blob: 964acf302479ae45159fd930e540dca231ff7d98 [file] [log] [blame]
/*
* Driver for SiS7019 Audio Accelerator
*
* Copyright (C) 2004-2007, David Dillow
* Written by David Dillow <dave@thedillows.org>
* Inspired by the Trident 4D-WaveDX/NX driver.
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/time.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <sound/core.h>
#include <sound/ac97_codec.h>
#include <sound/initval.h>
#include "sis7019.h"
MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
MODULE_DESCRIPTION("SiS7019");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */
static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */
static bool enable = 1;
static int codecs = 1;
module_param(index, int, 0444);
MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
module_param(id, charp, 0444);
MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
module_param(enable, bool, 0444);
MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
module_param(codecs, int, 0444);
MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
static const struct pci_device_id snd_sis7019_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
/* There are three timing modes for the voices.
*
* For both playback and capture, when the buffer is one or two periods long,
* we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
* to let us know when the periods have ended.
*
* When performing playback with more than two periods per buffer, we set
* the "Stop Sample Offset" and tell the hardware to interrupt us when we
* reach it. We then update the offset and continue on until we are
* interrupted for the next period.
*
* Capture channels do not have a SSO, so we allocate a playback channel to
* use as a timer for the capture periods. We use the SSO on the playback
* channel to clock out virtual periods, and adjust the virtual period length
* to maintain synchronization. This algorithm came from the Trident driver.
*
* FIXME: It'd be nice to make use of some of the synth features in the
* hardware, but a woeful lack of documentation is a significant roadblock.
*/
struct voice {
u16 flags;
#define VOICE_IN_USE 1
#define VOICE_CAPTURE 2
#define VOICE_SSO_TIMING 4
#define VOICE_SYNC_TIMING 8
u16 sync_cso;
u16 period_size;
u16 buffer_size;
u16 sync_period_size;
u16 sync_buffer_size;
u32 sso;
u32 vperiod;
struct snd_pcm_substream *substream;
struct voice *timing;
void __iomem *ctrl_base;
void __iomem *wave_base;
void __iomem *sync_base;
int num;
};
/* We need four pages to store our wave parameters during a suspend. If
* we're not doing power management, we still need to allocate a page
* for the silence buffer.
*/
#ifdef CONFIG_PM_SLEEP
#define SIS_SUSPEND_PAGES 4
#else
#define SIS_SUSPEND_PAGES 1
#endif
struct sis7019 {
unsigned long ioport;
void __iomem *ioaddr;
int irq;
int codecs_present;
struct pci_dev *pci;
struct snd_pcm *pcm;
struct snd_card *card;
struct snd_ac97 *ac97[3];
/* Protect against more than one thread hitting the AC97
* registers (in a more polite manner than pounding the hardware
* semaphore)
*/
struct mutex ac97_mutex;
/* voice_lock protects allocation/freeing of the voice descriptions
*/
spinlock_t voice_lock;
struct voice voices[64];
struct voice capture_voice;
/* Allocate pages to store the internal wave state during
* suspends. When we're operating, this can be used as a silence
* buffer for a timing channel.
*/
void *suspend_state[SIS_SUSPEND_PAGES];
int silence_users;
dma_addr_t silence_dma_addr;
};
/* These values are also used by the module param 'codecs' to indicate
* which codecs should be present.
*/
#define SIS_PRIMARY_CODEC_PRESENT 0x0001
#define SIS_SECONDARY_CODEC_PRESENT 0x0002
#define SIS_TERTIARY_CODEC_PRESENT 0x0004
/* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
* documented range of 8-0xfff8 samples. Given that they are 0-based,
* that places our period/buffer range at 9-0xfff9 samples. That makes the
* max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
* max samples / min samples gives us the max periods in a buffer.
*
* We'll add a constraint upon open that limits the period and buffer sample
* size to values that are legal for the hardware.
*/
static const struct snd_pcm_hardware sis_playback_hw_info = {
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_SYNC_START |
SNDRV_PCM_INFO_RESUME),
.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
.rate_min = 4000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = (0xfff9 * 4),
.period_bytes_min = 9,
.period_bytes_max = (0xfff9 * 4),
.periods_min = 1,
.periods_max = (0xfff9 / 9),
};
static const struct snd_pcm_hardware sis_capture_hw_info = {
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_SYNC_START |
SNDRV_PCM_INFO_RESUME),
.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
.rates = SNDRV_PCM_RATE_48000,
.rate_min = 4000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = (0xfff9 * 4),
.period_bytes_min = 9,
.period_bytes_max = (0xfff9 * 4),
.periods_min = 1,
.periods_max = (0xfff9 / 9),
};
static void sis_update_sso(struct voice *voice, u16 period)
{
void __iomem *base = voice->ctrl_base;
voice->sso += period;
if (voice->sso >= voice->buffer_size)
voice->sso -= voice->buffer_size;
/* Enforce the documented hardware minimum offset */
if (voice->sso < 8)
voice->sso = 8;
/* The SSO is in the upper 16 bits of the register. */
writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
}
static void sis_update_voice(struct voice *voice)
{
if (voice->flags & VOICE_SSO_TIMING) {
sis_update_sso(voice, voice->period_size);
} else if (voice->flags & VOICE_SYNC_TIMING) {
int sync;
/* If we've not hit the end of the virtual period, update
* our records and keep going.
*/
if (voice->vperiod > voice->period_size) {
voice->vperiod -= voice->period_size;
if (voice->vperiod < voice->period_size)
sis_update_sso(voice, voice->vperiod);
else
sis_update_sso(voice, voice->period_size);
return;
}
/* Calculate our relative offset between the target and
* the actual CSO value. Since we're operating in a loop,
* if the value is more than half way around, we can
* consider ourselves wrapped.
*/
sync = voice->sync_cso;
sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
if (sync > (voice->sync_buffer_size / 2))
sync -= voice->sync_buffer_size;
/* If sync is positive, then we interrupted too early, and
* we'll need to come back in a few samples and try again.
* There's a minimum wait, as it takes some time for the DMA
* engine to startup, etc...
*/
if (sync > 0) {
if (sync < 16)
sync = 16;
sis_update_sso(voice, sync);
return;
}
/* Ok, we interrupted right on time, or (hopefully) just
* a bit late. We'll adjst our next waiting period based
* on how close we got.
*
* We need to stay just behind the actual channel to ensure
* it really is past a period when we get our interrupt --
* otherwise we'll fall into the early code above and have
* a minimum wait time, which makes us quite late here,
* eating into the user's time to refresh the buffer, esp.
* if using small periods.
*
* If we're less than 9 samples behind, we're on target.
* Otherwise, shorten the next vperiod by the amount we've
* been delayed.
*/
if (sync > -9)
voice->vperiod = voice->sync_period_size + 1;
else
voice->vperiod = voice->sync_period_size + sync + 10;
if (voice->vperiod < voice->buffer_size) {
sis_update_sso(voice, voice->vperiod);
voice->vperiod = 0;
} else
sis_update_sso(voice, voice->period_size);
sync = voice->sync_cso + voice->sync_period_size;
if (sync >= voice->sync_buffer_size)
sync -= voice->sync_buffer_size;
voice->sync_cso = sync;
}
snd_pcm_period_elapsed(voice->substream);
}
static void sis_voice_irq(u32 status, struct voice *voice)
{
int bit;
while (status) {
bit = __ffs(status);
status >>= bit + 1;
voice += bit;
sis_update_voice(voice);
voice++;
}
}
static irqreturn_t sis_interrupt(int irq, void *dev)
{
struct sis7019 *sis = dev;
unsigned long io = sis->ioport;
struct voice *voice;
u32 intr, status;
/* We only use the DMA interrupts, and we don't enable any other
* source of interrupts. But, it is possible to see an interrupt
* status that didn't actually interrupt us, so eliminate anything
* we're not expecting to avoid falsely claiming an IRQ, and an
* ensuing endless loop.
*/
intr = inl(io + SIS_GISR);
intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
if (!intr)
return IRQ_NONE;
do {
status = inl(io + SIS_PISR_A);
if (status) {
sis_voice_irq(status, sis->voices);
outl(status, io + SIS_PISR_A);
}
status = inl(io + SIS_PISR_B);
if (status) {
sis_voice_irq(status, &sis->voices[32]);
outl(status, io + SIS_PISR_B);
}
status = inl(io + SIS_RISR);
if (status) {
voice = &sis->capture_voice;
if (!voice->timing)
snd_pcm_period_elapsed(voice->substream);
outl(status, io + SIS_RISR);
}
outl(intr, io + SIS_GISR);
intr = inl(io + SIS_GISR);
intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
} while (intr);
return IRQ_HANDLED;
}
static u32 sis_rate_to_delta(unsigned int rate)
{
u32 delta;
/* This was copied from the trident driver, but it seems its gotten
* around a bit... nevertheless, it works well.
*
* We special case 44100 and 8000 since rounding with the equation
* does not give us an accurate enough value. For 11025 and 22050
* the equation gives us the best answer. All other frequencies will
* also use the equation. JDW
*/
if (rate == 44100)
delta = 0xeb3;
else if (rate == 8000)
delta = 0x2ab;
else if (rate == 48000)
delta = 0x1000;
else
delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
return delta;
}
static void __sis_map_silence(struct sis7019 *sis)
{
/* Helper function: must hold sis->voice_lock on entry */
if (!sis->silence_users)
sis->silence_dma_addr = dma_map_single(&sis->pci->dev,
sis->suspend_state[0],
4096, DMA_TO_DEVICE);
sis->silence_users++;
}
static void __sis_unmap_silence(struct sis7019 *sis)
{
/* Helper function: must hold sis->voice_lock on entry */
sis->silence_users--;
if (!sis->silence_users)
dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096,
DMA_TO_DEVICE);
}
static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
{
unsigned long flags;
spin_lock_irqsave(&sis->voice_lock, flags);
if (voice->timing) {
__sis_unmap_silence(sis);
voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
VOICE_SYNC_TIMING);
voice->timing = NULL;
}
voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
spin_unlock_irqrestore(&sis->voice_lock, flags);
}
static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
{
/* Must hold the voice_lock on entry */
struct voice *voice;
int i;
for (i = 0; i < 64; i++) {
voice = &sis->voices[i];
if (voice->flags & VOICE_IN_USE)
continue;
voice->flags |= VOICE_IN_USE;
goto found_one;
}
voice = NULL;
found_one:
return voice;
}
static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
{
struct voice *voice;
unsigned long flags;
spin_lock_irqsave(&sis->voice_lock, flags);
voice = __sis_alloc_playback_voice(sis);
spin_unlock_irqrestore(&sis->voice_lock, flags);
return voice;
}
static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct sis7019 *sis = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct voice *voice = runtime->private_data;
unsigned int period_size, buffer_size;
unsigned long flags;
int needed;
/* If there are one or two periods per buffer, we don't need a
* timing voice, as we can use the capture channel's interrupts
* to clock out the periods.
*/
period_size = params_period_size(hw_params);
buffer_size = params_buffer_size(hw_params);
needed = (period_size != buffer_size &&
period_size != (buffer_size / 2));
if (needed && !voice->timing) {
spin_lock_irqsave(&sis->voice_lock, flags);
voice->timing = __sis_alloc_playback_voice(sis);
if (voice->timing)
__sis_map_silence(sis);
spin_unlock_irqrestore(&sis->voice_lock, flags);
if (!voice->timing)
return -ENOMEM;
voice->timing->substream = substream;
} else if (!needed && voice->timing) {
sis_free_voice(sis, voice);
voice->timing = NULL;
}
return 0;
}
static int sis_playback_open(struct snd_pcm_substream *substream)
{
struct sis7019 *sis = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct voice *voice;
voice = sis_alloc_playback_voice(sis);
if (!voice)
return -EAGAIN;
voice->substream = substream;
runtime->private_data = voice;
runtime->hw = sis_playback_hw_info;
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
9, 0xfff9);
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
9, 0xfff9);
snd_pcm_set_sync(substream);
return 0;
}
static int sis_substream_close(struct snd_pcm_substream *substream)
{
struct sis7019 *sis = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct voice *voice = runtime->private_data;
sis_free_voice(sis, voice);
return 0;
}
static int sis_playback_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
return snd_pcm_lib_malloc_pages(substream,
params_buffer_bytes(hw_params));
}
static int sis_hw_free(struct snd_pcm_substream *substream)
{
return snd_pcm_lib_free_pages(substream);
}
static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct voice *voice = runtime->private_data;
void __iomem *ctrl_base = voice->ctrl_base;
void __iomem *wave_base = voice->wave_base;
u32 format, dma_addr, control, sso_eso, delta, reg;
u16 leo;
/* We rely on the PCM core to ensure that the parameters for this
* substream do not change on us while we're programming the HW.
*/
format = 0;
if (snd_pcm_format_width(runtime->format) == 8)
format |= SIS_PLAY_DMA_FORMAT_8BIT;
if (!snd_pcm_format_signed(runtime->format))
format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
if (runtime->channels == 1)
format |= SIS_PLAY_DMA_FORMAT_MONO;
/* The baseline setup is for a single period per buffer, and
* we add bells and whistles as needed from there.
*/
dma_addr = runtime->dma_addr;
leo = runtime->buffer_size - 1;
control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
sso_eso = leo;
if (runtime->period_size == (runtime->buffer_size / 2)) {
control |= SIS_PLAY_DMA_INTR_AT_MLP;
} else if (runtime->period_size != runtime->buffer_size) {
voice->flags |= VOICE_SSO_TIMING;
voice->sso = runtime->period_size - 1;
voice->period_size = runtime->period_size;
voice->buffer_size = runtime->buffer_size;
control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
control |= SIS_PLAY_DMA_INTR_AT_SSO;
sso_eso |= (runtime->period_size - 1) << 16;
}
delta = sis_rate_to_delta(runtime->rate);
/* Ok, we're ready to go, set up the channel.
*/
writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
writel(0, wave_base + reg);
writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
wave_base + SIS_WAVE_CHANNEL_CONTROL);
/* Force PCI writes to post. */
readl(ctrl_base);
return 0;
}
static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct sis7019 *sis = snd_pcm_substream_chip(substream);
unsigned long io = sis->ioport;
struct snd_pcm_substream *s;
struct voice *voice;
void *chip;
int starting;
u32 record = 0;
u32 play[2] = { 0, 0 };
/* No locks needed, as the PCM core will hold the locks on the
* substreams, and the HW will only start/stop the indicated voices
* without changing the state of the others.
*/
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
case SNDRV_PCM_TRIGGER_RESUME:
starting = 1;
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_SUSPEND:
starting = 0;
break;
default:
return -EINVAL;
}
snd_pcm_group_for_each_entry(s, substream) {
/* Make sure it is for us... */
chip = snd_pcm_substream_chip(s);
if (chip != sis)
continue;
voice = s->runtime->private_data;
if (voice->flags & VOICE_CAPTURE) {
record |= 1 << voice->num;
voice = voice->timing;
}
/* voice could be NULL if this a recording stream, and it
* doesn't have an external timing channel.
*/
if (voice)
play[voice->num / 32] |= 1 << (voice->num & 0x1f);
snd_pcm_trigger_done(s, substream);
}
if (starting) {
if (record)
outl(record, io + SIS_RECORD_START_REG);
if (play[0])
outl(play[0], io + SIS_PLAY_START_A_REG);
if (play[1])
outl(play[1], io + SIS_PLAY_START_B_REG);
} else {
if (record)
outl(record, io + SIS_RECORD_STOP_REG);
if (play[0])
outl(play[0], io + SIS_PLAY_STOP_A_REG);
if (play[1])
outl(play[1], io + SIS_PLAY_STOP_B_REG);
}
return 0;
}
static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct voice *voice = runtime->private_data;
u32 cso;
cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
cso &= 0xffff;
return cso;
}
static int sis_capture_open(struct snd_pcm_substream *substream)
{
struct sis7019 *sis = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct voice *voice = &sis->capture_voice;
unsigned long flags;
/* FIXME: The driver only supports recording from one channel
* at the moment, but it could support more.
*/
spin_lock_irqsave(&sis->voice_lock, flags);
if (voice->flags & VOICE_IN_USE)
voice = NULL;
else
voice->flags |= VOICE_IN_USE;
spin_unlock_irqrestore(&sis->voice_lock, flags);
if (!voice)
return -EAGAIN;
voice->substream = substream;
runtime->private_data = voice;
runtime->hw = sis_capture_hw_info;
runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
snd_pcm_limit_hw_rates(runtime);
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
9, 0xfff9);
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
9, 0xfff9);
snd_pcm_set_sync(substream);
return 0;
}
static int sis_capture_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct sis7019 *sis = snd_pcm_substream_chip(substream);
int rc;
rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
params_rate(hw_params));
if (rc)
goto out;
rc = snd_pcm_lib_malloc_pages(substream,
params_buffer_bytes(hw_params));
if (rc < 0)
goto out;
rc = sis_alloc_timing_voice(substream, hw_params);
out:
return rc;
}
static void sis_prepare_timing_voice(struct voice *voice,
struct snd_pcm_substream *substream)
{
struct sis7019 *sis = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct voice *timing = voice->timing;
void __iomem *play_base = timing->ctrl_base;
void __iomem *wave_base = timing->wave_base;
u16 buffer_size, period_size;
u32 format, control, sso_eso, delta;
u32 vperiod, sso, reg;
/* Set our initial buffer and period as large as we can given a
* single page of silence.
*/
buffer_size = 4096 / runtime->channels;
buffer_size /= snd_pcm_format_size(runtime->format, 1);
period_size = buffer_size;
/* Initially, we want to interrupt just a bit behind the end of
* the period we're clocking out. 12 samples seems to give a good
* delay.
*
* We want to spread our interrupts throughout the virtual period,
* so that we don't end up with two interrupts back to back at the
* end -- this helps minimize the effects of any jitter. Adjust our
* clocking period size so that the last period is at least a fourth
* of a full period.
*
* This is all moot if we don't need to use virtual periods.
*/
vperiod = runtime->period_size + 12;
if (vperiod > period_size) {
u16 tail = vperiod % period_size;
u16 quarter_period = period_size / 4;
if (tail && tail < quarter_period) {
u16 loops = vperiod / period_size;
tail = quarter_period - tail;
tail += loops - 1;
tail /= loops;
period_size -= tail;
}
sso = period_size - 1;
} else {
/* The initial period will fit inside the buffer, so we
* don't need to use virtual periods -- disable them.
*/
period_size = runtime->period_size;
sso = vperiod - 1;
vperiod = 0;
}
/* The interrupt handler implements the timing synchronization, so
* setup its state.
*/
timing->flags |= VOICE_SYNC_TIMING;
timing->sync_base = voice->ctrl_base;
timing->sync_cso = runtime->period_size;
timing->sync_period_size = runtime->period_size;
timing->sync_buffer_size = runtime->buffer_size;
timing->period_size = period_size;
timing->buffer_size = buffer_size;
timing->sso = sso;
timing->vperiod = vperiod;
/* Using unsigned samples with the all-zero silence buffer
* forces the output to the lower rail, killing playback.
* So ignore unsigned vs signed -- it doesn't change the timing.
*/
format = 0;
if (snd_pcm_format_width(runtime->format) == 8)
format = SIS_CAPTURE_DMA_FORMAT_8BIT;
if (runtime->channels == 1)
format |= SIS_CAPTURE_DMA_FORMAT_MONO;
control = timing->buffer_size - 1;
control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
sso_eso = timing->buffer_size - 1;
sso_eso |= timing->sso << 16;
delta = sis_rate_to_delta(runtime->rate);
/* We've done the math, now configure the channel.
*/
writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
writel(control, play_base + SIS_PLAY_DMA_CONTROL);
writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
writel(0, wave_base + reg);
writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
wave_base + SIS_WAVE_CHANNEL_CONTROL);
}
static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct voice *voice = runtime->private_data;
void __iomem *rec_base = voice->ctrl_base;
u32 format, dma_addr, control;
u16 leo;
/* We rely on the PCM core to ensure that the parameters for this
* substream do not change on us while we're programming the HW.
*/
format = 0;
if (snd_pcm_format_width(runtime->format) == 8)
format = SIS_CAPTURE_DMA_FORMAT_8BIT;
if (!snd_pcm_format_signed(runtime->format))
format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
if (runtime->channels == 1)
format |= SIS_CAPTURE_DMA_FORMAT_MONO;
dma_addr = runtime->dma_addr;
leo = runtime->buffer_size - 1;
control = leo | SIS_CAPTURE_DMA_LOOP;
/* If we've got more than two periods per buffer, then we have
* use a timing voice to clock out the periods. Otherwise, we can
* use the capture channel's interrupts.
*/
if (voice->timing) {
sis_prepare_timing_voice(voice, substream);
} else {
control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
if (runtime->period_size != runtime->buffer_size)
control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
}
writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
/* Force the writes to post. */
readl(rec_base);
return 0;
}
static const struct snd_pcm_ops sis_playback_ops = {
.open = sis_playback_open,
.close = sis_substream_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = sis_playback_hw_params,
.hw_free = sis_hw_free,
.prepare = sis_pcm_playback_prepare,
.trigger = sis_pcm_trigger,
.pointer = sis_pcm_pointer,
};
static const struct snd_pcm_ops sis_capture_ops = {
.open = sis_capture_open,
.close = sis_substream_close,
.ioctl = snd_pcm_lib_ioctl,
.hw_params = sis_capture_hw_params,
.hw_free = sis_hw_free,
.prepare = sis_pcm_capture_prepare,
.trigger = sis_pcm_trigger,
.pointer = sis_pcm_pointer,
};
static int sis_pcm_create(struct sis7019 *sis)
{
struct snd_pcm *pcm;
int rc;
/* We have 64 voices, and the driver currently records from
* only one channel, though that could change in the future.
*/
rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
if (rc)
return rc;
pcm->private_data = sis;
strcpy(pcm->name, "SiS7019");
sis->pcm = pcm;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
/* Try to preallocate some memory, but it's not the end of the
* world if this fails.
*/
snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
snd_dma_pci_data(sis->pci), 64*1024, 128*1024);
return 0;
}
static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
{
unsigned long io = sis->ioport;
unsigned short val = 0xffff;
u16 status;
u16 rdy;
int count;
static const u16 codec_ready[3] = {
SIS_AC97_STATUS_CODEC_READY,
SIS_AC97_STATUS_CODEC2_READY,
SIS_AC97_STATUS_CODEC3_READY,
};
rdy = codec_ready[codec];
/* Get the AC97 semaphore -- software first, so we don't spin
* pounding out IO reads on the hardware semaphore...
*/
mutex_lock(&sis->ac97_mutex);
count = 0xffff;
while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
udelay(1);
if (!count)
goto timeout;
/* ... and wait for any outstanding commands to complete ...
*/
count = 0xffff;
do {
status = inw(io + SIS_AC97_STATUS);
if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
break;
udelay(1);
} while (--count);
if (!count)
goto timeout_sema;
/* ... before sending our command and waiting for it to finish ...
*/
outl(cmd, io + SIS_AC97_CMD);
udelay(10);
count = 0xffff;
while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
udelay(1);
/* ... and reading the results (if any).
*/
val = inl(io + SIS_AC97_CMD) >> 16;
timeout_sema:
outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
timeout:
mutex_unlock(&sis->ac97_mutex);
if (!count) {
dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
codec, cmd);
}
return val;
}
static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
unsigned short val)
{
static const u32 cmd[3] = {
SIS_AC97_CMD_CODEC_WRITE,
SIS_AC97_CMD_CODEC2_WRITE,
SIS_AC97_CMD_CODEC3_WRITE,
};
sis_ac97_rw(ac97->private_data, ac97->num,
(val << 16) | (reg << 8) | cmd[ac97->num]);
}
static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
{
static const u32 cmd[3] = {
SIS_AC97_CMD_CODEC_READ,
SIS_AC97_CMD_CODEC2_READ,
SIS_AC97_CMD_CODEC3_READ,
};
return sis_ac97_rw(ac97->private_data, ac97->num,
(reg << 8) | cmd[ac97->num]);
}
static int sis_mixer_create(struct sis7019 *sis)
{
struct snd_ac97_bus *bus;
struct snd_ac97_template ac97;
static struct snd_ac97_bus_ops ops = {
.write = sis_ac97_write,
.read = sis_ac97_read,
};
int rc;
memset(&ac97, 0, sizeof(ac97));
ac97.private_data = sis;
rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
ac97.num = 1;
if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
ac97.num = 2;
if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
/* If we return an error here, then snd_card_free() should
* free up any ac97 codecs that got created, as well as the bus.
*/
return rc;
}
static void sis_free_suspend(struct sis7019 *sis)
{
int i;
for (i = 0; i < SIS_SUSPEND_PAGES; i++)
kfree(sis->suspend_state[i]);
}
static int sis_chip_free(struct sis7019 *sis)
{
/* Reset the chip, and disable all interrputs.
*/
outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
udelay(25);
outl(0, sis->ioport + SIS_GCR);
outl(0, sis->ioport + SIS_GIER);
/* Now, free everything we allocated.
*/
if (sis->irq >= 0)
free_irq(sis->irq, sis);
iounmap(sis->ioaddr);
pci_release_regions(sis->pci);
pci_disable_device(sis->pci);
sis_free_suspend(sis);
return 0;
}
static int sis_dev_free(struct snd_device *dev)
{
struct sis7019 *sis = dev->device_data;
return sis_chip_free(sis);
}
static int sis_chip_init(struct sis7019 *sis)
{
unsigned long io = sis->ioport;
void __iomem *ioaddr = sis->ioaddr;
unsigned long timeout;
u16 status;
int count;
int i;
/* Reset the audio controller
*/
outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
udelay(25);
outl(0, io + SIS_GCR);
/* Get the AC-link semaphore, and reset the codecs
*/
count = 0xffff;
while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
udelay(1);
if (!count)
return -EIO;
outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
udelay(250);
count = 0xffff;
while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
udelay(1);
/* Command complete, we can let go of the semaphore now.
*/
outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
if (!count)
return -EIO;
/* Now that we've finished the reset, find out what's attached.
* There are some codec/board combinations that take an extremely
* long time to come up. 350+ ms has been observed in the field,
* so we'll give them up to 500ms.
*/
sis->codecs_present = 0;
timeout = msecs_to_jiffies(500) + jiffies;
while (time_before_eq(jiffies, timeout)) {
status = inl(io + SIS_AC97_STATUS);
if (status & SIS_AC97_STATUS_CODEC_READY)
sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
if (status & SIS_AC97_STATUS_CODEC2_READY)
sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
if (status & SIS_AC97_STATUS_CODEC3_READY)
sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
if (sis->codecs_present == codecs)
break;
msleep(1);
}
/* All done, check for errors.
*/
if (!sis->codecs_present) {
dev_err(&sis->pci->dev, "could not find any codecs\n");
return -EIO;
}
if (sis->codecs_present != codecs) {
dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
sis->codecs_present, codecs);
}
/* Let the hardware know that the audio driver is alive,
* and enable PCM slots on the AC-link for L/R playback (3 & 4) and
* record channels. We're going to want to use Variable Rate Audio
* for recording, to avoid needlessly resampling from 48kHZ.
*/
outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
/* All AC97 PCM slots should be sourced from sub-mixer 0.
*/
outl(0, io + SIS_AC97_PSR);
/* There is only one valid DMA setup for a PCI environment.
*/
outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
/* Reset the synchronization groups for all of the channels
* to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
* we'll need to change how we handle these. Until then, we just
* assign sub-mixer 0 to all playback channels, and avoid any
* attenuation on the audio.
*/
outl(0, io + SIS_PLAY_SYNC_GROUP_A);
outl(0, io + SIS_PLAY_SYNC_GROUP_B);
outl(0, io + SIS_PLAY_SYNC_GROUP_C);
outl(0, io + SIS_PLAY_SYNC_GROUP_D);
outl(0, io + SIS_MIXER_SYNC_GROUP);
for (i = 0; i < 64; i++) {
writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
}
/* Don't attenuate any audio set for the wave amplifier.
*
* FIXME: Maximum attenuation is set for the music amp, which will
* need to change if we start using the synth engine.
*/
outl(0xffff0000, io + SIS_WEVCR);
/* Ensure that the wave engine is in normal operating mode.
*/
outl(0, io + SIS_WECCR);
/* Go ahead and enable the DMA interrupts. They won't go live
* until we start a channel.
*/
outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int sis_suspend(struct device *dev)
{
struct snd_card *card = dev_get_drvdata(dev);
struct sis7019 *sis = card->private_data;
void __iomem *ioaddr = sis->ioaddr;
int i;
snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
snd_pcm_suspend_all(sis->pcm);
if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
snd_ac97_suspend(sis->ac97[0]);
if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
snd_ac97_suspend(sis->ac97[1]);
if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
snd_ac97_suspend(sis->ac97[2]);
/* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
*/
if (sis->irq >= 0) {
free_irq(sis->irq, sis);
sis->irq = -1;
}
/* Save the internal state away
*/
for (i = 0; i < 4; i++) {
memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
ioaddr += 4096;
}
return 0;
}
static int sis_resume(struct device *dev)
{
struct pci_dev *pci = to_pci_dev(dev);
struct snd_card *card = dev_get_drvdata(dev);
struct sis7019 *sis = card->private_data;
void __iomem *ioaddr = sis->ioaddr;
int i;
if (sis_chip_init(sis)) {
dev_err(&pci->dev, "unable to re-init controller\n");
goto error;
}
if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
KBUILD_MODNAME, sis)) {
dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
goto error;
}
/* Restore saved state, then clear out the page we use for the
* silence buffer.
*/
for (i = 0; i < 4; i++) {
memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
ioaddr += 4096;
}
memset(sis->suspend_state[0], 0, 4096);
sis->irq = pci->irq;
if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
snd_ac97_resume(sis->ac97[0]);
if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
snd_ac97_resume(sis->ac97[1]);
if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
snd_ac97_resume(sis->ac97[2]);
snd_power_change_state(card, SNDRV_CTL_POWER_D0);
return 0;
error:
snd_card_disconnect(card);
return -EIO;
}
static SIMPLE_DEV_PM_OPS(sis_pm, sis_suspend, sis_resume);
#define SIS_PM_OPS &sis_pm
#else
#define SIS_PM_OPS NULL
#endif /* CONFIG_PM_SLEEP */
static int sis_alloc_suspend(struct sis7019 *sis)
{
int i;
/* We need 16K to store the internal wave engine state during a
* suspend, but we don't need it to be contiguous, so play nice
* with the memory system. We'll also use this area for a silence
* buffer.
*/
for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
if (!sis->suspend_state[i])
return -ENOMEM;
}
memset(sis->suspend_state[0], 0, 4096);
return 0;
}
static int sis_chip_create(struct snd_card *card,
struct pci_dev *pci)
{
struct sis7019 *sis = card->private_data;
struct voice *voice;
static struct snd_device_ops ops = {
.dev_free = sis_dev_free,
};
int rc;
int i;
rc = pci_enable_device(pci);
if (rc)
goto error_out;
rc = dma_set_mask(&pci->dev, DMA_BIT_MASK(30));
if (rc < 0) {
dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
goto error_out_enabled;
}
memset(sis, 0, sizeof(*sis));
mutex_init(&sis->ac97_mutex);
spin_lock_init(&sis->voice_lock);
sis->card = card;
sis->pci = pci;
sis->irq = -1;
sis->ioport = pci_resource_start(pci, 0);
rc = pci_request_regions(pci, "SiS7019");
if (rc) {
dev_err(&pci->dev, "unable request regions\n");
goto error_out_enabled;
}
rc = -EIO;
sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000);
if (!sis->ioaddr) {
dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
goto error_out_cleanup;
}
rc = sis_alloc_suspend(sis);
if (rc < 0) {
dev_err(&pci->dev, "unable to allocate state storage\n");
goto error_out_cleanup;
}
rc = sis_chip_init(sis);
if (rc)
goto error_out_cleanup;
rc = request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
sis);
if (rc) {
dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
goto error_out_cleanup;
}
sis->irq = pci->irq;
pci_set_master(pci);
for (i = 0; i < 64; i++) {
voice = &sis->voices[i];
voice->num = i;
voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
}
voice = &sis->capture_voice;
voice->flags = VOICE_CAPTURE;
voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
if (rc)
goto error_out_cleanup;
return 0;
error_out_cleanup:
sis_chip_free(sis);
error_out_enabled:
pci_disable_device(pci);
error_out:
return rc;
}
static int snd_sis7019_probe(struct pci_dev *pci,
const struct pci_device_id *pci_id)
{
struct snd_card *card;
struct sis7019 *sis;
int rc;
rc = -ENOENT;
if (!enable)
goto error_out;
/* The user can specify which codecs should be present so that we
* can wait for them to show up if they are slow to recover from
* the AC97 cold reset. We default to a single codec, the primary.
*
* We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
*/
codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
SIS_TERTIARY_CODEC_PRESENT;
if (!codecs)
codecs = SIS_PRIMARY_CODEC_PRESENT;
rc = snd_card_new(&pci->dev, index, id, THIS_MODULE,
sizeof(*sis), &card);
if (rc < 0)
goto error_out;
strcpy(card->driver, "SiS7019");
strcpy(card->shortname, "SiS7019");
rc = sis_chip_create(card, pci);
if (rc)
goto card_error_out;
sis = card->private_data;
rc = sis_mixer_create(sis);
if (rc)
goto card_error_out;
rc = sis_pcm_create(sis);
if (rc)
goto card_error_out;
snprintf(card->longname, sizeof(card->longname),
"%s Audio Accelerator with %s at 0x%lx, irq %d",
card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
sis->ioport, sis->irq);
rc = snd_card_register(card);
if (rc)
goto card_error_out;
pci_set_drvdata(pci, card);
return 0;
card_error_out:
snd_card_free(card);
error_out:
return rc;
}
static void snd_sis7019_remove(struct pci_dev *pci)
{
snd_card_free(pci_get_drvdata(pci));
}
static struct pci_driver sis7019_driver = {
.name = KBUILD_MODNAME,
.id_table = snd_sis7019_ids,
.probe = snd_sis7019_probe,
.remove = snd_sis7019_remove,
.driver = {
.pm = SIS_PM_OPS,
},
};
module_pci_driver(sis7019_driver);