blob: acf9fdf0167106a93a88c7ba2bd1cfc79fbcf706 [file] [log] [blame]
/*
* Multi buffer SHA1 algorithm Glue Code
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2014 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* Contact Information:
* Tim Chen <tim.c.chen@linux.intel.com>
*
* BSD LICENSE
*
* Copyright(c) 2014 Intel Corporation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <crypto/internal/hash.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/cryptohash.h>
#include <linux/types.h>
#include <linux/list.h>
#include <crypto/scatterwalk.h>
#include <crypto/sha.h>
#include <crypto/mcryptd.h>
#include <crypto/crypto_wq.h>
#include <asm/byteorder.h>
#include <linux/hardirq.h>
#include <asm/fpu/api.h>
#include "sha1_mb_ctx.h"
#define FLUSH_INTERVAL 1000 /* in usec */
static struct mcryptd_alg_state sha1_mb_alg_state;
struct sha1_mb_ctx {
struct mcryptd_ahash *mcryptd_tfm;
};
static inline struct mcryptd_hash_request_ctx
*cast_hash_to_mcryptd_ctx(struct sha1_hash_ctx *hash_ctx)
{
struct ahash_request *areq;
areq = container_of((void *) hash_ctx, struct ahash_request, __ctx);
return container_of(areq, struct mcryptd_hash_request_ctx, areq);
}
static inline struct ahash_request
*cast_mcryptd_ctx_to_req(struct mcryptd_hash_request_ctx *ctx)
{
return container_of((void *) ctx, struct ahash_request, __ctx);
}
static void req_ctx_init(struct mcryptd_hash_request_ctx *rctx,
struct ahash_request *areq)
{
rctx->flag = HASH_UPDATE;
}
static asmlinkage void (*sha1_job_mgr_init)(struct sha1_mb_mgr *state);
static asmlinkage struct job_sha1* (*sha1_job_mgr_submit)
(struct sha1_mb_mgr *state, struct job_sha1 *job);
static asmlinkage struct job_sha1* (*sha1_job_mgr_flush)
(struct sha1_mb_mgr *state);
static asmlinkage struct job_sha1* (*sha1_job_mgr_get_comp_job)
(struct sha1_mb_mgr *state);
static inline void sha1_init_digest(uint32_t *digest)
{
static const uint32_t initial_digest[SHA1_DIGEST_LENGTH] = {SHA1_H0,
SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 };
memcpy(digest, initial_digest, sizeof(initial_digest));
}
static inline uint32_t sha1_pad(uint8_t padblock[SHA1_BLOCK_SIZE * 2],
uint64_t total_len)
{
uint32_t i = total_len & (SHA1_BLOCK_SIZE - 1);
memset(&padblock[i], 0, SHA1_BLOCK_SIZE);
padblock[i] = 0x80;
i += ((SHA1_BLOCK_SIZE - 1) &
(0 - (total_len + SHA1_PADLENGTHFIELD_SIZE + 1)))
+ 1 + SHA1_PADLENGTHFIELD_SIZE;
#if SHA1_PADLENGTHFIELD_SIZE == 16
*((uint64_t *) &padblock[i - 16]) = 0;
#endif
*((uint64_t *) &padblock[i - 8]) = cpu_to_be64(total_len << 3);
/* Number of extra blocks to hash */
return i >> SHA1_LOG2_BLOCK_SIZE;
}
static struct sha1_hash_ctx *sha1_ctx_mgr_resubmit(struct sha1_ctx_mgr *mgr,
struct sha1_hash_ctx *ctx)
{
while (ctx) {
if (ctx->status & HASH_CTX_STS_COMPLETE) {
/* Clear PROCESSING bit */
ctx->status = HASH_CTX_STS_COMPLETE;
return ctx;
}
/*
* If the extra blocks are empty, begin hashing what remains
* in the user's buffer.
*/
if (ctx->partial_block_buffer_length == 0 &&
ctx->incoming_buffer_length) {
const void *buffer = ctx->incoming_buffer;
uint32_t len = ctx->incoming_buffer_length;
uint32_t copy_len;
/*
* Only entire blocks can be hashed.
* Copy remainder to extra blocks buffer.
*/
copy_len = len & (SHA1_BLOCK_SIZE-1);
if (copy_len) {
len -= copy_len;
memcpy(ctx->partial_block_buffer,
((const char *) buffer + len),
copy_len);
ctx->partial_block_buffer_length = copy_len;
}
ctx->incoming_buffer_length = 0;
/* len should be a multiple of the block size now */
assert((len % SHA1_BLOCK_SIZE) == 0);
/* Set len to the number of blocks to be hashed */
len >>= SHA1_LOG2_BLOCK_SIZE;
if (len) {
ctx->job.buffer = (uint8_t *) buffer;
ctx->job.len = len;
ctx = (struct sha1_hash_ctx *)sha1_job_mgr_submit(&mgr->mgr,
&ctx->job);
continue;
}
}
/*
* If the extra blocks are not empty, then we are
* either on the last block(s) or we need more
* user input before continuing.
*/
if (ctx->status & HASH_CTX_STS_LAST) {
uint8_t *buf = ctx->partial_block_buffer;
uint32_t n_extra_blocks =
sha1_pad(buf, ctx->total_length);
ctx->status = (HASH_CTX_STS_PROCESSING |
HASH_CTX_STS_COMPLETE);
ctx->job.buffer = buf;
ctx->job.len = (uint32_t) n_extra_blocks;
ctx = (struct sha1_hash_ctx *)
sha1_job_mgr_submit(&mgr->mgr, &ctx->job);
continue;
}
ctx->status = HASH_CTX_STS_IDLE;
return ctx;
}
return NULL;
}
static struct sha1_hash_ctx
*sha1_ctx_mgr_get_comp_ctx(struct sha1_ctx_mgr *mgr)
{
/*
* If get_comp_job returns NULL, there are no jobs complete.
* If get_comp_job returns a job, verify that it is safe to return to
* the user.
* If it is not ready, resubmit the job to finish processing.
* If sha1_ctx_mgr_resubmit returned a job, it is ready to be returned.
* Otherwise, all jobs currently being managed by the hash_ctx_mgr
* still need processing.
*/
struct sha1_hash_ctx *ctx;
ctx = (struct sha1_hash_ctx *) sha1_job_mgr_get_comp_job(&mgr->mgr);
return sha1_ctx_mgr_resubmit(mgr, ctx);
}
static void sha1_ctx_mgr_init(struct sha1_ctx_mgr *mgr)
{
sha1_job_mgr_init(&mgr->mgr);
}
static struct sha1_hash_ctx *sha1_ctx_mgr_submit(struct sha1_ctx_mgr *mgr,
struct sha1_hash_ctx *ctx,
const void *buffer,
uint32_t len,
int flags)
{
if (flags & (~HASH_ENTIRE)) {
/*
* User should not pass anything other than FIRST, UPDATE, or
* LAST
*/
ctx->error = HASH_CTX_ERROR_INVALID_FLAGS;
return ctx;
}
if (ctx->status & HASH_CTX_STS_PROCESSING) {
/* Cannot submit to a currently processing job. */
ctx->error = HASH_CTX_ERROR_ALREADY_PROCESSING;
return ctx;
}
if ((ctx->status & HASH_CTX_STS_COMPLETE) && !(flags & HASH_FIRST)) {
/* Cannot update a finished job. */
ctx->error = HASH_CTX_ERROR_ALREADY_COMPLETED;
return ctx;
}
if (flags & HASH_FIRST) {
/* Init digest */
sha1_init_digest(ctx->job.result_digest);
/* Reset byte counter */
ctx->total_length = 0;
/* Clear extra blocks */
ctx->partial_block_buffer_length = 0;
}
/*
* If we made it here, there were no errors during this call to
* submit
*/
ctx->error = HASH_CTX_ERROR_NONE;
/* Store buffer ptr info from user */
ctx->incoming_buffer = buffer;
ctx->incoming_buffer_length = len;
/*
* Store the user's request flags and mark this ctx as currently
* being processed.
*/
ctx->status = (flags & HASH_LAST) ?
(HASH_CTX_STS_PROCESSING | HASH_CTX_STS_LAST) :
HASH_CTX_STS_PROCESSING;
/* Advance byte counter */
ctx->total_length += len;
/*
* If there is anything currently buffered in the extra blocks,
* append to it until it contains a whole block.
* Or if the user's buffer contains less than a whole block,
* append as much as possible to the extra block.
*/
if (ctx->partial_block_buffer_length || len < SHA1_BLOCK_SIZE) {
/*
* Compute how many bytes to copy from user buffer into
* extra block
*/
uint32_t copy_len = SHA1_BLOCK_SIZE -
ctx->partial_block_buffer_length;
if (len < copy_len)
copy_len = len;
if (copy_len) {
/* Copy and update relevant pointers and counters */
memcpy(&ctx->partial_block_buffer[ctx->partial_block_buffer_length],
buffer, copy_len);
ctx->partial_block_buffer_length += copy_len;
ctx->incoming_buffer = (const void *)
((const char *)buffer + copy_len);
ctx->incoming_buffer_length = len - copy_len;
}
/*
* The extra block should never contain more than 1 block
* here
*/
assert(ctx->partial_block_buffer_length <= SHA1_BLOCK_SIZE);
/*
* If the extra block buffer contains exactly 1 block, it can
* be hashed.
*/
if (ctx->partial_block_buffer_length >= SHA1_BLOCK_SIZE) {
ctx->partial_block_buffer_length = 0;
ctx->job.buffer = ctx->partial_block_buffer;
ctx->job.len = 1;
ctx = (struct sha1_hash_ctx *)
sha1_job_mgr_submit(&mgr->mgr, &ctx->job);
}
}
return sha1_ctx_mgr_resubmit(mgr, ctx);
}
static struct sha1_hash_ctx *sha1_ctx_mgr_flush(struct sha1_ctx_mgr *mgr)
{
struct sha1_hash_ctx *ctx;
while (1) {
ctx = (struct sha1_hash_ctx *) sha1_job_mgr_flush(&mgr->mgr);
/* If flush returned 0, there are no more jobs in flight. */
if (!ctx)
return NULL;
/*
* If flush returned a job, resubmit the job to finish
* processing.
*/
ctx = sha1_ctx_mgr_resubmit(mgr, ctx);
/*
* If sha1_ctx_mgr_resubmit returned a job, it is ready to be
* returned. Otherwise, all jobs currently being managed by the
* sha1_ctx_mgr still need processing. Loop.
*/
if (ctx)
return ctx;
}
}
static int sha1_mb_init(struct ahash_request *areq)
{
struct sha1_hash_ctx *sctx = ahash_request_ctx(areq);
hash_ctx_init(sctx);
sctx->job.result_digest[0] = SHA1_H0;
sctx->job.result_digest[1] = SHA1_H1;
sctx->job.result_digest[2] = SHA1_H2;
sctx->job.result_digest[3] = SHA1_H3;
sctx->job.result_digest[4] = SHA1_H4;
sctx->total_length = 0;
sctx->partial_block_buffer_length = 0;
sctx->status = HASH_CTX_STS_IDLE;
return 0;
}
static int sha1_mb_set_results(struct mcryptd_hash_request_ctx *rctx)
{
int i;
struct sha1_hash_ctx *sctx = ahash_request_ctx(&rctx->areq);
__be32 *dst = (__be32 *) rctx->out;
for (i = 0; i < 5; ++i)
dst[i] = cpu_to_be32(sctx->job.result_digest[i]);
return 0;
}
static int sha_finish_walk(struct mcryptd_hash_request_ctx **ret_rctx,
struct mcryptd_alg_cstate *cstate, bool flush)
{
int flag = HASH_UPDATE;
int nbytes, err = 0;
struct mcryptd_hash_request_ctx *rctx = *ret_rctx;
struct sha1_hash_ctx *sha_ctx;
/* more work ? */
while (!(rctx->flag & HASH_DONE)) {
nbytes = crypto_ahash_walk_done(&rctx->walk, 0);
if (nbytes < 0) {
err = nbytes;
goto out;
}
/* check if the walk is done */
if (crypto_ahash_walk_last(&rctx->walk)) {
rctx->flag |= HASH_DONE;
if (rctx->flag & HASH_FINAL)
flag |= HASH_LAST;
}
sha_ctx = (struct sha1_hash_ctx *)
ahash_request_ctx(&rctx->areq);
kernel_fpu_begin();
sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx,
rctx->walk.data, nbytes, flag);
if (!sha_ctx) {
if (flush)
sha_ctx = sha1_ctx_mgr_flush(cstate->mgr);
}
kernel_fpu_end();
if (sha_ctx)
rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
else {
rctx = NULL;
goto out;
}
}
/* copy the results */
if (rctx->flag & HASH_FINAL)
sha1_mb_set_results(rctx);
out:
*ret_rctx = rctx;
return err;
}
static int sha_complete_job(struct mcryptd_hash_request_ctx *rctx,
struct mcryptd_alg_cstate *cstate,
int err)
{
struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
struct sha1_hash_ctx *sha_ctx;
struct mcryptd_hash_request_ctx *req_ctx;
int ret;
/* remove from work list */
spin_lock(&cstate->work_lock);
list_del(&rctx->waiter);
spin_unlock(&cstate->work_lock);
if (irqs_disabled())
rctx->complete(&req->base, err);
else {
local_bh_disable();
rctx->complete(&req->base, err);
local_bh_enable();
}
/* check to see if there are other jobs that are done */
sha_ctx = sha1_ctx_mgr_get_comp_ctx(cstate->mgr);
while (sha_ctx) {
req_ctx = cast_hash_to_mcryptd_ctx(sha_ctx);
ret = sha_finish_walk(&req_ctx, cstate, false);
if (req_ctx) {
spin_lock(&cstate->work_lock);
list_del(&req_ctx->waiter);
spin_unlock(&cstate->work_lock);
req = cast_mcryptd_ctx_to_req(req_ctx);
if (irqs_disabled())
req_ctx->complete(&req->base, ret);
else {
local_bh_disable();
req_ctx->complete(&req->base, ret);
local_bh_enable();
}
}
sha_ctx = sha1_ctx_mgr_get_comp_ctx(cstate->mgr);
}
return 0;
}
static void sha1_mb_add_list(struct mcryptd_hash_request_ctx *rctx,
struct mcryptd_alg_cstate *cstate)
{
unsigned long next_flush;
unsigned long delay = usecs_to_jiffies(FLUSH_INTERVAL);
/* initialize tag */
rctx->tag.arrival = jiffies; /* tag the arrival time */
rctx->tag.seq_num = cstate->next_seq_num++;
next_flush = rctx->tag.arrival + delay;
rctx->tag.expire = next_flush;
spin_lock(&cstate->work_lock);
list_add_tail(&rctx->waiter, &cstate->work_list);
spin_unlock(&cstate->work_lock);
mcryptd_arm_flusher(cstate, delay);
}
static int sha1_mb_update(struct ahash_request *areq)
{
struct mcryptd_hash_request_ctx *rctx =
container_of(areq, struct mcryptd_hash_request_ctx, areq);
struct mcryptd_alg_cstate *cstate =
this_cpu_ptr(sha1_mb_alg_state.alg_cstate);
struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
struct sha1_hash_ctx *sha_ctx;
int ret = 0, nbytes;
/* sanity check */
if (rctx->tag.cpu != smp_processor_id()) {
pr_err("mcryptd error: cpu clash\n");
goto done;
}
/* need to init context */
req_ctx_init(rctx, areq);
nbytes = crypto_ahash_walk_first(req, &rctx->walk);
if (nbytes < 0) {
ret = nbytes;
goto done;
}
if (crypto_ahash_walk_last(&rctx->walk))
rctx->flag |= HASH_DONE;
/* submit */
sha_ctx = (struct sha1_hash_ctx *) ahash_request_ctx(areq);
sha1_mb_add_list(rctx, cstate);
kernel_fpu_begin();
sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data,
nbytes, HASH_UPDATE);
kernel_fpu_end();
/* check if anything is returned */
if (!sha_ctx)
return -EINPROGRESS;
if (sha_ctx->error) {
ret = sha_ctx->error;
rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
goto done;
}
rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
ret = sha_finish_walk(&rctx, cstate, false);
if (!rctx)
return -EINPROGRESS;
done:
sha_complete_job(rctx, cstate, ret);
return ret;
}
static int sha1_mb_finup(struct ahash_request *areq)
{
struct mcryptd_hash_request_ctx *rctx =
container_of(areq, struct mcryptd_hash_request_ctx, areq);
struct mcryptd_alg_cstate *cstate =
this_cpu_ptr(sha1_mb_alg_state.alg_cstate);
struct ahash_request *req = cast_mcryptd_ctx_to_req(rctx);
struct sha1_hash_ctx *sha_ctx;
int ret = 0, flag = HASH_UPDATE, nbytes;
/* sanity check */
if (rctx->tag.cpu != smp_processor_id()) {
pr_err("mcryptd error: cpu clash\n");
goto done;
}
/* need to init context */
req_ctx_init(rctx, areq);
nbytes = crypto_ahash_walk_first(req, &rctx->walk);
if (nbytes < 0) {
ret = nbytes;
goto done;
}
if (crypto_ahash_walk_last(&rctx->walk)) {
rctx->flag |= HASH_DONE;
flag = HASH_LAST;
}
/* submit */
rctx->flag |= HASH_FINAL;
sha_ctx = (struct sha1_hash_ctx *) ahash_request_ctx(areq);
sha1_mb_add_list(rctx, cstate);
kernel_fpu_begin();
sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, rctx->walk.data,
nbytes, flag);
kernel_fpu_end();
/* check if anything is returned */
if (!sha_ctx)
return -EINPROGRESS;
if (sha_ctx->error) {
ret = sha_ctx->error;
goto done;
}
rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
ret = sha_finish_walk(&rctx, cstate, false);
if (!rctx)
return -EINPROGRESS;
done:
sha_complete_job(rctx, cstate, ret);
return ret;
}
static int sha1_mb_final(struct ahash_request *areq)
{
struct mcryptd_hash_request_ctx *rctx =
container_of(areq, struct mcryptd_hash_request_ctx, areq);
struct mcryptd_alg_cstate *cstate =
this_cpu_ptr(sha1_mb_alg_state.alg_cstate);
struct sha1_hash_ctx *sha_ctx;
int ret = 0;
u8 data;
/* sanity check */
if (rctx->tag.cpu != smp_processor_id()) {
pr_err("mcryptd error: cpu clash\n");
goto done;
}
/* need to init context */
req_ctx_init(rctx, areq);
rctx->flag |= HASH_DONE | HASH_FINAL;
sha_ctx = (struct sha1_hash_ctx *) ahash_request_ctx(areq);
/* flag HASH_FINAL and 0 data size */
sha1_mb_add_list(rctx, cstate);
kernel_fpu_begin();
sha_ctx = sha1_ctx_mgr_submit(cstate->mgr, sha_ctx, &data, 0,
HASH_LAST);
kernel_fpu_end();
/* check if anything is returned */
if (!sha_ctx)
return -EINPROGRESS;
if (sha_ctx->error) {
ret = sha_ctx->error;
rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
goto done;
}
rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
ret = sha_finish_walk(&rctx, cstate, false);
if (!rctx)
return -EINPROGRESS;
done:
sha_complete_job(rctx, cstate, ret);
return ret;
}
static int sha1_mb_export(struct ahash_request *areq, void *out)
{
struct sha1_hash_ctx *sctx = ahash_request_ctx(areq);
memcpy(out, sctx, sizeof(*sctx));
return 0;
}
static int sha1_mb_import(struct ahash_request *areq, const void *in)
{
struct sha1_hash_ctx *sctx = ahash_request_ctx(areq);
memcpy(sctx, in, sizeof(*sctx));
return 0;
}
static int sha1_mb_async_init_tfm(struct crypto_tfm *tfm)
{
struct mcryptd_ahash *mcryptd_tfm;
struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm);
struct mcryptd_hash_ctx *mctx;
mcryptd_tfm = mcryptd_alloc_ahash("__intel_sha1-mb",
CRYPTO_ALG_INTERNAL,
CRYPTO_ALG_INTERNAL);
if (IS_ERR(mcryptd_tfm))
return PTR_ERR(mcryptd_tfm);
mctx = crypto_ahash_ctx(&mcryptd_tfm->base);
mctx->alg_state = &sha1_mb_alg_state;
ctx->mcryptd_tfm = mcryptd_tfm;
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct ahash_request) +
crypto_ahash_reqsize(&mcryptd_tfm->base));
return 0;
}
static void sha1_mb_async_exit_tfm(struct crypto_tfm *tfm)
{
struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm);
mcryptd_free_ahash(ctx->mcryptd_tfm);
}
static int sha1_mb_areq_init_tfm(struct crypto_tfm *tfm)
{
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct ahash_request) +
sizeof(struct sha1_hash_ctx));
return 0;
}
static void sha1_mb_areq_exit_tfm(struct crypto_tfm *tfm)
{
struct sha1_mb_ctx *ctx = crypto_tfm_ctx(tfm);
mcryptd_free_ahash(ctx->mcryptd_tfm);
}
static struct ahash_alg sha1_mb_areq_alg = {
.init = sha1_mb_init,
.update = sha1_mb_update,
.final = sha1_mb_final,
.finup = sha1_mb_finup,
.export = sha1_mb_export,
.import = sha1_mb_import,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct sha1_hash_ctx),
.base = {
.cra_name = "__sha1-mb",
.cra_driver_name = "__intel_sha1-mb",
.cra_priority = 100,
/*
* use ASYNC flag as some buffers in multi-buffer
* algo may not have completed before hashing thread
* sleep
*/
.cra_flags = CRYPTO_ALG_TYPE_AHASH |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_INTERNAL,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT
(sha1_mb_areq_alg.halg.base.cra_list),
.cra_init = sha1_mb_areq_init_tfm,
.cra_exit = sha1_mb_areq_exit_tfm,
.cra_ctxsize = sizeof(struct sha1_hash_ctx),
}
}
};
static int sha1_mb_async_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
struct ahash_request *mcryptd_req = ahash_request_ctx(req);
struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
memcpy(mcryptd_req, req, sizeof(*req));
ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
return crypto_ahash_init(mcryptd_req);
}
static int sha1_mb_async_update(struct ahash_request *req)
{
struct ahash_request *mcryptd_req = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
memcpy(mcryptd_req, req, sizeof(*req));
ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
return crypto_ahash_update(mcryptd_req);
}
static int sha1_mb_async_finup(struct ahash_request *req)
{
struct ahash_request *mcryptd_req = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
memcpy(mcryptd_req, req, sizeof(*req));
ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
return crypto_ahash_finup(mcryptd_req);
}
static int sha1_mb_async_final(struct ahash_request *req)
{
struct ahash_request *mcryptd_req = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
memcpy(mcryptd_req, req, sizeof(*req));
ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
return crypto_ahash_final(mcryptd_req);
}
static int sha1_mb_async_digest(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
struct ahash_request *mcryptd_req = ahash_request_ctx(req);
struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
memcpy(mcryptd_req, req, sizeof(*req));
ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
return crypto_ahash_digest(mcryptd_req);
}
static int sha1_mb_async_export(struct ahash_request *req, void *out)
{
struct ahash_request *mcryptd_req = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
memcpy(mcryptd_req, req, sizeof(*req));
ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
return crypto_ahash_export(mcryptd_req, out);
}
static int sha1_mb_async_import(struct ahash_request *req, const void *in)
{
struct ahash_request *mcryptd_req = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct sha1_mb_ctx *ctx = crypto_ahash_ctx(tfm);
struct mcryptd_ahash *mcryptd_tfm = ctx->mcryptd_tfm;
struct crypto_ahash *child = mcryptd_ahash_child(mcryptd_tfm);
struct mcryptd_hash_request_ctx *rctx;
struct ahash_request *areq;
memcpy(mcryptd_req, req, sizeof(*req));
ahash_request_set_tfm(mcryptd_req, &mcryptd_tfm->base);
rctx = ahash_request_ctx(mcryptd_req);
areq = &rctx->areq;
ahash_request_set_tfm(areq, child);
ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_SLEEP,
rctx->complete, req);
return crypto_ahash_import(mcryptd_req, in);
}
static struct ahash_alg sha1_mb_async_alg = {
.init = sha1_mb_async_init,
.update = sha1_mb_async_update,
.final = sha1_mb_async_final,
.finup = sha1_mb_async_finup,
.digest = sha1_mb_async_digest,
.export = sha1_mb_async_export,
.import = sha1_mb_async_import,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct sha1_hash_ctx),
.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1_mb",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_TYPE_AHASH | CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_type = &crypto_ahash_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(sha1_mb_async_alg.halg.base.cra_list),
.cra_init = sha1_mb_async_init_tfm,
.cra_exit = sha1_mb_async_exit_tfm,
.cra_ctxsize = sizeof(struct sha1_mb_ctx),
.cra_alignmask = 0,
},
},
};
static unsigned long sha1_mb_flusher(struct mcryptd_alg_cstate *cstate)
{
struct mcryptd_hash_request_ctx *rctx;
unsigned long cur_time;
unsigned long next_flush = 0;
struct sha1_hash_ctx *sha_ctx;
cur_time = jiffies;
while (!list_empty(&cstate->work_list)) {
rctx = list_entry(cstate->work_list.next,
struct mcryptd_hash_request_ctx, waiter);
if (time_before(cur_time, rctx->tag.expire))
break;
kernel_fpu_begin();
sha_ctx = (struct sha1_hash_ctx *)
sha1_ctx_mgr_flush(cstate->mgr);
kernel_fpu_end();
if (!sha_ctx) {
pr_err("sha1_mb error: nothing got flushed for non-empty list\n");
break;
}
rctx = cast_hash_to_mcryptd_ctx(sha_ctx);
sha_finish_walk(&rctx, cstate, true);
sha_complete_job(rctx, cstate, 0);
}
if (!list_empty(&cstate->work_list)) {
rctx = list_entry(cstate->work_list.next,
struct mcryptd_hash_request_ctx, waiter);
/* get the hash context and then flush time */
next_flush = rctx->tag.expire;
mcryptd_arm_flusher(cstate, get_delay(next_flush));
}
return next_flush;
}
static int __init sha1_mb_mod_init(void)
{
int cpu;
int err;
struct mcryptd_alg_cstate *cpu_state;
/* check for dependent cpu features */
if (!boot_cpu_has(X86_FEATURE_AVX2) ||
!boot_cpu_has(X86_FEATURE_BMI2))
return -ENODEV;
/* initialize multibuffer structures */
sha1_mb_alg_state.alg_cstate = alloc_percpu(struct mcryptd_alg_cstate);
sha1_job_mgr_init = sha1_mb_mgr_init_avx2;
sha1_job_mgr_submit = sha1_mb_mgr_submit_avx2;
sha1_job_mgr_flush = sha1_mb_mgr_flush_avx2;
sha1_job_mgr_get_comp_job = sha1_mb_mgr_get_comp_job_avx2;
if (!sha1_mb_alg_state.alg_cstate)
return -ENOMEM;
for_each_possible_cpu(cpu) {
cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
cpu_state->next_flush = 0;
cpu_state->next_seq_num = 0;
cpu_state->flusher_engaged = false;
INIT_DELAYED_WORK(&cpu_state->flush, mcryptd_flusher);
cpu_state->cpu = cpu;
cpu_state->alg_state = &sha1_mb_alg_state;
cpu_state->mgr = kzalloc(sizeof(struct sha1_ctx_mgr),
GFP_KERNEL);
if (!cpu_state->mgr)
goto err2;
sha1_ctx_mgr_init(cpu_state->mgr);
INIT_LIST_HEAD(&cpu_state->work_list);
spin_lock_init(&cpu_state->work_lock);
}
sha1_mb_alg_state.flusher = &sha1_mb_flusher;
err = crypto_register_ahash(&sha1_mb_areq_alg);
if (err)
goto err2;
err = crypto_register_ahash(&sha1_mb_async_alg);
if (err)
goto err1;
return 0;
err1:
crypto_unregister_ahash(&sha1_mb_areq_alg);
err2:
for_each_possible_cpu(cpu) {
cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
kfree(cpu_state->mgr);
}
free_percpu(sha1_mb_alg_state.alg_cstate);
return -ENODEV;
}
static void __exit sha1_mb_mod_fini(void)
{
int cpu;
struct mcryptd_alg_cstate *cpu_state;
crypto_unregister_ahash(&sha1_mb_async_alg);
crypto_unregister_ahash(&sha1_mb_areq_alg);
for_each_possible_cpu(cpu) {
cpu_state = per_cpu_ptr(sha1_mb_alg_state.alg_cstate, cpu);
kfree(cpu_state->mgr);
}
free_percpu(sha1_mb_alg_state.alg_cstate);
}
module_init(sha1_mb_mod_init);
module_exit(sha1_mb_mod_fini);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, multi buffer accelerated");
MODULE_ALIAS_CRYPTO("sha1");