blob: a893072d0f04634d73da4bab6a7fe4b306088786 [file] [log] [blame]
/*
* Copyright (C) 2012 Texas Instruments Inc
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation version 2.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Contributors:
* Manjunath Hadli <manjunath.hadli@ti.com>
* Prabhakar Lad <prabhakar.lad@ti.com>
*/
#include "dm365_ipipe_hw.h"
#define IPIPE_MODE_CONTINUOUS 0
#define IPIPE_MODE_SINGLE_SHOT 1
static void ipipe_clock_enable(void __iomem *base_addr)
{
/* enable IPIPE MMR for register write access */
regw_ip(base_addr, IPIPE_GCK_MMR_DEFAULT, IPIPE_GCK_MMR);
/* enable the clock wb,cfa,dfc,d2f,pre modules */
regw_ip(base_addr, IPIPE_GCK_PIX_DEFAULT, IPIPE_GCK_PIX);
}
static void
rsz_set_common_params(void __iomem *rsz_base, struct resizer_params *params)
{
struct rsz_common_params *rsz_common = &params->rsz_common;
u32 val;
/* Set mode */
regw_rsz(rsz_base, params->oper_mode, RSZ_SRC_MODE);
/* data source selection and bypass */
val = (rsz_common->passthrough << RSZ_BYPASS_SHIFT) |
rsz_common->source;
regw_rsz(rsz_base, val, RSZ_SRC_FMT0);
/* src image selection */
val = (rsz_common->raw_flip & 1) |
(rsz_common->src_img_fmt << RSZ_SRC_IMG_FMT_SHIFT) |
((rsz_common->y_c & 1) << RSZ_SRC_Y_C_SEL_SHIFT);
regw_rsz(rsz_base, val, RSZ_SRC_FMT1);
regw_rsz(rsz_base, rsz_common->vps & IPIPE_RSZ_VPS_MASK, RSZ_SRC_VPS);
regw_rsz(rsz_base, rsz_common->hps & IPIPE_RSZ_HPS_MASK, RSZ_SRC_HPS);
regw_rsz(rsz_base, rsz_common->vsz & IPIPE_RSZ_VSZ_MASK, RSZ_SRC_VSZ);
regw_rsz(rsz_base, rsz_common->hsz & IPIPE_RSZ_HSZ_MASK, RSZ_SRC_HSZ);
regw_rsz(rsz_base, rsz_common->yuv_y_min, RSZ_YUV_Y_MIN);
regw_rsz(rsz_base, rsz_common->yuv_y_max, RSZ_YUV_Y_MAX);
regw_rsz(rsz_base, rsz_common->yuv_c_min, RSZ_YUV_C_MIN);
regw_rsz(rsz_base, rsz_common->yuv_c_max, RSZ_YUV_C_MAX);
/* chromatic position */
regw_rsz(rsz_base, rsz_common->out_chr_pos, RSZ_YUV_PHS);
}
static void
rsz_set_rsz_regs(void __iomem *rsz_base, unsigned int rsz_id,
struct resizer_params *params)
{
struct resizer_scale_param *rsc_params;
struct rsz_ext_mem_param *ext_mem;
struct resizer_rgb *rgb;
u32 reg_base;
u32 val;
rsc_params = &params->rsz_rsc_param[rsz_id];
rgb = &params->rsz2rgb[rsz_id];
ext_mem = &params->ext_mem_param[rsz_id];
if (rsz_id == RSZ_A) {
val = rsc_params->h_flip << RSZA_H_FLIP_SHIFT;
val |= rsc_params->v_flip << RSZA_V_FLIP_SHIFT;
reg_base = RSZ_EN_A;
} else {
val = rsc_params->h_flip << RSZB_H_FLIP_SHIFT;
val |= rsc_params->v_flip << RSZB_V_FLIP_SHIFT;
reg_base = RSZ_EN_B;
}
/* update flip settings */
regw_rsz(rsz_base, val, RSZ_SEQ);
regw_rsz(rsz_base, params->oper_mode, reg_base + RSZ_MODE);
val = (rsc_params->cen << RSZ_CEN_SHIFT) | rsc_params->yen;
regw_rsz(rsz_base, val, reg_base + RSZ_420);
regw_rsz(rsz_base, rsc_params->i_vps & RSZ_VPS_MASK,
reg_base + RSZ_I_VPS);
regw_rsz(rsz_base, rsc_params->i_hps & RSZ_HPS_MASK,
reg_base + RSZ_I_HPS);
regw_rsz(rsz_base, rsc_params->o_vsz & RSZ_O_VSZ_MASK,
reg_base + RSZ_O_VSZ);
regw_rsz(rsz_base, rsc_params->o_hsz & RSZ_O_HSZ_MASK,
reg_base + RSZ_O_HSZ);
regw_rsz(rsz_base, rsc_params->v_phs_y & RSZ_V_PHS_MASK,
reg_base + RSZ_V_PHS_Y);
regw_rsz(rsz_base, rsc_params->v_phs_c & RSZ_V_PHS_MASK,
reg_base + RSZ_V_PHS_C);
/* keep this additional adjustment to zero for now */
regw_rsz(rsz_base, rsc_params->v_dif & RSZ_V_DIF_MASK,
reg_base + RSZ_V_DIF);
val = (rsc_params->v_typ_y & 1) |
((rsc_params->v_typ_c & 1) << RSZ_TYP_C_SHIFT);
regw_rsz(rsz_base, val, reg_base + RSZ_V_TYP);
val = (rsc_params->v_lpf_int_y & RSZ_LPF_INT_MASK) |
((rsc_params->v_lpf_int_c & RSZ_LPF_INT_MASK) <<
RSZ_LPF_INT_C_SHIFT);
regw_rsz(rsz_base, val, reg_base + RSZ_V_LPF);
regw_rsz(rsz_base, rsc_params->h_phs &
RSZ_H_PHS_MASK, reg_base + RSZ_H_PHS);
regw_rsz(rsz_base, 0, reg_base + RSZ_H_PHS_ADJ);
regw_rsz(rsz_base, rsc_params->h_dif &
RSZ_H_DIF_MASK, reg_base + RSZ_H_DIF);
val = (rsc_params->h_typ_y & 1) |
((rsc_params->h_typ_c & 1) << RSZ_TYP_C_SHIFT);
regw_rsz(rsz_base, val, reg_base + RSZ_H_TYP);
val = (rsc_params->h_lpf_int_y & RSZ_LPF_INT_MASK) |
((rsc_params->h_lpf_int_c & RSZ_LPF_INT_MASK) <<
RSZ_LPF_INT_C_SHIFT);
regw_rsz(rsz_base, val, reg_base + RSZ_H_LPF);
regw_rsz(rsz_base, rsc_params->dscale_en & 1, reg_base + RSZ_DWN_EN);
val = (rsc_params->h_dscale_ave_sz & RSZ_DWN_SCALE_AV_SZ_MASK) |
((rsc_params->v_dscale_ave_sz & RSZ_DWN_SCALE_AV_SZ_MASK) <<
RSZ_DWN_SCALE_AV_SZ_V_SHIFT);
regw_rsz(rsz_base, val, reg_base + RSZ_DWN_AV);
/* setting rgb conversion parameters */
regw_rsz(rsz_base, rgb->rgb_en, reg_base + RSZ_RGB_EN);
val = (rgb->rgb_typ << RSZ_RGB_TYP_SHIFT) |
(rgb->rgb_msk0 << RSZ_RGB_MSK0_SHIFT) |
(rgb->rgb_msk1 << RSZ_RGB_MSK1_SHIFT);
regw_rsz(rsz_base, val, reg_base + RSZ_RGB_TYP);
regw_rsz(rsz_base, rgb->rgb_alpha_val & RSZ_RGB_ALPHA_MASK,
reg_base + RSZ_RGB_BLD);
/* setting external memory parameters */
regw_rsz(rsz_base, ext_mem->rsz_sdr_oft_y, reg_base + RSZ_SDR_Y_OFT);
regw_rsz(rsz_base, ext_mem->rsz_sdr_ptr_s_y,
reg_base + RSZ_SDR_Y_PTR_S);
regw_rsz(rsz_base, ext_mem->rsz_sdr_ptr_e_y,
reg_base + RSZ_SDR_Y_PTR_E);
regw_rsz(rsz_base, ext_mem->rsz_sdr_oft_c, reg_base + RSZ_SDR_C_OFT);
regw_rsz(rsz_base, ext_mem->rsz_sdr_ptr_s_c,
reg_base + RSZ_SDR_C_PTR_S);
regw_rsz(rsz_base, (ext_mem->rsz_sdr_ptr_e_c >> 1),
reg_base + RSZ_SDR_C_PTR_E);
}
/*set the registers of either RSZ0 or RSZ1 */
static void
ipipe_setup_resizer(void __iomem *rsz_base, struct resizer_params *params)
{
/* enable MMR gate to write to Resizer */
regw_rsz(rsz_base, 1, RSZ_GCK_MMR);
/* Enable resizer if it is not in bypass mode */
if (params->rsz_common.passthrough)
regw_rsz(rsz_base, 0, RSZ_GCK_SDR);
else
regw_rsz(rsz_base, 1, RSZ_GCK_SDR);
rsz_set_common_params(rsz_base, params);
regw_rsz(rsz_base, params->rsz_en[RSZ_A], RSZ_EN_A);
if (params->rsz_en[RSZ_A])
/*setting rescale parameters */
rsz_set_rsz_regs(rsz_base, RSZ_A, params);
regw_rsz(rsz_base, params->rsz_en[RSZ_B], RSZ_EN_B);
if (params->rsz_en[RSZ_B])
rsz_set_rsz_regs(rsz_base, RSZ_B, params);
}
static u32 ipipe_get_color_pat(u32 pix)
{
switch (pix) {
case MEDIA_BUS_FMT_SGRBG10_ALAW8_1X8:
case MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8:
case MEDIA_BUS_FMT_SGRBG12_1X12:
return ipipe_sgrbg_pattern;
default:
return ipipe_srggb_pattern;
}
}
static int ipipe_get_data_path(struct vpfe_ipipe_device *ipipe)
{
u32 temp_pix_fmt;
switch (ipipe->formats[IPIPE_PAD_SINK].code) {
case MEDIA_BUS_FMT_SBGGR8_1X8:
case MEDIA_BUS_FMT_SGRBG10_ALAW8_1X8:
case MEDIA_BUS_FMT_SGRBG10_DPCM8_1X8:
case MEDIA_BUS_FMT_SGRBG12_1X12:
temp_pix_fmt = MEDIA_BUS_FMT_SGRBG12_1X12;
break;
default:
temp_pix_fmt = MEDIA_BUS_FMT_UYVY8_2X8;
}
if (temp_pix_fmt == MEDIA_BUS_FMT_SGRBG12_1X12) {
if (ipipe->formats[IPIPE_PAD_SOURCE].code ==
MEDIA_BUS_FMT_SGRBG12_1X12)
return IPIPE_RAW2RAW;
return IPIPE_RAW2YUV;
}
return IPIPE_YUV2YUV;
}
static int get_ipipe_mode(struct vpfe_ipipe_device *ipipe)
{
struct vpfe_device *vpfe_dev = to_vpfe_device(ipipe);
u16 ipipeif_sink = vpfe_dev->vpfe_ipipeif.input;
if (ipipeif_sink == IPIPEIF_INPUT_MEMORY)
return IPIPE_MODE_SINGLE_SHOT;
if (ipipeif_sink == IPIPEIF_INPUT_ISIF)
return IPIPE_MODE_CONTINUOUS;
return -EINVAL;
}
int config_ipipe_hw(struct vpfe_ipipe_device *ipipe)
{
struct vpfe_ipipe_input_config *config = &ipipe->config.input_config;
void __iomem *ipipe_base = ipipe->base_addr;
struct v4l2_mbus_framefmt *outformat;
u32 color_pat;
int ipipe_mode;
u32 data_path;
/* enable clock to IPIPE */
vpss_enable_clock(VPSS_IPIPE_CLOCK, 1);
ipipe_clock_enable(ipipe_base);
if (ipipe->input == IPIPE_INPUT_NONE) {
regw_ip(ipipe_base, 0, IPIPE_SRC_EN);
return 0;
}
ipipe_mode = get_ipipe_mode(ipipe);
if (ipipe_mode < 0) {
pr_err("Failed to get ipipe mode");
return -EINVAL;
}
regw_ip(ipipe_base, ipipe_mode, IPIPE_SRC_MODE);
data_path = ipipe_get_data_path(ipipe);
regw_ip(ipipe_base, data_path, IPIPE_SRC_FMT);
regw_ip(ipipe_base, config->vst & IPIPE_RSZ_VPS_MASK, IPIPE_SRC_VPS);
regw_ip(ipipe_base, config->hst & IPIPE_RSZ_HPS_MASK, IPIPE_SRC_HPS);
outformat = &ipipe->formats[IPIPE_PAD_SOURCE];
regw_ip(ipipe_base, (outformat->height + 1) & IPIPE_RSZ_VSZ_MASK,
IPIPE_SRC_VSZ);
regw_ip(ipipe_base, (outformat->width + 1) & IPIPE_RSZ_HSZ_MASK,
IPIPE_SRC_HSZ);
if (data_path == IPIPE_RAW2YUV ||
data_path == IPIPE_RAW2RAW) {
color_pat =
ipipe_get_color_pat(ipipe->formats[IPIPE_PAD_SINK].code);
regw_ip(ipipe_base, color_pat, IPIPE_SRC_COL);
}
return 0;
}
/*
* config_rsz_hw() - Performs hardware setup of resizer.
*/
int config_rsz_hw(struct vpfe_resizer_device *resizer,
struct resizer_params *config)
{
struct vpfe_device *vpfe_dev = to_vpfe_device(resizer);
void __iomem *ipipe_base = vpfe_dev->vpfe_ipipe.base_addr;
void __iomem *rsz_base = vpfe_dev->vpfe_resizer.base_addr;
/* enable VPSS clock */
vpss_enable_clock(VPSS_IPIPE_CLOCK, 1);
ipipe_clock_enable(ipipe_base);
ipipe_setup_resizer(rsz_base, config);
return 0;
}
static void
rsz_set_y_address(void __iomem *rsz_base, unsigned int address,
unsigned int offset)
{
u32 val;
val = address & SET_LOW_ADDR;
regw_rsz(rsz_base, val, offset + RSZ_SDR_Y_BAD_L);
regw_rsz(rsz_base, val, offset + RSZ_SDR_Y_SAD_L);
val = (address & SET_HIGH_ADDR) >> 16;
regw_rsz(rsz_base, val, offset + RSZ_SDR_Y_BAD_H);
regw_rsz(rsz_base, val, offset + RSZ_SDR_Y_SAD_H);
}
static void
rsz_set_c_address(void __iomem *rsz_base, unsigned int address,
unsigned int offset)
{
u32 val;
val = address & SET_LOW_ADDR;
regw_rsz(rsz_base, val, offset + RSZ_SDR_C_BAD_L);
regw_rsz(rsz_base, val, offset + RSZ_SDR_C_SAD_L);
val = (address & SET_HIGH_ADDR) >> 16;
regw_rsz(rsz_base, val, offset + RSZ_SDR_C_BAD_H);
regw_rsz(rsz_base, val, offset + RSZ_SDR_C_SAD_H);
}
/*
* resizer_set_outaddr() - set the address for given resize_no
* @rsz_base: resizer base address
* @params: pointer to ipipe_params structure
* @resize_no: 0 - Resizer-A, 1 - Resizer B
* @address: the address to set
*/
int
resizer_set_outaddr(void __iomem *rsz_base, struct resizer_params *params,
int resize_no, unsigned int address)
{
struct resizer_scale_param *rsc_param;
struct rsz_ext_mem_param *mem_param;
struct rsz_common_params *rsz_common;
unsigned int rsz_start_add;
unsigned int val;
if (resize_no != RSZ_A && resize_no != RSZ_B)
return -EINVAL;
mem_param = &params->ext_mem_param[resize_no];
rsc_param = &params->rsz_rsc_param[resize_no];
rsz_common = &params->rsz_common;
if (resize_no == RSZ_A)
rsz_start_add = RSZ_EN_A;
else
rsz_start_add = RSZ_EN_B;
/* y_c = 0 for y, = 1 for c */
if (rsz_common->src_img_fmt == RSZ_IMG_420) {
if (rsz_common->y_c) {
/* C channel */
val = address + mem_param->flip_ofst_c;
rsz_set_c_address(rsz_base, val, rsz_start_add);
} else {
val = address + mem_param->flip_ofst_y;
rsz_set_y_address(rsz_base, val, rsz_start_add);
}
} else {
if (rsc_param->cen && rsc_param->yen) {
/* 420 */
val = address + mem_param->c_offset +
mem_param->flip_ofst_c +
mem_param->user_y_ofst +
mem_param->user_c_ofst;
if (resize_no == RSZ_B)
val +=
params->ext_mem_param[RSZ_A].user_y_ofst +
params->ext_mem_param[RSZ_A].user_c_ofst;
/* set C address */
rsz_set_c_address(rsz_base, val, rsz_start_add);
}
val = address + mem_param->flip_ofst_y + mem_param->user_y_ofst;
if (resize_no == RSZ_B)
val += params->ext_mem_param[RSZ_A].user_y_ofst +
params->ext_mem_param[RSZ_A].user_c_ofst;
/* set Y address */
rsz_set_y_address(rsz_base, val, rsz_start_add);
}
/* resizer must be enabled */
regw_rsz(rsz_base, params->rsz_en[resize_no], rsz_start_add);
return 0;
}
void
ipipe_set_lutdpc_regs(void __iomem *base_addr, void __iomem *isp5_base_addr,
struct vpfe_ipipe_lutdpc *dpc)
{
u32 max_tbl_size = LUT_DPC_MAX_SIZE >> 1;
u32 lut_start_addr = DPC_TB0_START_ADDR;
u32 val;
u32 count;
ipipe_clock_enable(base_addr);
regw_ip(base_addr, dpc->en, DPC_LUT_EN);
if (dpc->en != 1)
return;
val = LUTDPC_TBL_256_EN | (dpc->repl_white & 1);
regw_ip(base_addr, val, DPC_LUT_SEL);
regw_ip(base_addr, LUT_DPC_START_ADDR, DPC_LUT_ADR);
regw_ip(base_addr, dpc->dpc_size, DPC_LUT_SIZ & LUT_DPC_SIZE_MASK);
if (dpc->table == NULL)
return;
for (count = 0; count < dpc->dpc_size; count++) {
if (count >= max_tbl_size)
lut_start_addr = DPC_TB1_START_ADDR;
val = (dpc->table[count].horz_pos & LUT_DPC_H_POS_MASK) |
((dpc->table[count].vert_pos & LUT_DPC_V_POS_MASK) <<
LUT_DPC_V_POS_SHIFT) | (dpc->table[count].method <<
LUT_DPC_CORR_METH_SHIFT);
w_ip_table(isp5_base_addr, val, (lut_start_addr +
((count % max_tbl_size) << 2)));
}
}
static void
set_dpc_thresholds(void __iomem *base_addr,
struct vpfe_ipipe_otfdpc_2_0_cfg *dpc_thr)
{
regw_ip(base_addr, dpc_thr->corr_thr.r & OTFDPC_DPC2_THR_MASK,
DPC_OTF_2C_THR_R);
regw_ip(base_addr, dpc_thr->corr_thr.gr & OTFDPC_DPC2_THR_MASK,
DPC_OTF_2C_THR_GR);
regw_ip(base_addr, dpc_thr->corr_thr.gb & OTFDPC_DPC2_THR_MASK,
DPC_OTF_2C_THR_GB);
regw_ip(base_addr, dpc_thr->corr_thr.b & OTFDPC_DPC2_THR_MASK,
DPC_OTF_2C_THR_B);
regw_ip(base_addr, dpc_thr->det_thr.r & OTFDPC_DPC2_THR_MASK,
DPC_OTF_2D_THR_R);
regw_ip(base_addr, dpc_thr->det_thr.gr & OTFDPC_DPC2_THR_MASK,
DPC_OTF_2D_THR_GR);
regw_ip(base_addr, dpc_thr->det_thr.gb & OTFDPC_DPC2_THR_MASK,
DPC_OTF_2D_THR_GB);
regw_ip(base_addr, dpc_thr->det_thr.b & OTFDPC_DPC2_THR_MASK,
DPC_OTF_2D_THR_B);
}
void ipipe_set_otfdpc_regs(void __iomem *base_addr,
struct vpfe_ipipe_otfdpc *otfdpc)
{
struct vpfe_ipipe_otfdpc_2_0_cfg *dpc_2_0 = &otfdpc->alg_cfg.dpc_2_0;
struct vpfe_ipipe_otfdpc_3_0_cfg *dpc_3_0 = &otfdpc->alg_cfg.dpc_3_0;
u32 val;
ipipe_clock_enable(base_addr);
regw_ip(base_addr, (otfdpc->en & 1), DPC_OTF_EN);
if (!otfdpc->en)
return;
/* dpc enabled */
val = (otfdpc->det_method << OTF_DET_METHOD_SHIFT) | otfdpc->alg;
regw_ip(base_addr, val, DPC_OTF_TYP);
if (otfdpc->det_method == VPFE_IPIPE_DPC_OTF_MIN_MAX) {
/* ALG= 0, TYP = 0, DPC_OTF_2D_THR_[x]=0
* DPC_OTF_2C_THR_[x] = Maximum thresohld
* MinMax method
*/
dpc_2_0->det_thr.r = dpc_2_0->det_thr.gb =
dpc_2_0->det_thr.gr = dpc_2_0->det_thr.b = 0;
set_dpc_thresholds(base_addr, dpc_2_0);
return;
}
/* MinMax2 */
if (otfdpc->alg == VPFE_IPIPE_OTFDPC_2_0) {
set_dpc_thresholds(base_addr, dpc_2_0);
return;
}
regw_ip(base_addr, dpc_3_0->act_adj_shf &
OTF_DPC3_0_SHF_MASK, DPC_OTF_3_SHF);
/* Detection thresholds */
regw_ip(base_addr, ((dpc_3_0->det_thr & OTF_DPC3_0_THR_MASK) <<
OTF_DPC3_0_THR_SHIFT), DPC_OTF_3D_THR);
regw_ip(base_addr, dpc_3_0->det_slp &
OTF_DPC3_0_SLP_MASK, DPC_OTF_3D_SLP);
regw_ip(base_addr, dpc_3_0->det_thr_min &
OTF_DPC3_0_DET_MASK, DPC_OTF_3D_MIN);
regw_ip(base_addr, dpc_3_0->det_thr_max &
OTF_DPC3_0_DET_MASK, DPC_OTF_3D_MAX);
/* Correction thresholds */
regw_ip(base_addr, ((dpc_3_0->corr_thr & OTF_DPC3_0_THR_MASK) <<
OTF_DPC3_0_THR_SHIFT), DPC_OTF_3C_THR);
regw_ip(base_addr, dpc_3_0->corr_slp &
OTF_DPC3_0_SLP_MASK, DPC_OTF_3C_SLP);
regw_ip(base_addr, dpc_3_0->corr_thr_min &
OTF_DPC3_0_CORR_MASK, DPC_OTF_3C_MIN);
regw_ip(base_addr, dpc_3_0->corr_thr_max &
OTF_DPC3_0_CORR_MASK, DPC_OTF_3C_MAX);
}
/* 2D Noise filter */
void
ipipe_set_d2f_regs(void __iomem *base_addr, unsigned int id,
struct vpfe_ipipe_nf *noise_filter)
{
u32 offset = D2F_1ST;
int count;
u32 val;
if (id == IPIPE_D2F_2ND)
offset = D2F_2ND;
ipipe_clock_enable(base_addr);
regw_ip(base_addr, noise_filter->en & 1, offset + D2F_EN);
if (!noise_filter->en)
return;
/*noise filter enabled */
/* Combine all the fields to make D2F_CFG register of IPIPE */
val = ((noise_filter->spread_val & D2F_SPR_VAL_MASK) <<
D2F_SPR_VAL_SHIFT) | ((noise_filter->shft_val &
D2F_SHFT_VAL_MASK) << D2F_SHFT_VAL_SHIFT) |
(noise_filter->gr_sample_meth << D2F_SAMPLE_METH_SHIFT) |
((noise_filter->apply_lsc_gain & 1) <<
D2F_APPLY_LSC_GAIN_SHIFT) | D2F_USE_SPR_REG_VAL;
regw_ip(base_addr, val, offset + D2F_TYP);
/* edge detection minimum */
regw_ip(base_addr, noise_filter->edge_det_min_thr &
D2F_EDGE_DET_THR_MASK, offset + D2F_EDG_MIN);
/* edge detection maximum */
regw_ip(base_addr, noise_filter->edge_det_max_thr &
D2F_EDGE_DET_THR_MASK, offset + D2F_EDG_MAX);
for (count = 0; count < VPFE_IPIPE_NF_STR_TABLE_SIZE; count++)
regw_ip(base_addr,
(noise_filter->str[count] & D2F_STR_VAL_MASK),
offset + D2F_STR + count * 4);
for (count = 0; count < VPFE_IPIPE_NF_THR_TABLE_SIZE; count++)
regw_ip(base_addr, noise_filter->thr[count] & D2F_THR_VAL_MASK,
offset + D2F_THR + count * 4);
}
#define IPIPE_U8Q5(decimal, integer) \
(((decimal & 0x1f) | ((integer & 0x7) << 5)))
/* Green Imbalance Correction */
void ipipe_set_gic_regs(void __iomem *base_addr, struct vpfe_ipipe_gic *gic)
{
u32 val;
ipipe_clock_enable(base_addr);
regw_ip(base_addr, gic->en & 1, GIC_EN);
if (!gic->en)
return;
/*gic enabled */
val = (gic->wt_fn_type << GIC_TYP_SHIFT) |
(gic->thr_sel << GIC_THR_SEL_SHIFT) |
((gic->apply_lsc_gain & 1) << GIC_APPLY_LSC_GAIN_SHIFT);
regw_ip(base_addr, val, GIC_TYP);
regw_ip(base_addr, gic->gain & GIC_GAIN_MASK, GIC_GAN);
if (gic->gic_alg != VPFE_IPIPE_GIC_ALG_ADAPT_GAIN) {
/* Constant Gain. Set threshold to maximum */
regw_ip(base_addr, GIC_THR_MASK, GIC_THR);
return;
}
if (gic->thr_sel == VPFE_IPIPE_GIC_THR_REG) {
regw_ip(base_addr, gic->thr & GIC_THR_MASK, GIC_THR);
regw_ip(base_addr, gic->slope & GIC_SLOPE_MASK, GIC_SLP);
} else {
/* Use NF thresholds */
val = IPIPE_U8Q5(gic->nf2_thr_gain.decimal,
gic->nf2_thr_gain.integer);
regw_ip(base_addr, val, GIC_NFGAN);
}
}
#define IPIPE_U13Q9(decimal, integer) \
(((decimal & 0x1ff) | ((integer & 0xf) << 9)))
/* White balance */
void ipipe_set_wb_regs(void __iomem *base_addr, struct vpfe_ipipe_wb *wb)
{
u32 val;
ipipe_clock_enable(base_addr);
/* Ofsets. S12 */
regw_ip(base_addr, wb->ofst_r & WB_OFFSET_MASK, WB2_OFT_R);
regw_ip(base_addr, wb->ofst_gr & WB_OFFSET_MASK, WB2_OFT_GR);
regw_ip(base_addr, wb->ofst_gb & WB_OFFSET_MASK, WB2_OFT_GB);
regw_ip(base_addr, wb->ofst_b & WB_OFFSET_MASK, WB2_OFT_B);
/* Gains. U13Q9 */
val = IPIPE_U13Q9(wb->gain_r.decimal, wb->gain_r.integer);
regw_ip(base_addr, val, WB2_WGN_R);
val = IPIPE_U13Q9(wb->gain_gr.decimal, wb->gain_gr.integer);
regw_ip(base_addr, val, WB2_WGN_GR);
val = IPIPE_U13Q9(wb->gain_gb.decimal, wb->gain_gb.integer);
regw_ip(base_addr, val, WB2_WGN_GB);
val = IPIPE_U13Q9(wb->gain_b.decimal, wb->gain_b.integer);
regw_ip(base_addr, val, WB2_WGN_B);
}
/* CFA */
void ipipe_set_cfa_regs(void __iomem *base_addr, struct vpfe_ipipe_cfa *cfa)
{
ipipe_clock_enable(base_addr);
regw_ip(base_addr, cfa->alg, CFA_MODE);
regw_ip(base_addr, cfa->hpf_thr_2dir & CFA_HPF_THR_2DIR_MASK,
CFA_2DIR_HPF_THR);
regw_ip(base_addr, cfa->hpf_slp_2dir & CFA_HPF_SLOPE_2DIR_MASK,
CFA_2DIR_HPF_SLP);
regw_ip(base_addr, cfa->hp_mix_thr_2dir & CFA_HPF_MIX_THR_2DIR_MASK,
CFA_2DIR_MIX_THR);
regw_ip(base_addr, cfa->hp_mix_slope_2dir & CFA_HPF_MIX_SLP_2DIR_MASK,
CFA_2DIR_MIX_SLP);
regw_ip(base_addr, cfa->dir_thr_2dir & CFA_DIR_THR_2DIR_MASK,
CFA_2DIR_DIR_THR);
regw_ip(base_addr, cfa->dir_slope_2dir & CFA_DIR_SLP_2DIR_MASK,
CFA_2DIR_DIR_SLP);
regw_ip(base_addr, cfa->nd_wt_2dir & CFA_ND_WT_2DIR_MASK,
CFA_2DIR_NDWT);
regw_ip(base_addr, cfa->hue_fract_daa & CFA_DAA_HUE_FRA_MASK,
CFA_MONO_HUE_FRA);
regw_ip(base_addr, cfa->edge_thr_daa & CFA_DAA_EDG_THR_MASK,
CFA_MONO_EDG_THR);
regw_ip(base_addr, cfa->thr_min_daa & CFA_DAA_THR_MIN_MASK,
CFA_MONO_THR_MIN);
regw_ip(base_addr, cfa->thr_slope_daa & CFA_DAA_THR_SLP_MASK,
CFA_MONO_THR_SLP);
regw_ip(base_addr, cfa->slope_min_daa & CFA_DAA_SLP_MIN_MASK,
CFA_MONO_SLP_MIN);
regw_ip(base_addr, cfa->slope_slope_daa & CFA_DAA_SLP_SLP_MASK,
CFA_MONO_SLP_SLP);
regw_ip(base_addr, cfa->lp_wt_daa & CFA_DAA_LP_WT_MASK,
CFA_MONO_LPWT);
}
void
ipipe_set_rgb2rgb_regs(void __iomem *base_addr, unsigned int id,
struct vpfe_ipipe_rgb2rgb *rgb)
{
u32 offset_mask = RGB2RGB_1_OFST_MASK;
u32 offset = RGB1_MUL_BASE;
u32 integ_mask = 0xf;
u32 val;
ipipe_clock_enable(base_addr);
if (id == IPIPE_RGB2RGB_2) {
/*
* For second RGB module, gain integer is 3 bits instead
* of 4, offset has 11 bits insread of 13
*/
offset = RGB2_MUL_BASE;
integ_mask = 0x7;
offset_mask = RGB2RGB_2_OFST_MASK;
}
/* Gains */
val = (rgb->coef_rr.decimal & 0xff) |
((rgb->coef_rr.integer & integ_mask) << 8);
regw_ip(base_addr, val, offset + RGB_MUL_RR);
val = (rgb->coef_gr.decimal & 0xff) |
((rgb->coef_gr.integer & integ_mask) << 8);
regw_ip(base_addr, val, offset + RGB_MUL_GR);
val = (rgb->coef_br.decimal & 0xff) |
((rgb->coef_br.integer & integ_mask) << 8);
regw_ip(base_addr, val, offset + RGB_MUL_BR);
val = (rgb->coef_rg.decimal & 0xff) |
((rgb->coef_rg.integer & integ_mask) << 8);
regw_ip(base_addr, val, offset + RGB_MUL_RG);
val = (rgb->coef_gg.decimal & 0xff) |
((rgb->coef_gg.integer & integ_mask) << 8);
regw_ip(base_addr, val, offset + RGB_MUL_GG);
val = (rgb->coef_bg.decimal & 0xff) |
((rgb->coef_bg.integer & integ_mask) << 8);
regw_ip(base_addr, val, offset + RGB_MUL_BG);
val = (rgb->coef_rb.decimal & 0xff) |
((rgb->coef_rb.integer & integ_mask) << 8);
regw_ip(base_addr, val, offset + RGB_MUL_RB);
val = (rgb->coef_gb.decimal & 0xff) |
((rgb->coef_gb.integer & integ_mask) << 8);
regw_ip(base_addr, val, offset + RGB_MUL_GB);
val = (rgb->coef_bb.decimal & 0xff) |
((rgb->coef_bb.integer & integ_mask) << 8);
regw_ip(base_addr, val, offset + RGB_MUL_BB);
/* Offsets */
regw_ip(base_addr, rgb->out_ofst_r & offset_mask, offset + RGB_OFT_OR);
regw_ip(base_addr, rgb->out_ofst_g & offset_mask, offset + RGB_OFT_OG);
regw_ip(base_addr, rgb->out_ofst_b & offset_mask, offset + RGB_OFT_OB);
}
static void
ipipe_update_gamma_tbl(void __iomem *isp5_base_addr,
struct vpfe_ipipe_gamma_entry *table, int size, u32 addr)
{
int count;
u32 val;
for (count = 0; count < size; count++) {
val = table[count].slope & GAMMA_MASK;
val |= (table[count].offset & GAMMA_MASK) << GAMMA_SHIFT;
w_ip_table(isp5_base_addr, val, (addr + (count * 4)));
}
}
void
ipipe_set_gamma_regs(void __iomem *base_addr, void __iomem *isp5_base_addr,
struct vpfe_ipipe_gamma *gamma)
{
int table_size;
u32 val;
ipipe_clock_enable(base_addr);
val = (gamma->bypass_r << GAMMA_BYPR_SHIFT) |
(gamma->bypass_b << GAMMA_BYPG_SHIFT) |
(gamma->bypass_g << GAMMA_BYPB_SHIFT) |
(gamma->tbl_sel << GAMMA_TBL_SEL_SHIFT) |
(gamma->tbl_size << GAMMA_TBL_SIZE_SHIFT);
regw_ip(base_addr, val, GMM_CFG);
if (gamma->tbl_sel != VPFE_IPIPE_GAMMA_TBL_RAM)
return;
table_size = gamma->tbl_size;
if (!gamma->bypass_r && gamma->table_r != NULL)
ipipe_update_gamma_tbl(isp5_base_addr, gamma->table_r,
table_size, GAMMA_R_START_ADDR);
if (!gamma->bypass_b && gamma->table_b != NULL)
ipipe_update_gamma_tbl(isp5_base_addr, gamma->table_b,
table_size, GAMMA_B_START_ADDR);
if (!gamma->bypass_g && gamma->table_g != NULL)
ipipe_update_gamma_tbl(isp5_base_addr, gamma->table_g,
table_size, GAMMA_G_START_ADDR);
}
void
ipipe_set_3d_lut_regs(void __iomem *base_addr, void __iomem *isp5_base_addr,
struct vpfe_ipipe_3d_lut *lut_3d)
{
struct vpfe_ipipe_3d_lut_entry *tbl;
u32 bnk_index;
u32 tbl_index;
u32 val;
u32 i;
ipipe_clock_enable(base_addr);
regw_ip(base_addr, lut_3d->en, D3LUT_EN);
if (!lut_3d->en)
return;
/* lut_3d enabled */
if (!lut_3d->table)
return;
/* valied table */
tbl = lut_3d->table;
for (i = 0; i < VPFE_IPIPE_MAX_SIZE_3D_LUT; i++) {
/*
* Each entry has 0-9 (B), 10-19 (G) and
* 20-29 R values
*/
val = tbl[i].b & D3_LUT_ENTRY_MASK;
val |= (tbl[i].g & D3_LUT_ENTRY_MASK) <<
D3_LUT_ENTRY_G_SHIFT;
val |= (tbl[i].r & D3_LUT_ENTRY_MASK) <<
D3_LUT_ENTRY_R_SHIFT;
bnk_index = i % 4;
tbl_index = i >> 2;
tbl_index <<= 2;
if (bnk_index == 0)
w_ip_table(isp5_base_addr, val,
tbl_index + D3L_TB0_START_ADDR);
else if (bnk_index == 1)
w_ip_table(isp5_base_addr, val,
tbl_index + D3L_TB1_START_ADDR);
else if (bnk_index == 2)
w_ip_table(isp5_base_addr, val,
tbl_index + D3L_TB2_START_ADDR);
else
w_ip_table(isp5_base_addr, val,
tbl_index + D3L_TB3_START_ADDR);
}
}
/* Lumina adjustments */
void
ipipe_set_lum_adj_regs(void __iomem *base_addr, struct ipipe_lum_adj *lum_adj)
{
u32 val;
ipipe_clock_enable(base_addr);
/* combine fields of YUV_ADJ to set brightness and contrast */
val = lum_adj->contrast << LUM_ADJ_CONTR_SHIFT |
lum_adj->brightness << LUM_ADJ_BRIGHT_SHIFT;
regw_ip(base_addr, val, YUV_ADJ);
}
#define IPIPE_S12Q8(decimal, integer) \
(((decimal & 0xff) | ((integer & 0xf) << 8)))
void ipipe_set_rgb2ycbcr_regs(void __iomem *base_addr,
struct vpfe_ipipe_rgb2yuv *yuv)
{
u32 val;
/* S10Q8 */
ipipe_clock_enable(base_addr);
val = IPIPE_S12Q8(yuv->coef_ry.decimal, yuv->coef_ry.integer);
regw_ip(base_addr, val, YUV_MUL_RY);
val = IPIPE_S12Q8(yuv->coef_gy.decimal, yuv->coef_gy.integer);
regw_ip(base_addr, val, YUV_MUL_GY);
val = IPIPE_S12Q8(yuv->coef_by.decimal, yuv->coef_by.integer);
regw_ip(base_addr, val, YUV_MUL_BY);
val = IPIPE_S12Q8(yuv->coef_rcb.decimal, yuv->coef_rcb.integer);
regw_ip(base_addr, val, YUV_MUL_RCB);
val = IPIPE_S12Q8(yuv->coef_gcb.decimal, yuv->coef_gcb.integer);
regw_ip(base_addr, val, YUV_MUL_GCB);
val = IPIPE_S12Q8(yuv->coef_bcb.decimal, yuv->coef_bcb.integer);
regw_ip(base_addr, val, YUV_MUL_BCB);
val = IPIPE_S12Q8(yuv->coef_rcr.decimal, yuv->coef_rcr.integer);
regw_ip(base_addr, val, YUV_MUL_RCR);
val = IPIPE_S12Q8(yuv->coef_gcr.decimal, yuv->coef_gcr.integer);
regw_ip(base_addr, val, YUV_MUL_GCR);
val = IPIPE_S12Q8(yuv->coef_bcr.decimal, yuv->coef_bcr.integer);
regw_ip(base_addr, val, YUV_MUL_BCR);
regw_ip(base_addr, yuv->out_ofst_y & RGB2YCBCR_OFST_MASK, YUV_OFT_Y);
regw_ip(base_addr, yuv->out_ofst_cb & RGB2YCBCR_OFST_MASK, YUV_OFT_CB);
regw_ip(base_addr, yuv->out_ofst_cr & RGB2YCBCR_OFST_MASK, YUV_OFT_CR);
}
/* YUV 422 conversion */
void
ipipe_set_yuv422_conv_regs(void __iomem *base_addr,
struct vpfe_ipipe_yuv422_conv *conv)
{
u32 val;
ipipe_clock_enable(base_addr);
/* Combine all the fields to make YUV_PHS register of IPIPE */
val = (conv->chrom_pos << 0) | (conv->en_chrom_lpf << 1);
regw_ip(base_addr, val, YUV_PHS);
}
void
ipipe_set_gbce_regs(void __iomem *base_addr, void __iomem *isp5_base_addr,
struct vpfe_ipipe_gbce *gbce)
{
unsigned int count;
u32 mask = GBCE_Y_VAL_MASK;
if (gbce->type == VPFE_IPIPE_GBCE_GAIN_TBL)
mask = GBCE_GAIN_VAL_MASK;
ipipe_clock_enable(base_addr);
regw_ip(base_addr, gbce->en & 1, GBCE_EN);
if (!gbce->en)
return;
regw_ip(base_addr, gbce->type, GBCE_TYP);
if (!gbce->table)
return;
for (count = 0; count < VPFE_IPIPE_MAX_SIZE_GBCE_LUT; count += 2)
w_ip_table(isp5_base_addr, ((gbce->table[count + 1] & mask) <<
GBCE_ENTRY_SHIFT) | (gbce->table[count] & mask),
((count/2) << 2) + GBCE_TB_START_ADDR);
}
void
ipipe_set_ee_regs(void __iomem *base_addr, void __iomem *isp5_base_addr,
struct vpfe_ipipe_yee *ee)
{
unsigned int count;
u32 val;
ipipe_clock_enable(base_addr);
regw_ip(base_addr, ee->en, YEE_EN);
if (!ee->en)
return;
val = ee->en_halo_red & 1;
val |= ee->merge_meth << YEE_HALO_RED_EN_SHIFT;
regw_ip(base_addr, val, YEE_TYP);
regw_ip(base_addr, ee->hpf_shft, YEE_SHF);
regw_ip(base_addr, ee->hpf_coef_00 & YEE_COEF_MASK, YEE_MUL_00);
regw_ip(base_addr, ee->hpf_coef_01 & YEE_COEF_MASK, YEE_MUL_01);
regw_ip(base_addr, ee->hpf_coef_02 & YEE_COEF_MASK, YEE_MUL_02);
regw_ip(base_addr, ee->hpf_coef_10 & YEE_COEF_MASK, YEE_MUL_10);
regw_ip(base_addr, ee->hpf_coef_11 & YEE_COEF_MASK, YEE_MUL_11);
regw_ip(base_addr, ee->hpf_coef_12 & YEE_COEF_MASK, YEE_MUL_12);
regw_ip(base_addr, ee->hpf_coef_20 & YEE_COEF_MASK, YEE_MUL_20);
regw_ip(base_addr, ee->hpf_coef_21 & YEE_COEF_MASK, YEE_MUL_21);
regw_ip(base_addr, ee->hpf_coef_22 & YEE_COEF_MASK, YEE_MUL_22);
regw_ip(base_addr, ee->yee_thr & YEE_THR_MASK, YEE_THR);
regw_ip(base_addr, ee->es_gain & YEE_ES_GAIN_MASK, YEE_E_GAN);
regw_ip(base_addr, ee->es_thr1 & YEE_ES_THR1_MASK, YEE_E_THR1);
regw_ip(base_addr, ee->es_thr2 & YEE_THR_MASK, YEE_E_THR2);
regw_ip(base_addr, ee->es_gain_grad & YEE_THR_MASK, YEE_G_GAN);
regw_ip(base_addr, ee->es_ofst_grad & YEE_THR_MASK, YEE_G_OFT);
if (ee->table == NULL)
return;
for (count = 0; count < VPFE_IPIPE_MAX_SIZE_YEE_LUT; count += 2)
w_ip_table(isp5_base_addr, ((ee->table[count + 1] &
YEE_ENTRY_MASK) << YEE_ENTRY_SHIFT) |
(ee->table[count] & YEE_ENTRY_MASK),
((count/2) << 2) + YEE_TB_START_ADDR);
}
/* Chromatic Artifact Correction. CAR */
static void ipipe_set_mf(void __iomem *base_addr)
{
/* typ to dynamic switch */
regw_ip(base_addr, VPFE_IPIPE_CAR_DYN_SWITCH, CAR_TYP);
/* Set SW0 to maximum */
regw_ip(base_addr, CAR_MF_THR, CAR_SW);
}
static void
ipipe_set_gain_ctrl(void __iomem *base_addr, struct vpfe_ipipe_car *car)
{
regw_ip(base_addr, VPFE_IPIPE_CAR_CHR_GAIN_CTRL, CAR_TYP);
regw_ip(base_addr, car->hpf, CAR_HPF_TYP);
regw_ip(base_addr, car->hpf_shft & CAR_HPF_SHIFT_MASK, CAR_HPF_SHF);
regw_ip(base_addr, car->hpf_thr, CAR_HPF_THR);
regw_ip(base_addr, car->gain1.gain, CAR_GN1_GAN);
regw_ip(base_addr, car->gain1.shft & CAR_GAIN1_SHFT_MASK, CAR_GN1_SHF);
regw_ip(base_addr, car->gain1.gain_min & CAR_GAIN_MIN_MASK,
CAR_GN1_MIN);
regw_ip(base_addr, car->gain2.gain, CAR_GN2_GAN);
regw_ip(base_addr, car->gain2.shft & CAR_GAIN2_SHFT_MASK, CAR_GN2_SHF);
regw_ip(base_addr, car->gain2.gain_min & CAR_GAIN_MIN_MASK,
CAR_GN2_MIN);
}
void ipipe_set_car_regs(void __iomem *base_addr, struct vpfe_ipipe_car *car)
{
u32 val;
ipipe_clock_enable(base_addr);
regw_ip(base_addr, car->en, CAR_EN);
if (!car->en)
return;
switch (car->meth) {
case VPFE_IPIPE_CAR_MED_FLTR:
ipipe_set_mf(base_addr);
break;
case VPFE_IPIPE_CAR_CHR_GAIN_CTRL:
ipipe_set_gain_ctrl(base_addr, car);
break;
default:
/* Dynamic switch between MF and Gain Ctrl. */
ipipe_set_mf(base_addr);
ipipe_set_gain_ctrl(base_addr, car);
/* Set the threshold for switching between
* the two Here we overwrite the MF SW0 value
*/
regw_ip(base_addr, VPFE_IPIPE_CAR_DYN_SWITCH, CAR_TYP);
val = car->sw1;
val <<= CAR_SW1_SHIFT;
val |= car->sw0;
regw_ip(base_addr, val, CAR_SW);
}
}
/* Chromatic Gain Suppression */
void ipipe_set_cgs_regs(void __iomem *base_addr, struct vpfe_ipipe_cgs *cgs)
{
ipipe_clock_enable(base_addr);
regw_ip(base_addr, cgs->en, CGS_EN);
if (!cgs->en)
return;
/* Set the bright side parameters */
regw_ip(base_addr, cgs->h_thr, CGS_GN1_H_THR);
regw_ip(base_addr, cgs->h_slope, CGS_GN1_H_GAN);
regw_ip(base_addr, cgs->h_shft & CAR_SHIFT_MASK, CGS_GN1_H_SHF);
regw_ip(base_addr, cgs->h_min, CGS_GN1_H_MIN);
}
void rsz_src_enable(void __iomem *rsz_base, int enable)
{
regw_rsz(rsz_base, enable, RSZ_SRC_EN);
}
int rsz_enable(void __iomem *rsz_base, int rsz_id, int enable)
{
if (rsz_id == RSZ_A) {
regw_rsz(rsz_base, enable, RSZ_EN_A);
/* We always enable RSZ_A. RSZ_B is enable upon request from
* application. So enable RSZ_SRC_EN along with RSZ_A
*/
regw_rsz(rsz_base, enable, RSZ_SRC_EN);
} else if (rsz_id == RSZ_B) {
regw_rsz(rsz_base, enable, RSZ_EN_B);
} else {
BUG();
}
return 0;
}