are these used ? */ |
| #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key))) |
| #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key))) |
| #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key))) |
| #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key))) |
| |
| #define I_K_KEY_IN_ITEM(ih, key, n_blocksize) \ |
| (!COMP_SHORT_KEYS(ih, key) && \ |
| I_OFF_BYTE_IN_ITEM(ih, k_offset(key), n_blocksize)) |
| |
| /* maximal length of item */ |
| #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE) |
| #define MIN_ITEM_LEN 1 |
| |
| /* object identifier for root dir */ |
| #define REISERFS_ROOT_OBJECTID 2 |
| #define REISERFS_ROOT_PARENT_OBJECTID 1 |
| |
| extern struct reiserfs_key root_key; |
| |
| /* |
| * Picture represents a leaf of the S+tree |
| * ______________________________________________________ |
| * | | Array of | | | |
| * |Block | Object-Item | F r e e | Objects- | |
| * | head | Headers | S p a c e | Items | |
| * |______|_______________|___________________|___________| |
| */ |
| |
| /* |
| * Header of a disk block. More precisely, header of a formatted leaf |
| * or internal node, and not the header of an unformatted node. |
| */ |
| struct block_head { |
| __le16 blk_level; /* Level of a block in the tree. */ |
| __le16 blk_nr_item; /* Number of keys/items in a block. */ |
| __le16 blk_free_space; /* Block free space in bytes. */ |
| __le16 blk_reserved; |
| /* dump this in v4/planA */ |
| |
| /* kept only for compatibility */ |
| struct reiserfs_key blk_right_delim_key; |
| }; |
| |
| #define BLKH_SIZE (sizeof(struct block_head)) |
| #define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level)) |
| #define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item)) |
| #define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space)) |
| #define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved)) |
| #define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val)) |
| #define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val)) |
| #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val)) |
| #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val)) |
| #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key) |
| #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val) |
| |
| /* values for blk_level field of the struct block_head */ |
| |
| /* |
| * When node gets removed from the tree its blk_level is set to FREE_LEVEL. |
| * It is then used to see whether the node is still in the tree |
| */ |
| #define FREE_LEVEL 0 |
| |
| #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */ |
| |
| /* |
| * Given the buffer head of a formatted node, resolve to the |
| * block head of that node. |
| */ |
| #define B_BLK_HEAD(bh) ((struct block_head *)((bh)->b_data)) |
| /* Number of items that are in buffer. */ |
| #define B_NR_ITEMS(bh) (blkh_nr_item(B_BLK_HEAD(bh))) |
| #define B_LEVEL(bh) (blkh_level(B_BLK_HEAD(bh))) |
| #define B_FREE_SPACE(bh) (blkh_free_space(B_BLK_HEAD(bh))) |
| |
| #define PUT_B_NR_ITEMS(bh, val) do { set_blkh_nr_item(B_BLK_HEAD(bh), val); } while (0) |
| #define PUT_B_LEVEL(bh, val) do { set_blkh_level(B_BLK_HEAD(bh), val); } while (0) |
| #define PUT_B_FREE_SPACE(bh, val) do { set_blkh_free_space(B_BLK_HEAD(bh), val); } while (0) |
| |
| /* Get right delimiting key. -- little endian */ |
| #define B_PRIGHT_DELIM_KEY(bh) (&(blk_right_delim_key(B_BLK_HEAD(bh)))) |
| |
| /* Does the buffer contain a disk leaf. */ |
| #define B_IS_ITEMS_LEVEL(bh) (B_LEVEL(bh) == DISK_LEAF_NODE_LEVEL) |
| |
| /* Does the buffer contain a disk internal node */ |
| #define B_IS_KEYS_LEVEL(bh) (B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL \ |
| && B_LEVEL(bh) <= MAX_HEIGHT) |
| |
| /*************************************************************************** |
| * STAT DATA * |
| ***************************************************************************/ |
| |
| /* |
| * old stat data is 32 bytes long. We are going to distinguish new one by |
| * different size |
| */ |
| struct stat_data_v1 { |
| __le16 sd_mode; /* file type, permissions */ |
| __le16 sd_nlink; /* number of hard links */ |
| __le16 sd_uid; /* owner */ |
| __le16 sd_gid; /* group */ |
| __le32 sd_size; /* file size */ |
| __le32 sd_atime; /* time of last access */ |
| __le32 sd_mtime; /* time file was last modified */ |
| |
| /* |
| * time inode (stat data) was last changed |
| * (except changes to sd_atime and sd_mtime) |
| */ |
| __le32 sd_ctime; |
| union { |
| __le32 sd_rdev; |
| __le32 sd_blocks; /* number of blocks file uses */ |
| } __attribute__ ((__packed__)) u; |
| |
| /* |
| * first byte of file which is stored in a direct item: except that if |
| * it equals 1 it is a symlink and if it equals ~(__u32)0 there is no |
| * direct item. The existence of this field really grates on me. |
| * Let's replace it with a macro based on sd_size and our tail |
| * suppression policy. Someday. -Hans |
| */ |
| __le32 sd_first_direct_byte; |
| } __attribute__ ((__packed__)); |
| |
| #define SD_V1_SIZE (sizeof(struct stat_data_v1)) |
| #define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5) |
| #define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) |
| #define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) |
| #define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink)) |
| #define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v)) |
| #define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid)) |
| #define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v)) |
| #define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid)) |
| #define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v)) |
| #define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size)) |
| #define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v)) |
| #define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) |
| #define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) |
| #define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) |
| #define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) |
| #define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) |
| #define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) |
| #define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) |
| #define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) |
| #define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks)) |
| #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v)) |
| #define sd_v1_first_direct_byte(sdp) \ |
| (le32_to_cpu((sdp)->sd_first_direct_byte)) |
| #define set_sd_v1_first_direct_byte(sdp,v) \ |
| ((sdp)->sd_first_direct_byte = cpu_to_le32(v)) |
| |
| /* inode flags stored in sd_attrs (nee sd_reserved) */ |
| |
| /* |
| * we want common flags to have the same values as in ext2, |
| * so chattr(1) will work without problems |
| */ |
| #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL |
| #define REISERFS_APPEND_FL FS_APPEND_FL |
| #define REISERFS_SYNC_FL FS_SYNC_FL |
| #define REISERFS_NOATIME_FL FS_NOATIME_FL |
| #define REISERFS_NODUMP_FL FS_NODUMP_FL |
| #define REISERFS_SECRM_FL FS_SECRM_FL |
| #define REISERFS_UNRM_FL FS_UNRM_FL |
| #define REISERFS_COMPR_FL FS_COMPR_FL |
| #define REISERFS_NOTAIL_FL FS_NOTAIL_FL |
| |
| /* persistent flags that file inherits from the parent directory */ |
| #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \ |
| REISERFS_SYNC_FL | \ |
| REISERFS_NOATIME_FL | \ |
| REISERFS_NODUMP_FL | \ |
| REISERFS_SECRM_FL | \ |
| REISERFS_COMPR_FL | \ |
| REISERFS_NOTAIL_FL ) |
| |
| /* |
| * Stat Data on disk (reiserfs version of UFS disk inode minus the |
| * address blocks) |
| */ |
| struct stat_data { |
| __le16 sd_mode; /* file type, permissions */ |
| __le16 sd_attrs; /* persistent inode flags */ |
| __le32 sd_nlink; /* number of hard links */ |
| __le64 sd_size; /* file size */ |
| __le32 sd_uid; /* owner */ |
| __le32 sd_gid; /* group */ |
| __le32 sd_atime; /* time of last access */ |
| __le32 sd_mtime; /* time file was last modified */ |
| |
| /* |
| * time inode (stat data) was last changed |
| * (except changes to sd_atime and sd_mtime) |
| */ |
| __le32 sd_ctime; |
| __le32 sd_blocks; |
| union { |
| __le32 sd_rdev; |
| __le32 sd_generation; |
| } __attribute__ ((__packed__)) u; |
| } __attribute__ ((__packed__)); |
| |
| /* this is 44 bytes long */ |
| #define SD_SIZE (sizeof(struct stat_data)) |
| #define SD_V2_SIZE SD_SIZE |
| #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6) |
| #define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode)) |
| #define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v)) |
| /* sd_reserved */ |
| /* set_sd_reserved */ |
| #define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink)) |
| #define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v)) |
| #define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size)) |
| #define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v)) |
| #define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid)) |
| #define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v)) |
| #define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid)) |
| #define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v)) |
| #define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime)) |
| #define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v)) |
| #define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime)) |
| #define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v)) |
| #define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime)) |
| #define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v)) |
| #define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks)) |
| #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v)) |
| #define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev)) |
| #define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v)) |
| #define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation)) |
| #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v)) |
| #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs)) |
| #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v)) |
| |
| /*************************************************************************** |
| * DIRECTORY STRUCTURE * |
| ***************************************************************************/ |
| /* |
| * Picture represents the structure of directory items |
| * ________________________________________________ |
| * | Array of | | | | | | |
| * | directory |N-1| N-2 | .... | 1st |0th| |
| * | entry headers | | | | | | |
| * |_______________|___|_____|________|_______|___| |
| * <---- directory entries ------> |
| * |
| * First directory item has k_offset component 1. We store "." and ".." |
| * in one item, always, we never split "." and ".." into differing |
| * items. This makes, among other things, the code for removing |
| * directories simpler. |
| */ |
| #define SD_OFFSET 0 |
| #define SD_UNIQUENESS 0 |
| #define DOT_OFFSET 1 |
| #define DOT_DOT_OFFSET 2 |
| #define DIRENTRY_UNIQUENESS 500 |
| |
| #define FIRST_ITEM_OFFSET 1 |
| |
| /* |
| * Q: How to get key of object pointed to by entry from entry? |
| * |
| * A: Each directory entry has its header. This header has deh_dir_id |
| * and deh_objectid fields, those are key of object, entry points to |
| */ |
| |
| /* |
| * NOT IMPLEMENTED: |
| * Directory will someday contain stat data of object |
| */ |
| |
| struct reiserfs_de_head { |
| __le32 deh_offset; /* third component of the directory entry key */ |
| |
| /* |
| * objectid of the parent directory of the object, that is referenced |
| * by directory entry |
| */ |
| __le32 deh_dir_id; |
| |
| /* objectid of the object, that is referenced by directory entry */ |
| __le32 deh_objectid; |
| __le16 deh_location; /* offset of name in the whole item */ |
| |
| /* |
| * whether 1) entry contains stat data (for future), and |
| * 2) whether entry is hidden (unlinked) |
| */ |
| __le16 deh_state; |
| } __attribute__ ((__packed__)); |
| #define DEH_SIZE sizeof(struct reiserfs_de_head) |
| #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset)) |
| #define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id)) |
| #define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid)) |
| #define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location)) |
| #define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state)) |
| |
| #define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v))) |
| #define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v))) |
| #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v))) |
| #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v))) |
| #define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v))) |
| |
| /* empty directory contains two entries "." and ".." and their headers */ |
| #define EMPTY_DIR_SIZE \ |
| (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen (".."))) |
| |
| /* old format directories have this size when empty */ |
| #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3) |
| |
| #define DEH_Statdata 0 /* not used now */ |
| #define DEH_Visible 2 |
| |
| /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */ |
| #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__) |
| # define ADDR_UNALIGNED_BITS (3) |
| #endif |
| |
| /* |
| * These are only used to manipulate deh_state. |
| * Because of this, we'll use the ext2_ bit routines, |
| * since they are little endian |
| */ |
| #ifdef ADDR_UNALIGNED_BITS |
| |
| # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1))) |
| # define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3) |
| |
| # define set_bit_unaligned(nr, addr) \ |
| __test_and_set_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) |
| # define clear_bit_unaligned(nr, addr) \ |
| __test_and_clear_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) |
| # define test_bit_unaligned(nr, addr) \ |
| test_bit_le((nr) + unaligned_offset(addr), aligned_address(addr)) |
| |
| #else |
| |
| # define set_bit_unaligned(nr, addr) __test_and_set_bit_le(nr, addr) |
| # define clear_bit_unaligned(nr, addr) __test_and_clear_bit_le(nr, addr) |
| # define test_bit_unaligned(nr, addr) test_bit_le(nr, addr) |
| |
| #endif |
| |
| #define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) |
| #define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) |
| #define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state)) |
| #define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state)) |
| |
| #define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state)) |
| #define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) |
| #define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state)) |
| |
| extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid, |
| __le32 par_dirid, __le32 par_objid); |
| extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid, |
| __le32 par_dirid, __le32 par_objid); |
| |
| /* two entries per block (at least) */ |
| #define REISERFS_MAX_NAME(block_size) 255 |
| |
| /* |
| * this structure is used for operations on directory entries. It is |
| * not a disk structure. |
| * |
| * When reiserfs_find_entry or search_by_entry_key find directory |
| * entry, they return filled reiserfs_dir_entry structure |
| */ |
| struct reiserfs_dir_entry { |
| struct buffer_head *de_bh; |
| int de_item_num; |
| struct item_head *de_ih; |
| int de_entry_num; |
| struct reiserfs_de_head *de_deh; |
| int de_entrylen; |
| int de_namelen; |
| char *de_name; |
| unsigned long *de_gen_number_bit_string; |
| |
| __u32 de_dir_id; |
| __u32 de_objectid; |
| |
| struct cpu_key de_entry_key; |
| }; |
| |
| /* |
| * these defines are useful when a particular member of |
| * a reiserfs_dir_entry is needed |
| */ |
| |
| /* pointer to file name, stored in entry */ |
| #define B_I_DEH_ENTRY_FILE_NAME(bh, ih, deh) \ |
| (ih_item_body(bh, ih) + deh_location(deh)) |
| |
| /* length of name */ |
| #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \ |
| (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0)) |
| |
| /* hash value occupies bits from 7 up to 30 */ |
| #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL) |
| /* generation number occupies 7 bits starting from 0 up to 6 */ |
| #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL) |
| #define MAX_GENERATION_NUMBER 127 |
| |
| #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number)) |
| |
| /* |
| * Picture represents an internal node of the reiserfs tree |
| * ______________________________________________________ |
| * | | Array of | Array of | Free | |
| * |block | keys | pointers | space | |
| * | head | N | N+1 | | |
| * |______|_______________|___________________|___________| |
| */ |
| |
| /*************************************************************************** |
| * DISK CHILD * |
| ***************************************************************************/ |
| /* |
| * Disk child pointer: |
| * The pointer from an internal node of the tree to a node that is on disk. |
| */ |
| struct disk_child { |
| __le32 dc_block_number; /* Disk child's block number. */ |
| __le16 dc_size; /* Disk child's used space. */ |
| __le16 dc_reserved; |
| }; |
| |
| #define DC_SIZE (sizeof(struct disk_child)) |
| #define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number)) |
| #define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size)) |
| #define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0) |
| #define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0) |
| |
| /* Get disk child by buffer header and position in the tree node. */ |
| #define B_N_CHILD(bh, n_pos) ((struct disk_child *)\ |
| ((bh)->b_data + BLKH_SIZE + B_NR_ITEMS(bh) * KEY_SIZE + DC_SIZE * (n_pos))) |
| |
| /* Get disk child number by buffer header and position in the tree node. */ |
| #define B_N_CHILD_NUM(bh, n_pos) (dc_block_number(B_N_CHILD(bh, n_pos))) |
| #define PUT_B_N_CHILD_NUM(bh, n_pos, val) \ |
| (put_dc_block_number(B_N_CHILD(bh, n_pos), val)) |
| |
| /* maximal value of field child_size in structure disk_child */ |
| /* child size is the combined size of all items and their headers */ |
| #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE )) |
| |
| /* amount of used space in buffer (not including block head) */ |
| #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur))) |
| |
| /* max and min number of keys in internal node */ |
| #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) ) |
| #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2) |
| |
| /*************************************************************************** |
| * PATH STRUCTURES AND DEFINES * |
| ***************************************************************************/ |
| |
| /* |
| * search_by_key fills up the path from the root to the leaf as it descends |
| * the tree looking for the key. It uses reiserfs_bread to try to find |
| * buffers in the cache given their block number. If it does not find |
| * them in the cache it reads them from disk. For each node search_by_key |
| * finds using reiserfs_bread it then uses bin_search to look through that |
| * node. bin_search will find the position of the block_number of the next |
| * node if it is looking through an internal node. If it is looking through |
| * a leaf node bin_search will find the position of the item which has key |
| * either equal to given key, or which is the maximal key less than the |
| * given key. |
| */ |
| |
| struct path_element { |
| /* Pointer to the buffer at the path in the tree. */ |
| struct buffer_head *pe_buffer; |
| /* Position in the tree node which is placed in the buffer above. */ |
| int pe_position; |
| }; |
| |
| /* |
| * maximal height of a tree. don't change this without |
| * changing JOURNAL_PER_BALANCE_CNT |
| */ |
| #define MAX_HEIGHT 5 |
| |
| /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */ |
| #define EXTENDED_MAX_HEIGHT 7 |
| |
| /* Must be equal to at least 2. */ |
| #define FIRST_PATH_ELEMENT_OFFSET 2 |
| |
| /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */ |
| #define ILLEGAL_PATH_ELEMENT_OFFSET 1 |
| |
| /* this MUST be MAX_HEIGHT + 1. See about FEB below */ |
| #define MAX_FEB_SIZE 6 |
| |
| /* |
| * We need to keep track of who the ancestors of nodes are. When we |
| * perform a search we record which nodes were visited while |
| * descending the tree looking for the node we searched for. This list |
| * of nodes is called the path. This information is used while |
| * performing balancing. Note that this path information may become |
| * invalid, and this means we must check it when using it to see if it |
| * is still valid. You'll need to read search_by_key and the comments |
| * in it, especially about decrement_counters_in_path(), to understand |
| * this structure. |
| * |
| * Paths make the code so much harder to work with and debug.... An |
| * enormous number of bugs are due to them, and trying to write or modify |
| * code that uses them just makes my head hurt. They are based on an |
| * excessive effort to avoid disturbing the precious VFS code.:-( The |
| * gods only know how we are going to SMP the code that uses them. |
| * znodes are the way! |
| */ |
| |
| #define PATH_READA 0x1 /* do read ahead */ |
| #define PATH_READA_BACK 0x2 /* read backwards */ |
| |
| struct treepath { |
| int path_length; /* Length of the array above. */ |
| int reada; |
| /* Array of the path elements. */ |
| struct path_element path_elements[EXTENDED_MAX_HEIGHT]; |
| int pos_in_item; |
| }; |
| |
| #define pos_in_item(path) ((path)->pos_in_item) |
| |
| #define INITIALIZE_PATH(var) \ |
| struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,} |
| |
| /* Get path element by path and path position. */ |
| #define PATH_OFFSET_PELEMENT(path, n_offset) ((path)->path_elements + (n_offset)) |
| |
| /* Get buffer header at the path by path and path position. */ |
| #define PATH_OFFSET_PBUFFER(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_buffer) |
| |
| /* Get position in the element at the path by path and path position. */ |
| #define PATH_OFFSET_POSITION(path, n_offset) (PATH_OFFSET_PELEMENT(path, n_offset)->pe_position) |
| |
| #define PATH_PLAST_BUFFER(path) (PATH_OFFSET_PBUFFER((path), (path)->path_length)) |
| |
| /* |
| * you know, to the person who didn't write this the macro name does not |
| * at first suggest what it does. Maybe POSITION_FROM_PATH_END? Or |
| * maybe we should just focus on dumping paths... -Hans |
| */ |
| #define PATH_LAST_POSITION(path) (PATH_OFFSET_POSITION((path), (path)->path_length)) |
| |
| /* |
| * in do_balance leaf has h == 0 in contrast with path structure, |
| * where root has level == 0. That is why we need these defines |
| */ |
| |
| /* tb->S[h] */ |
| #define PATH_H_PBUFFER(path, h) \ |
| PATH_OFFSET_PBUFFER(path, path->path_length - (h)) |
| |
| /* tb->F[h] or tb->S[0]->b_parent */ |
| #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER(path, (h) + 1) |
| |
| #define PATH_H_POSITION(path, h) \ |
| PATH_OFFSET_POSITION(path, path->path_length - (h)) |
| |
| /* tb->S[h]->b_item_order */ |
| #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) |
| |
| #define PATH_H_PATH_OFFSET(path, n_h) ((path)->path_length - (n_h)) |
| |
| static inline void *reiserfs_node_data(const struct buffer_head *bh) |
| { |
| return bh->b_data + sizeof(struct block_head); |
| } |
| |
| /* get key from internal node */ |
| static inline struct reiserfs_key *internal_key(struct buffer_head *bh, |
| int item_num) |
| { |
| struct reiserfs_key *key = reiserfs_node_data(bh); |
| |
| return &key[item_num]; |
| } |
| |
| /* get the item header from leaf node */ |
| static inline struct item_head *item_head(const struct buffer_head *bh, |
| int item_num) |
| { |
| struct item_head *ih = reiserfs_node_data(bh); |
| |
| return &ih[item_num]; |
| } |
| |
| /* get the key from leaf node */ |
| static inline struct reiserfs_key *leaf_key(const struct buffer_head *bh, |
| int item_num) |
| { |
| return &item_head(bh, item_num)->ih_key; |
| } |
| |
| static inline void *ih_item_body(const struct buffer_head *bh, |
| const struct item_head *ih) |
| { |
| return bh->b_data + ih_location(ih); |
| } |
| |
| /* get item body from leaf node */ |
| static inline void *item_body(const struct buffer_head *bh, int item_num) |
| { |
| return ih_item_body(bh, item_head(bh, item_num)); |
| } |
| |
| static inline struct item_head *tp_item_head(const struct treepath *path) |
| { |
| return item_head(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path)); |
| } |
| |
| static inline void *tp_item_body(const struct treepath *path) |
| { |
| return item_body(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION(path)); |
| } |
| |
| #define get_last_bh(path) PATH_PLAST_BUFFER(path) |
| #define get_item_pos(path) PATH_LAST_POSITION(path) |
| #define item_moved(ih,path) comp_items(ih, path) |
| #define path_changed(ih,path) comp_items (ih, path) |
| |
| /* array of the entry headers */ |
| /* get item body */ |
| #define B_I_DEH(bh, ih) ((struct reiserfs_de_head *)(ih_item_body(bh, ih))) |
| |
| /* |
| * length of the directory entry in directory item. This define |
| * calculates length of i-th directory entry using directory entry |
| * locations from dir entry head. When it calculates length of 0-th |
| * directory entry, it uses length of whole item in place of entry |
| * location of the non-existent following entry in the calculation. |
| * See picture above. |
| */ |
| static inline int entry_length(const struct buffer_head *bh, |
| const struct item_head *ih, int pos_in_item) |
| { |
| struct reiserfs_de_head *deh; |
| |
| deh = B_I_DEH(bh, ih) + pos_in_item; |
| if (pos_in_item) |
| return deh_location(deh - 1) - deh_location(deh); |
| |
| return ih_item_len(ih) - deh_location(deh); |
| } |
| |
| /*************************************************************************** |
| * MISC * |
| ***************************************************************************/ |
| |
| /* Size of pointer to the unformatted node. */ |
| #define UNFM_P_SIZE (sizeof(unp_t)) |
| #define UNFM_P_SHIFT 2 |
| |
| /* in in-core inode key is stored on le form */ |
| #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key)) |
| |
| #define MAX_UL_INT 0xffffffff |
| #define MAX_INT 0x7ffffff |
| #define MAX_US_INT 0xffff |
| |
| // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset |
| static inline loff_t max_reiserfs_offset(struct inode *inode) |
| { |
| if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5) |
| return (loff_t) U32_MAX; |
| |
| return (loff_t) ((~(__u64) 0) >> 4); |
| } |
| |
| #define MAX_KEY_OBJECTID MAX_UL_INT |
| |
| #define MAX_B_NUM MAX_UL_INT |
| #define MAX_FC_NUM MAX_US_INT |
| |
| /* the purpose is to detect overflow of an unsigned short */ |
| #define REISERFS_LINK_MAX (MAX_US_INT - 1000) |
| |
| /* |
| * The following defines are used in reiserfs_insert_item |
| * and reiserfs_append_item |
| */ |
| #define REISERFS_KERNEL_MEM 0 /* kernel memory mode */ |
| #define REISERFS_USER_MEM 1 /* user memory mode */ |
| |
| #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter) |
| #define get_generation(s) atomic_read (&fs_generation(s)) |
| #define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen) |
| #define __fs_changed(gen,s) (gen != get_generation (s)) |
| #define fs_changed(gen,s) \ |
| ({ \ |
| reiserfs_cond_resched(s); \ |
| __fs_changed(gen, s); \ |
| }) |
| |
| /*************************************************************************** |
| * FIXATE NODES * |
| ***************************************************************************/ |
| |
| #define VI_TYPE_LEFT_MERGEABLE 1 |
| #define VI_TYPE_RIGHT_MERGEABLE 2 |
| |
| /* |
| * To make any changes in the tree we always first find node, that |
| * contains item to be changed/deleted or place to insert a new |
| * item. We call this node S. To do balancing we need to decide what |
| * we will shift to left/right neighbor, or to a new node, where new |
| * item will be etc. To make this analysis simpler we build virtual |
| * node. Virtual node is an array of items, that will replace items of |
| * node S. (For instance if we are going to delete an item, virtual |
| * node does not contain it). Virtual node keeps information about |
| * item sizes and types, mergeability of first and last items, sizes |
| * of all entries in directory item. We use this array of items when |
| * calculating what we can shift to neighbors and how many nodes we |
| * have to have if we do not any shiftings, if we shift to left/right |
| * neighbor or to both. |
| */ |
| struct virtual_item { |
| int vi_index; /* index in the array of item operations */ |
| unsigned short vi_type; /* left/right mergeability */ |
| |
| /* length of item that it will have after balancing */ |
| unsigned short vi_item_len; |
| |
| struct item_head *vi_ih; |
| const char *vi_item; /* body of item (old or new) */ |
| const void *vi_new_data; /* 0 always but paste mode */ |
| void *vi_uarea; /* item specific area */ |
| }; |
| |
| struct virtual_node { |
| /* this is a pointer to the free space in the buffer */ |
| char *vn_free_ptr; |
| |
| unsigned short vn_nr_item; /* number of items in virtual node */ |
| |
| /* |
| * size of node , that node would have if it has |
| * unlimited size and no balancing is performed |
| */ |
| short vn_size; |
| |
| /* mode of balancing (paste, insert, delete, cut) */ |
| short vn_mode; |
| |
| short vn_affected_item_num; |
| short vn_pos_in_item; |
| |
| /* item header of inserted item, 0 for other modes */ |
| struct item_head *vn_ins_ih; |
| const void *vn_data; |
| |
| /* array of items (including a new one, excluding item to be deleted) */ |
| struct virtual_item *vn_vi; |
| }; |
| |
| /* used by directory items when creating virtual nodes */ |
| struct direntry_uarea { |
| int flags; |
| __u16 entry_count; |
| __u16 entry_sizes[1]; |
| } __attribute__ ((__packed__)); |
| |
| /*************************************************************************** |
| * TREE BALANCE * |
| ***************************************************************************/ |
| |
| /* |
| * This temporary structure is used in tree balance algorithms, and |
| * constructed as we go to the extent that its various parts are |
| * needed. It contains arrays of nodes that can potentially be |
| * involved in the balancing of node S, and parameters that define how |
| * each of the nodes must be balanced. Note that in these algorithms |
| * for balancing the worst case is to need to balance the current node |
| * S and the left and right neighbors and all of their parents plus |
| * create a new node. We implement S1 balancing for the leaf nodes |
| * and S0 balancing for the internal nodes (S1 and S0 are defined in |
| * our papers.) |
| */ |
| |
| /* size of the array of buffers to free at end of do_balance */ |
| #define MAX_FREE_BLOCK 7 |
| |
| /* maximum number of FEB blocknrs on a single level */ |
| #define MAX_AMOUNT_NEEDED 2 |
| |
| /* someday somebody will prefix every field in this struct with tb_ */ |
| struct tree_balance { |
| int tb_mode; |
| int need_balance_dirty; |
| struct super_block *tb_sb; |
| struct reiserfs_transaction_handle *transaction_handle; |
| struct treepath *tb_path; |
| |
| /* array of left neighbors of nodes in the path */ |
| struct buffer_head *L[MAX_HEIGHT]; |
| |
| /* array of right neighbors of nodes in the path */ |
| struct buffer_head *R[MAX_HEIGHT]; |
| |
| /* array of fathers of the left neighbors */ |
| struct buffer_head *FL[MAX_HEIGHT]; |
| |
| /* array of fathers of the right neighbors */ |
| struct buffer_head *FR[MAX_HEIGHT]; |
| /* array of common parents of center node and its left neighbor */ |
| struct buffer_head *CFL[MAX_HEIGHT]; |
| |
| /* array of common parents of center node and its right neighbor */ |
| struct buffer_head *CFR[MAX_HEIGHT]; |
| |
| /* |
| * array of empty buffers. Number of buffers in array equals |
| * cur_blknum. |
| */ |
| struct buffer_head *FEB[MAX_FEB_SIZE]; |
| struct buffer_head *used[MAX_FEB_SIZE]; |
| struct buffer_head *thrown[MAX_FEB_SIZE]; |
| |
| /* |
| * array of number of items which must be shifted to the left in |
| * order to balance the current node; for leaves includes item that |
| * will be partially shifted; for internal nodes, it is the number |
| * of child pointers rather than items. It includes the new item |
| * being created. The code sometimes subtracts one to get the |
| * number of wholly shifted items for other purposes. |
| */ |
| int lnum[MAX_HEIGHT]; |
| |
| /* substitute right for left in comment above */ |
| int rnum[MAX_HEIGHT]; |
| |
| /* |
| * array indexed by height h mapping the key delimiting L[h] and |
| * S[h] to its item number within the node CFL[h] |
| */ |
| int lkey[MAX_HEIGHT]; |
| |
| /* substitute r for l in comment above */ |
| int rkey[MAX_HEIGHT]; |
| |
| /* |
| * the number of bytes by we are trying to add or remove from |
| * S[h]. A negative value means removing. |
| */ |
| int insert_size[MAX_HEIGHT]; |
| |
| /* |
| * number of nodes that will replace node S[h] after balancing |
| * on the level h of the tree. If 0 then S is being deleted, |
| * if 1 then S is remaining and no new nodes are being created, |
| * if 2 or 3 then 1 or 2 new nodes is being created |
| */ |
| int blknum[MAX_HEIGHT]; |
| |
| /* fields that are used only for balancing leaves of the tree */ |
| |
| /* number of empty blocks having been already allocated */ |
| int cur_blknum; |
| |
| /* number of items that fall into left most node when S[0] splits */ |
| int s0num; |
| |
| /* |
| * number of bytes which can flow to the left neighbor from the left |
| * most liquid item that cannot be shifted from S[0] entirely |
| * if -1 then nothing will be partially shifted |
| */ |
| int lbytes; |
| |
| /* |
| * number of bytes which will flow to the right neighbor from the right |
| * most liquid item that cannot be shifted from S[0] entirely |
| * if -1 then nothing will be partially shifted |
| */ |
| int rbytes; |
| |
| |
| /* |
| * index into the array of item headers in |
| * S[0] of the affected item |
| */ |
| int item_pos; |
| |
| /* new nodes allocated to hold what could not fit into S */ |
| struct buffer_head *S_new[2]; |
| |
| /* |
| * number of items that will be placed into nodes in S_new |
| * when S[0] splits |
| */ |
| int snum[2]; |
| |
| /* |
| * number of bytes which flow to nodes in S_new when S[0] splits |
| * note: if S[0] splits into 3 nodes, then items do not need to be cut |
| */ |
| int sbytes[2]; |
| |
| int pos_in_item; |
| int zeroes_num; |
| |
| /* |
| * buffers which are to be freed after do_balance finishes |
| * by unfix_nodes |
| */ |
| struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; |
| |
| /* |
| * kmalloced memory. Used to create virtual node and keep |
| * map of dirtied bitmap blocks |
| */ |
| char *vn_buf; |
| |
| int vn_buf_size; /* size of the vn_buf */ |
| |
| /* VN starts after bitmap of bitmap blocks */ |
| struct virtual_node *tb_vn; |
| |
| /* |
| * saved value of `reiserfs_generation' counter see |
| * FILESYSTEM_CHANGED() macro in reiserfs_fs.h |
| */ |
| int fs_gen; |
| |
| #ifdef DISPLACE_NEW_PACKING_LOCALITIES |
| /* |
| * key pointer, to pass to block allocator or |
| * another low-level subsystem |
| */ |
| struct in_core_key key; |
| #endif |
| }; |
| |
| /* These are modes of balancing */ |
| |
| /* When inserting an item. */ |
| #define M_INSERT 'i' |
| /* |
| * When inserting into (directories only) or appending onto an already |
| * existent item. |
| */ |
| #define M_PASTE 'p' |
| /* When deleting an item. */ |
| #define M_DELETE 'd' |
| /* When truncating an item or removing an entry from a (directory) item. */ |
| #define M_CUT 'c' |
| |
| /* used when balancing on leaf level skipped (in reiserfsck) */ |
| #define M_INTERNAL 'n' |
| |
| /* |
| * When further balancing is not needed, then do_balance does not need |
| * to be called. |
| */ |
| #define M_SKIP_BALANCING 's' |
| #define M_CONVERT 'v' |
| |
| /* modes of leaf_move_items */ |
| #define LEAF_FROM_S_TO_L 0 |
| #define LEAF_FROM_S_TO_R 1 |
| #define LEAF_FROM_R_TO_L 2 |
| #define LEAF_FROM_L_TO_R 3 |
| #define LEAF_FROM_S_TO_SNEW 4 |
| |
| #define FIRST_TO_LAST 0 |
| #define LAST_TO_FIRST 1 |
| |
| /* |
| * used in do_balance for passing parent of node information that has |
| * been gotten from tb struct |
| */ |
| struct buffer_info { |
| struct tree_balance *tb; |
| struct buffer_head *bi_bh; |
| struct buffer_head *bi_parent; |
| int bi_position; |
| }; |
| |
| static inline struct super_block *sb_from_tb(struct tree_balance *tb) |
| { |
| return tb ? tb->tb_sb : NULL; |
| } |
| |
| static inline struct super_block *sb_from_bi(struct buffer_info *bi) |
| { |
| return bi ? sb_from_tb(bi->tb) : NULL; |
| } |
| |
| /* |
| * there are 4 types of items: stat data, directory item, indirect, direct. |
| * +-------------------+------------+--------------+------------+ |
| * | | k_offset | k_uniqueness | mergeable? | |
| * +-------------------+------------+--------------+------------+ |
| * | stat data | 0 | 0 | no | |
| * +-------------------+------------+--------------+------------+ |
| * | 1st directory item| DOT_OFFSET | DIRENTRY_ .. | no | |
| * | non 1st directory | hash value | UNIQUENESS | yes | |
| * | item | | | | |
| * +-------------------+------------+--------------+------------+ |
| * | indirect item | offset + 1 |TYPE_INDIRECT | [1] | |
| * +-------------------+------------+--------------+------------+ |
| * | direct item | offset + 1 |TYPE_DIRECT | [2] | |
| * +-------------------+------------+--------------+------------+ |
| * |
| * [1] if this is not the first indirect item of the object |
| * [2] if this is not the first direct item of the object |
| */ |
| |
| struct item_operations { |
| int (*bytes_number) (struct item_head * ih, int block_size); |
| void (*decrement_key) (struct cpu_key *); |
| int (*is_left_mergeable) (struct reiserfs_key * ih, |
| unsigned long bsize); |
| void (*print_item) (struct item_head *, char *item); |
| void (*check_item) (struct item_head *, char *item); |
| |
| int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi, |
| int is_affected, int insert_size); |
| int (*check_left) (struct virtual_item * vi, int free, |
| int start_skip, int end_skip); |
| int (*check_right) (struct virtual_item * vi, int free); |
| int (*part_size) (struct virtual_item * vi, int from, int to); |
| int (*unit_num) (struct virtual_item * vi); |
| void (*print_vi) (struct virtual_item * vi); |
| }; |
| |
| extern struct item_operations *item_ops[TYPE_ANY + 1]; |
| |
| #define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize) |
| #define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize) |
| #define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item) |
| #define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item) |
| #define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size) |
| #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip) |
| #define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free) |
| #define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to) |
| #define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi) |
| #define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi) |
| |
| #define COMP_SHORT_KEYS comp_short_keys |
| |
| /* number of blocks pointed to by the indirect item */ |
| #define I_UNFM_NUM(ih) (ih_item_len(ih) / UNFM_P_SIZE) |
| |
| /* |
| * the used space within the unformatted node corresponding |
| * to pos within the item pointed to by ih |
| */ |
| #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size)) |
| |
| /* |
| * number of bytes contained by the direct item or the |
| * unformatted nodes the indirect item points to |
| */ |
| |
| /* following defines use reiserfs buffer header and item header */ |
| |
| /* get stat-data */ |
| #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) ) |
| |
| /* this is 3976 for size==4096 */ |
| #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE) |
| |
| /* |
| * indirect items consist of entries which contain blocknrs, pos |
| * indicates which entry, and B_I_POS_UNFM_POINTER resolves to the |
| * blocknr contained by the entry pos points to |
| */ |
| #define B_I_POS_UNFM_POINTER(bh, ih, pos) \ |
| le32_to_cpu(*(((unp_t *)ih_item_body(bh, ih)) + (pos))) |
| #define PUT_B_I_POS_UNFM_POINTER(bh, ih, pos, val) \ |
| (*(((unp_t *)ih_item_body(bh, ih)) + (pos)) = cpu_to_le32(val)) |
| |
| struct reiserfs_iget_args { |
| __u32 objectid; |
| __u32 dirid; |
| }; |
| |
| /*************************************************************************** |
| * FUNCTION DECLARATIONS * |
| ***************************************************************************/ |
| |
| #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12) |
| |
| #define journal_trans_half(blocksize) \ |
| ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32)) |
| |
| /* journal.c see journal.c for all the comments here */ |
| |
| /* first block written in a commit. */ |
| struct reiserfs_journal_desc { |
| __le32 j_trans_id; /* id of commit */ |
| |
| /* length of commit. len +1 is the commit block */ |
| __le32 j_len; |
| |
| __le32 j_mount_id; /* mount id of this trans */ |
| __le32 j_realblock[1]; /* real locations for each block */ |
| }; |
| |
| #define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id) |
| #define get_desc_trans_len(d) le32_to_cpu((d)->j_len) |
| #define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id) |
| |
| #define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0) |
| #define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0) |
| #define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0) |
| |
| /* last block written in a commit */ |
| struct reiserfs_journal_commit { |
| __le32 j_trans_id; /* must match j_trans_id from the desc block */ |
| __le32 j_len; /* ditto */ |
| __le32 j_realblock[1]; /* real locations for each block */ |
| }; |
| |
| #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id) |
| #define get_commit_trans_len(c) le32_to_cpu((c)->j_len) |
| #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id) |
| |
| #define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0) |
| #define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0) |
| |
| /* |
| * this header block gets written whenever a transaction is considered |
| * fully flushed, and is more recent than the last fully flushed transaction. |
| * fully flushed means all the log blocks and all the real blocks are on |
| * disk, and this transaction does not need to be replayed. |
| */ |
| struct reiserfs_journal_header { |
| /* id of last fully flushed transaction */ |
| __le32 j_last_flush_trans_id; |
| |
| /* offset in the log of where to start replay after a crash */ |
| __le32 j_first_unflushed_offset; |
| |
| __le32 j_mount_id; |
| /* 12 */ struct journal_params jh_journal; |
| }; |
| |
| /* biggest tunable defines are right here */ |
| #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */ |
| |
| /* biggest possible single transaction, don't change for now (8/3/99) */ |
| #define JOURNAL_TRANS_MAX_DEFAULT 1024 |
| #define JOURNAL_TRANS_MIN_DEFAULT 256 |
| |
| /* |
| * max blocks to batch into one transaction, |
| * don't make this any bigger than 900 |
| */ |
| #define JOURNAL_MAX_BATCH_DEFAULT 900 |
| #define JOURNAL_MIN_RATIO 2 |
| #define JOURNAL_MAX_COMMIT_AGE 30 |
| #define JOURNAL_MAX_TRANS_AGE 30 |
| #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9) |
| #define JOURNAL_BLOCKS_PER_OBJECT(sb) (JOURNAL_PER_BALANCE_CNT * 3 + \ |
| 2 * (REISERFS_QUOTA_INIT_BLOCKS(sb) + \ |
| REISERFS_QUOTA_TRANS_BLOCKS(sb))) |
| |
| #ifdef CONFIG_QUOTA |
| #define REISERFS_QUOTA_OPTS ((1 << REISERFS_USRQUOTA) | (1 << REISERFS_GRPQUOTA)) |
| /* We need to update data and inode (atime) */ |
| #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? 2 : 0) |
| /* 1 balancing, 1 bitmap, 1 data per write + stat data update */ |
| #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \ |
| (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0) |
| /* same as with INIT */ |
| #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & REISERFS_QUOTA_OPTS ? \ |
| (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0) |
| #else |
| #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0 |
| #define REISERFS_QUOTA_INIT_BLOCKS(s) 0 |
| #define REISERFS_QUOTA_DEL_BLOCKS(s) 0 |
| #endif |
| |
| /* |
| * both of these can be as low as 1, or as high as you want. The min is the |
| * number of 4k bitmap nodes preallocated on mount. New nodes are allocated |
| * as needed, and released when transactions are committed. On release, if |
| * the current number of nodes is > max, the node is freed, otherwise, |
| * it is put on a free list for faster use later. |
| */ |
| #define REISERFS_MIN_BITMAP_NODES 10 |
| #define REISERFS_MAX_BITMAP_NODES 100 |
| |
| /* these are based on journal hash size of 8192 */ |
| #define JBH_HASH_SHIFT 13 |
| #define JBH_HASH_MASK 8191 |
| |
| #define _jhashfn(sb,block) \ |
| (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \ |
| (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12)))) |
| #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK]) |
| |
| /* We need these to make journal.c code more readable */ |
| #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) |
| #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) |
| #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize) |
| |
| enum reiserfs_bh_state_bits { |
| BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */ |
| BH_JDirty_wait, |
| /* |
| * disk block was taken off free list before being in a |
| * finished transaction, or written to disk. Can be reused immed. |
| */ |
| BH_JNew, |
| BH_JPrepared, |
| BH_JRestore_dirty, |
| BH_JTest, /* debugging only will go away */ |
| }; |
| |
| BUFFER_FNS(JDirty, journaled); |
| TAS_BUFFER_FNS(JDirty, journaled); |
| BUFFER_FNS(JDirty_wait, journal_dirty); |
| TAS_BUFFER_FNS(JDirty_wait, journal_dirty); |
| BUFFER_FNS(JNew, journal_new); |
| TAS_BUFFER_FNS(JNew, journal_new); |
| BUFFER_FNS(JPrepared, journal_prepared); |
| TAS_BUFFER_FNS(JPrepared, journal_prepared); |
| BUFFER_FNS(JRestore_dirty, journal_restore_dirty); |
| TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty); |
| BUFFER_FNS(JTest, journal_test); |
| TAS_BUFFER_FNS(JTest, journal_test); |
| |
| /* transaction handle which is passed around for all journal calls */ |
| struct reiserfs_transaction_handle { |
| /* |
| * super for this FS when journal_begin was called. saves calls to |
| * reiserfs_get_super also used by nested transactions to make |
| * sure they are nesting on the right FS _must_ be first |
| * in the handle |
| */ |
| struct super_block *t_super; |
| |
| int t_refcount; |
| int t_blocks_logged; /* number of blocks this writer has logged */ |
| int t_blocks_allocated; /* number of blocks this writer allocated */ |
| |
| /* sanity check, equals the current trans id */ |
| unsigned int t_trans_id; |
| |
| void *t_handle_save; /* save existing current->journal_info */ |
| |
| /* |
| * if new block allocation occurres, that block |
| * should be displaced from others |
| */ |
| unsigned displace_new_blocks:1; |
| |
| struct list_head t_list; |
| }; |
| |
| /* |
| * used to keep track of ordered and tail writes, attached to the buffer |
| * head through b_journal_head. |
| */ |
| struct reiserfs_jh { |
| struct reiserfs_journal_list *jl; |
| struct buffer_head *bh; |
| struct list_head list; |
| }; |
| |
| void reiserfs_free_jh(struct buffer_head *bh); |
| int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh); |
| int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh); |
| int journal_mark_dirty(struct reiserfs_transaction_handle *, |
| struct buffer_head *bh); |
| |
| static inline int reiserfs_file_data_log(struct inode *inode) |
| { |
| if (reiserfs_data_log(inode->i_sb) || |
| (REISERFS_I(inode)->i_flags & i_data_log)) |
| return 1; |
| return 0; |
| } |
| |
| static inline int reiserfs_transaction_running(struct super_block *s) |
| { |
| struct reiserfs_transaction_handle *th = current->journal_info; |
| if (th && th->t_super == s) |
| return 1; |
| if (th && th->t_super == NULL) |
| BUG(); |
| return 0; |
| } |
| |
| static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th) |
| { |
| return th->t_blocks_allocated - th->t_blocks_logged; |
| } |
| |
| struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct |
| super_block |
| *, |
| int count); |
| int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *); |
| void reiserfs_vfs_truncate_file(struct inode *inode); |
| int reiserfs_commit_page(struct inode *inode, struct page *page, |
| unsigned from, unsigned to); |
| void reiserfs_flush_old_commits(struct super_block *); |
| int reiserfs_commit_for_inode(struct inode *); |
| int reiserfs_inode_needs_commit(struct inode *); |
| void reiserfs_update_inode_transaction(struct inode *); |
| void reiserfs_wait_on_write_block(struct super_block *s); |
| void reiserfs_block_writes(struct reiserfs_transaction_handle *th); |
| void reiserfs_allow_writes(struct super_block *s); |
| void reiserfs_check_lock_depth(struct super_block *s, char *caller); |
| int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh, |
| int wait); |
| void reiserfs_restore_prepared_buffer(struct super_block *, |
| struct buffer_head *bh); |
| int journal_init(struct super_block *, const char *j_dev_name, int old_format, |
| unsigned int); |
| int journal_release(struct reiserfs_transaction_handle *, struct super_block *); |
| int journal_release_error(struct reiserfs_transaction_handle *, |
| struct super_block *); |
| int journal_end(struct reiserfs_transaction_handle *); |
| int journal_end_sync(struct reiserfs_transaction_handle *); |
| int journal_mark_freed(struct reiserfs_transaction_handle *, |
| struct super_block *, b_blocknr_t blocknr); |
| int journal_transaction_should_end(struct reiserfs_transaction_handle *, int); |
| int reiserfs_in_journal(struct super_block *sb, unsigned int bmap_nr, |
| int bit_nr, int searchall, b_blocknr_t *next); |
| int journal_begin(struct reiserfs_transaction_handle *, |
| struct super_block *sb, unsigned long); |
| int journal_join_abort(struct reiserfs_transaction_handle *, |
| struct super_block *sb); |
| void reiserfs_abort_journal(struct super_block *sb, int errno); |
| void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...); |
| int reiserfs_allocate_list_bitmaps(struct super_block *s, |
| struct reiserfs_list_bitmap *, unsigned int); |
| |
| void reiserfs_schedule_old_flush(struct super_block *s); |
| void reiserfs_cancel_old_flush(struct super_block *s); |
| void add_save_link(struct reiserfs_transaction_handle *th, |
| struct inode *inode, int truncate); |
| int remove_save_link(struct inode *inode, int truncate); |
| |
| /* objectid.c */ |
| __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th); |
| void reiserfs_release_objectid(struct reiserfs_transaction_handle *th, |
| __u32 objectid_to_release); |
| int reiserfs_convert_objectid_map_v1(struct super_block *); |
| |
| /* stree.c */ |
| int B_IS_IN_TREE(const struct buffer_head *); |
| extern void copy_item_head(struct item_head *to, |
| const struct item_head *from); |
| |
| /* first key is in cpu form, second - le */ |
| extern int comp_short_keys(const struct reiserfs_key *le_key, |
| const struct cpu_key *cpu_key); |
| extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from); |
| |
| /* both are in le form */ |
| extern int comp_le_keys(const struct reiserfs_key *, |
| const struct reiserfs_key *); |
| extern int comp_short_le_keys(const struct reiserfs_key *, |
| const struct reiserfs_key *); |
| |
| /* * get key version from on disk key - kludge */ |
| static inline int le_key_version(const struct reiserfs_key *key) |
| { |
| int type; |
| |
| type = offset_v2_k_type(&(key->u.k_offset_v2)); |
| if (type != TYPE_DIRECT && type != TYPE_INDIRECT |
| && type != TYPE_DIRENTRY) |
| return KEY_FORMAT_3_5; |
| |
| return KEY_FORMAT_3_6; |
| |
| } |
| |
| static inline void copy_key(struct reiserfs_key *to, |
| const struct reiserfs_key *from) |
| { |
| memcpy(to, from, KEY_SIZE); |
| } |
| |
| int comp_items(const struct item_head *stored_ih, const struct treepath *path); |
| const struct reiserfs_key *get_rkey(const struct treepath *chk_path, |
| const struct super_block *sb); |
| int search_by_key(struct super_block *, const struct cpu_key *, |
| struct treepath *, int); |
| #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL) |
| int search_for_position_by_key(struct super_block *sb, |
| const struct cpu_key *cpu_key, |
| struct treepath *search_path); |
| extern void decrement_bcount(struct buffer_head *bh); |
| void decrement_counters_in_path(struct treepath *search_path); |
| void pathrelse(struct treepath *search_path); |
| int reiserfs_check_path(struct treepath *p); |
| void pathrelse_and_restore(struct super_block *s, struct treepath *search_path); |
| |
| int reiserfs_insert_item(struct reiserfs_transaction_handle *th, |
| struct treepath *path, |
| const struct cpu_key *key, |
| struct item_head *ih, |
| struct inode *inode, const char *body); |
| |
| int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th, |
| struct treepath *path, |
| const struct cpu_key *key, |
| struct inode *inode, |
| const char *body, int paste_size); |
| |
| int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th, |
| struct treepath *path, |
| struct cpu_key *key, |
| struct inode *inode, |
| struct page *page, loff_t new_file_size); |
| |
| int reiserfs_delete_item(struct reiserfs_transaction_handle *th, |
| struct treepath *path, |
| const struct cpu_key *key, |
| struct inode *inode, struct buffer_head *un_bh); |
| |
| void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th, |
| struct inode *inode, struct reiserfs_key *key); |
| int reiserfs_delete_object(struct reiserfs_transaction_handle *th, |
| struct inode *inode); |
| int reiserfs_do_truncate(struct reiserfs_transaction_handle *th, |
| struct inode *inode, struct page *, |
| int update_timestamps); |
| |
| #define i_block_size(inode) ((inode)->i_sb->s_blocksize) |
| #define file_size(inode) ((inode)->i_size) |
| #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1)) |
| |
| #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\ |
| !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 ) |
| |
| void padd_item(char *item, int total_length, int length); |
| |
| /* inode.c */ |
| /* args for the create parameter of reiserfs_get_block */ |
| #define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */ |
| #define GET_BLOCK_CREATE 1 /* add anything you need to find block */ |
| #define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */ |
| #define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */ |
| #define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */ |
| #define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */ |
| |
| void reiserfs_read_locked_inode(struct inode *inode, |
| struct reiserfs_iget_args *args); |
| int reiserfs_find_actor(struct inode *inode, void *p); |
| int reiserfs_init_locked_inode(struct inode *inode, void *p); |
| void reiserfs_evict_inode(struct inode *inode); |
| int reiserfs_write_inode(struct inode *inode, struct writeback_control *wbc); |
| int reiserfs_get_block(struct inode *inode, sector_t block, |
| struct buffer_head *bh_result, int create); |
| struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid, |
| int fh_len, int fh_type); |
| struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid, |
| int fh_len, int fh_type); |
| int reiserfs_encode_fh(struct inode *inode, __u32 * data, int *lenp, |
| struct inode *parent); |
| |
| int reiserfs_truncate_file(struct inode *, int update_timestamps); |
| void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset, |
| int type, int key_length); |
| void make_le_item_head(struct item_head *ih, const struct cpu_key *key, |
| int version, |
| loff_t offset, int type, int length, int entry_count); |
| struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key); |
| |
| struct reiserfs_security_handle; |
| int reiserfs_new_inode(struct reiserfs_transaction_handle *th, |
| struct inode *dir, umode_t mode, |
| const char *symname, loff_t i_size, |
| struct dentry *dentry, struct inode *inode, |
| struct reiserfs_security_handle *security); |
| |
| void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th, |
| struct inode *inode, loff_t size); |
| |
| static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th, |
| struct inode *inode) |
| { |
| reiserfs_update_sd_size(th, inode, inode->i_size); |
| } |
| |
| void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode); |
| int reiserfs_setattr(struct dentry *dentry, struct iattr *attr); |
| |
| int __reiserfs_write_begin(struct page *page, unsigned from, unsigned len); |
| |
| /* namei.c */ |
| void set_de_name_and_namelen(struct reiserfs_dir_entry *de); |
| int search_by_entry_key(struct super_block *sb, const struct cpu_key *key, |
| struct treepath *path, struct reiserfs_dir_entry *de); |
| struct dentry *reiserfs_get_parent(struct dentry *); |
| |
| #ifdef CONFIG_REISERFS_PROC_INFO |
| int reiserfs_proc_info_init(struct super_block *sb); |
| |