blob: d95fdcc26f4b6f38cffb4f7a727d3c7456cbb357 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* numa.c
*
* numa: Simulate NUMA-sensitive workload and measure their NUMA performance
*/
#include <inttypes.h>
/* For the CLR_() macros */
#include <pthread.h>
#include "../perf.h"
#include "../builtin.h"
#include "../util/util.h"
#include <subcmd/parse-options.h>
#include "../util/cloexec.h"
#include "bench.h"
#include <errno.h>
#include <sched.h>
#include <stdio.h>
#include <assert.h>
#include <malloc.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/mman.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/wait.h>
#include <sys/prctl.h>
#include <sys/types.h>
#include <linux/kernel.h>
#include <linux/time64.h>
#include <numa.h>
#include <numaif.h>
/*
* Regular printout to the terminal, supressed if -q is specified:
*/
#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
/*
* Debug printf:
*/
#undef dprintf
#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
struct thread_data {
int curr_cpu;
cpu_set_t bind_cpumask;
int bind_node;
u8 *process_data;
int process_nr;
int thread_nr;
int task_nr;
unsigned int loops_done;
u64 val;
u64 runtime_ns;
u64 system_time_ns;
u64 user_time_ns;
double speed_gbs;
pthread_mutex_t *process_lock;
};
/* Parameters set by options: */
struct params {
/* Startup synchronization: */
bool serialize_startup;
/* Task hierarchy: */
int nr_proc;
int nr_threads;
/* Working set sizes: */
const char *mb_global_str;
const char *mb_proc_str;
const char *mb_proc_locked_str;
const char *mb_thread_str;
double mb_global;
double mb_proc;
double mb_proc_locked;
double mb_thread;
/* Access patterns to the working set: */
bool data_reads;
bool data_writes;
bool data_backwards;
bool data_zero_memset;
bool data_rand_walk;
u32 nr_loops;
u32 nr_secs;
u32 sleep_usecs;
/* Working set initialization: */
bool init_zero;
bool init_random;
bool init_cpu0;
/* Misc options: */
int show_details;
int run_all;
int thp;
long bytes_global;
long bytes_process;
long bytes_process_locked;
long bytes_thread;
int nr_tasks;
bool show_quiet;
bool show_convergence;
bool measure_convergence;
int perturb_secs;
int nr_cpus;
int nr_nodes;
/* Affinity options -C and -N: */
char *cpu_list_str;
char *node_list_str;
};
/* Global, read-writable area, accessible to all processes and threads: */
struct global_info {
u8 *data;
pthread_mutex_t startup_mutex;
int nr_tasks_started;
pthread_mutex_t startup_done_mutex;
pthread_mutex_t start_work_mutex;
int nr_tasks_working;
pthread_mutex_t stop_work_mutex;
u64 bytes_done;
struct thread_data *threads;
/* Convergence latency measurement: */
bool all_converged;
bool stop_work;
int print_once;
struct params p;
};
static struct global_info *g = NULL;
static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
struct params p0;
static const struct option options[] = {
OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"),
OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"),
OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"),
OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"),
OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"),
OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"),
OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"),
OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"),
OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"),
OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"),
OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"),
OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"),
OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"),
OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"),
OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"),
OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"),
OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"),
OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"),
OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
"convergence is reached when each process (all its threads) is running on a single NUMA node."),
OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"),
OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
/* Special option string parsing callbacks: */
OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
"bind the first N tasks to these specific cpus (the rest is unbound)",
parse_cpus_opt),
OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
"bind the first N tasks to these specific memory nodes (the rest is unbound)",
parse_nodes_opt),
OPT_END()
};
static const char * const bench_numa_usage[] = {
"perf bench numa <options>",
NULL
};
static const char * const numa_usage[] = {
"perf bench numa mem [<options>]",
NULL
};
static cpu_set_t bind_to_cpu(int target_cpu)
{
cpu_set_t orig_mask, mask;
int ret;
ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
BUG_ON(ret);
CPU_ZERO(&mask);
if (target_cpu == -1) {
int cpu;
for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
CPU_SET(cpu, &mask);
} else {
BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
CPU_SET(target_cpu, &mask);
}
ret = sched_setaffinity(0, sizeof(mask), &mask);
BUG_ON(ret);
return orig_mask;
}
static cpu_set_t bind_to_node(int target_node)
{
int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
cpu_set_t orig_mask, mask;
int cpu;
int ret;
BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
BUG_ON(!cpus_per_node);
ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
BUG_ON(ret);
CPU_ZERO(&mask);
if (target_node == -1) {
for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
CPU_SET(cpu, &mask);
} else {
int cpu_start = (target_node + 0) * cpus_per_node;
int cpu_stop = (target_node + 1) * cpus_per_node;
BUG_ON(cpu_stop > g->p.nr_cpus);
for (cpu = cpu_start; cpu < cpu_stop; cpu++)
CPU_SET(cpu, &mask);
}
ret = sched_setaffinity(0, sizeof(mask), &mask);
BUG_ON(ret);
return orig_mask;
}
static void bind_to_cpumask(cpu_set_t mask)
{
int ret;
ret = sched_setaffinity(0, sizeof(mask), &mask);
BUG_ON(ret);
}
static void mempol_restore(void)
{
int ret;
ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
BUG_ON(ret);
}
static void bind_to_memnode(int node)
{
unsigned long nodemask;
int ret;
if (node == -1)
return;
BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
nodemask = 1L << node;
ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
BUG_ON(ret);
}
#define HPSIZE (2*1024*1024)
#define set_taskname(fmt...) \
do { \
char name[20]; \
\
snprintf(name, 20, fmt); \
prctl(PR_SET_NAME, name); \
} while (0)
static u8 *alloc_data(ssize_t bytes0, int map_flags,
int init_zero, int init_cpu0, int thp, int init_random)
{
cpu_set_t orig_mask;
ssize_t bytes;
u8 *buf;
int ret;
if (!bytes0)
return NULL;
/* Allocate and initialize all memory on CPU#0: */
if (init_cpu0) {
orig_mask = bind_to_node(0);
bind_to_memnode(0);
}
bytes = bytes0 + HPSIZE;
buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
BUG_ON(buf == (void *)-1);
if (map_flags == MAP_PRIVATE) {
if (thp > 0) {
ret = madvise(buf, bytes, MADV_HUGEPAGE);
if (ret && !g->print_once) {
g->print_once = 1;
printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
}
}
if (thp < 0) {
ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
if (ret && !g->print_once) {
g->print_once = 1;
printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
}
}
}
if (init_zero) {
bzero(buf, bytes);
} else {
/* Initialize random contents, different in each word: */
if (init_random) {
u64 *wbuf = (void *)buf;
long off = rand();
long i;
for (i = 0; i < bytes/8; i++)
wbuf[i] = i + off;
}
}
/* Align to 2MB boundary: */
buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
/* Restore affinity: */
if (init_cpu0) {
bind_to_cpumask(orig_mask);
mempol_restore();
}
return buf;
}
static void free_data(void *data, ssize_t bytes)
{
int ret;
if (!data)
return;
ret = munmap(data, bytes);
BUG_ON(ret);
}
/*
* Create a shared memory buffer that can be shared between processes, zeroed:
*/
static void * zalloc_shared_data(ssize_t bytes)
{
return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random);
}
/*
* Create a shared memory buffer that can be shared between processes:
*/
static void * setup_shared_data(ssize_t bytes)
{
return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
}
/*
* Allocate process-local memory - this will either be shared between
* threads of this process, or only be accessed by this thread:
*/
static void * setup_private_data(ssize_t bytes)
{
return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random);
}
/*
* Return a process-shared (global) mutex:
*/
static void init_global_mutex(pthread_mutex_t *mutex)
{
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
pthread_mutex_init(mutex, &attr);
}
static int parse_cpu_list(const char *arg)
{
p0.cpu_list_str = strdup(arg);
dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
return 0;
}
static int parse_setup_cpu_list(void)
{
struct thread_data *td;
char *str0, *str;
int t;
if (!g->p.cpu_list_str)
return 0;
dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
str0 = str = strdup(g->p.cpu_list_str);
t = 0;
BUG_ON(!str);
tprintf("# binding tasks to CPUs:\n");
tprintf("# ");
while (true) {
int bind_cpu, bind_cpu_0, bind_cpu_1;
char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
int bind_len;
int step;
int mul;
tok = strsep(&str, ",");
if (!tok)
break;
tok_end = strstr(tok, "-");
dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
if (!tok_end) {
/* Single CPU specified: */
bind_cpu_0 = bind_cpu_1 = atol(tok);
} else {
/* CPU range specified (for example: "5-11"): */
bind_cpu_0 = atol(tok);
bind_cpu_1 = atol(tok_end + 1);
}
step = 1;
tok_step = strstr(tok, "#");
if (tok_step) {
step = atol(tok_step + 1);
BUG_ON(step <= 0 || step >= g->p.nr_cpus);
}
/*
* Mask length.
* Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
* where the _4 means the next 4 CPUs are allowed.
*/
bind_len = 1;
tok_len = strstr(tok, "_");
if (tok_len) {
bind_len = atol(tok_len + 1);
BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
}
/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
mul = 1;
tok_mul = strstr(tok, "x");
if (tok_mul) {
mul = atol(tok_mul + 1);
BUG_ON(mul <= 0);
}
dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
return -1;
}
BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
BUG_ON(bind_cpu_0 > bind_cpu_1);
for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
int i;
for (i = 0; i < mul; i++) {
int cpu;
if (t >= g->p.nr_tasks) {
printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
goto out;
}
td = g->threads + t;
if (t)
tprintf(",");
if (bind_len > 1) {
tprintf("%2d/%d", bind_cpu, bind_len);
} else {
tprintf("%2d", bind_cpu);
}
CPU_ZERO(&td->bind_cpumask);
for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
CPU_SET(cpu, &td->bind_cpumask);
}
t++;
}
}
}
out:
tprintf("\n");
if (t < g->p.nr_tasks)
printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
free(str0);
return 0;
}
static int parse_cpus_opt(const struct option *opt __maybe_unused,
const char *arg, int unset __maybe_unused)
{
if (!arg)
return -1;
return parse_cpu_list(arg);
}
static int parse_node_list(const char *arg)
{
p0.node_list_str = strdup(arg);
dprintf("got NODE list: {%s}\n", p0.node_list_str);
return 0;
}
static int parse_setup_node_list(void)
{
struct thread_data *td;
char *str0, *str;
int t;
if (!g->p.node_list_str)
return 0;
dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
str0 = str = strdup(g->p.node_list_str);
t = 0;
BUG_ON(!str);
tprintf("# binding tasks to NODEs:\n");
tprintf("# ");
while (true) {
int bind_node, bind_node_0, bind_node_1;
char *tok, *tok_end, *tok_step, *tok_mul;
int step;
int mul;
tok = strsep(&str, ",");
if (!tok)
break;
tok_end = strstr(tok, "-");
dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
if (!tok_end) {
/* Single NODE specified: */
bind_node_0 = bind_node_1 = atol(tok);
} else {
/* NODE range specified (for example: "5-11"): */
bind_node_0 = atol(tok);
bind_node_1 = atol(tok_end + 1);
}
step = 1;
tok_step = strstr(tok, "#");
if (tok_step) {
step = atol(tok_step + 1);
BUG_ON(step <= 0 || step >= g->p.nr_nodes);
}
/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
mul = 1;
tok_mul = strstr(tok, "x");
if (tok_mul) {
mul = atol(tok_mul + 1);
BUG_ON(mul <= 0);
}
dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
return -1;
}
BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
BUG_ON(bind_node_0 > bind_node_1);
for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
int i;
for (i = 0; i < mul; i++) {
if (t >= g->p.nr_tasks) {
printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
goto out;
}
td = g->threads + t;
if (!t)
tprintf(" %2d", bind_node);
else
tprintf(",%2d", bind_node);
td->bind_node = bind_node;
t++;
}
}
}
out:
tprintf("\n");
if (t < g->p.nr_tasks)
printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
free(str0);
return 0;
}
static int parse_nodes_opt(const struct option *opt __maybe_unused,
const char *arg, int unset __maybe_unused)
{
if (!arg)
return -1;
return parse_node_list(arg);
return 0;
}
#define BIT(x) (1ul << x)
static inline uint32_t lfsr_32(uint32_t lfsr)
{
const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
}
/*
* Make sure there's real data dependency to RAM (when read
* accesses are enabled), so the compiler, the CPU and the
* kernel (KSM, zero page, etc.) cannot optimize away RAM
* accesses:
*/
static inline u64 access_data(u64 *data, u64 val)
{
if (g->p.data_reads)
val += *data;
if (g->p.data_writes)
*data = val + 1;
return val;
}
/*
* The worker process does two types of work, a forwards going
* loop and a backwards going loop.
*
* We do this so that on multiprocessor systems we do not create
* a 'train' of processing, with highly synchronized processes,
* skewing the whole benchmark.
*/
static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
{
long words = bytes/sizeof(u64);
u64 *data = (void *)__data;
long chunk_0, chunk_1;
u64 *d0, *d, *d1;
long off;
long i;
BUG_ON(!data && words);
BUG_ON(data && !words);
if (!data)
return val;
/* Very simple memset() work variant: */
if (g->p.data_zero_memset && !g->p.data_rand_walk) {
bzero(data, bytes);
return val;
}
/* Spread out by PID/TID nr and by loop nr: */
chunk_0 = words/nr_max;
chunk_1 = words/g->p.nr_loops;
off = nr*chunk_0 + loop*chunk_1;
while (off >= words)
off -= words;
if (g->p.data_rand_walk) {
u32 lfsr = nr + loop + val;
int j;
for (i = 0; i < words/1024; i++) {
long start, end;
lfsr = lfsr_32(lfsr);
start = lfsr % words;
end = min(start + 1024, words-1);
if (g->p.data_zero_memset) {
bzero(data + start, (end-start) * sizeof(u64));
} else {
for (j = start; j < end; j++)
val = access_data(data + j, val);
}
}
} else if (!g->p.data_backwards || (nr + loop) & 1) {
d0 = data + off;
d = data + off + 1;
d1 = data + words;
/* Process data forwards: */
for (;;) {
if (unlikely(d >= d1))
d = data;
if (unlikely(d == d0))
break;
val = access_data(d, val);
d++;
}
} else {
/* Process data backwards: */
d0 = data + off;
d = data + off - 1;
d1 = data + words;
/* Process data forwards: */
for (;;) {
if (unlikely(d < data))
d = data + words-1;
if (unlikely(d == d0))
break;
val = access_data(d, val);
d--;
}
}
return val;
}
static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
{
unsigned int cpu;
cpu = sched_getcpu();
g->threads[task_nr].curr_cpu = cpu;
prctl(0, bytes_worked);
}
#define MAX_NR_NODES 64
/*
* Count the number of nodes a process's threads
* are spread out on.
*
* A count of 1 means that the process is compressed
* to a single node. A count of g->p.nr_nodes means it's
* spread out on the whole system.
*/
static int count_process_nodes(int process_nr)
{
char node_present[MAX_NR_NODES] = { 0, };
int nodes;
int n, t;
for (t = 0; t < g->p.nr_threads; t++) {
struct thread_data *td;
int task_nr;
int node;
task_nr = process_nr*g->p.nr_threads + t;
td = g->threads + task_nr;
node = numa_node_of_cpu(td->curr_cpu);
if (node < 0) /* curr_cpu was likely still -1 */
return 0;
node_present[node] = 1;
}
nodes = 0;
for (n = 0; n < MAX_NR_NODES; n++)
nodes += node_present[n];
return nodes;
}
/*
* Count the number of distinct process-threads a node contains.
*
* A count of 1 means that the node contains only a single
* process. If all nodes on the system contain at most one
* process then we are well-converged.
*/
static int count_node_processes(int node)
{
int processes = 0;
int t, p;
for (p = 0; p < g->p.nr_proc; p++) {
for (t = 0; t < g->p.nr_threads; t++) {
struct thread_data *td;
int task_nr;
int n;
task_nr = p*g->p.nr_threads + t;
td = g->threads + task_nr;
n = numa_node_of_cpu(td->curr_cpu);
if (n == node) {
processes++;
break;
}
}
}
return processes;
}
static void calc_convergence_compression(int *strong)
{
unsigned int nodes_min, nodes_max;
int p;
nodes_min = -1;
nodes_max = 0;
for (p = 0; p < g->p.nr_proc; p++) {
unsigned int nodes = count_process_nodes(p);
if (!nodes) {
*strong = 0;
return;
}
nodes_min = min(nodes, nodes_min);
nodes_max = max(nodes, nodes_max);
}
/* Strong convergence: all threads compress on a single node: */
if (nodes_min == 1 && nodes_max == 1) {
*strong = 1;
} else {
*strong = 0;
tprintf(" {%d-%d}", nodes_min, nodes_max);
}
}
static void calc_convergence(double runtime_ns_max, double *convergence)
{
unsigned int loops_done_min, loops_done_max;
int process_groups;
int nodes[MAX_NR_NODES];
int distance;
int nr_min;
int nr_max;
int strong;
int sum;
int nr;
int node;
int cpu;
int t;
if (!g->p.show_convergence && !g->p.measure_convergence)
return;
for (node = 0; node < g->p.nr_nodes; node++)
nodes[node] = 0;
loops_done_min = -1;
loops_done_max = 0;
for (t = 0; t < g->p.nr_tasks; t++) {
struct thread_data *td = g->threads + t;
unsigned int loops_done;
cpu = td->curr_cpu;
/* Not all threads have written it yet: */
if (cpu < 0)
continue;
node = numa_node_of_cpu(cpu);
nodes[node]++;
loops_done = td->loops_done;
loops_done_min = min(loops_done, loops_done_min);
loops_done_max = max(loops_done, loops_done_max);
}
nr_max = 0;
nr_min = g->p.nr_tasks;
sum = 0;
for (node = 0; node < g->p.nr_nodes; node++) {
nr = nodes[node];
nr_min = min(nr, nr_min);
nr_max = max(nr, nr_max);
sum += nr;
}
BUG_ON(nr_min > nr_max);
BUG_ON(sum > g->p.nr_tasks);
if (0 && (sum < g->p.nr_tasks))
return;
/*
* Count the number of distinct process groups present
* on nodes - when we are converged this will decrease
* to g->p.nr_proc:
*/
process_groups = 0;
for (node = 0; node < g->p.nr_nodes; node++) {
int processes = count_node_processes(node);
nr = nodes[node];
tprintf(" %2d/%-2d", nr, processes);
process_groups += processes;
}
distance = nr_max - nr_min;
tprintf(" [%2d/%-2d]", distance, process_groups);
tprintf(" l:%3d-%-3d (%3d)",
loops_done_min, loops_done_max, loops_done_max-loops_done_min);
if (loops_done_min && loops_done_max) {
double skew = 1.0 - (double)loops_done_min/loops_done_max;
tprintf(" [%4.1f%%]", skew * 100.0);
}
calc_convergence_compression(&strong);
if (strong && process_groups == g->p.nr_proc) {
if (!*convergence) {
*convergence = runtime_ns_max;
tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
if (g->p.measure_convergence) {
g->all_converged = true;
g->stop_work = true;
}
}
} else {
if (*convergence) {
tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
*convergence = 0;
}
tprintf("\n");
}
}
static void show_summary(double runtime_ns_max, int l, double *convergence)
{
tprintf("\r # %5.1f%% [%.1f mins]",
(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
calc_convergence(runtime_ns_max, convergence);
if (g->p.show_details >= 0)
fflush(stdout);
}
static void *worker_thread(void *__tdata)
{
struct thread_data *td = __tdata;
struct timeval start0, start, stop, diff;
int process_nr = td->process_nr;
int thread_nr = td->thread_nr;
unsigned long last_perturbance;
int task_nr = td->task_nr;
int details = g->p.show_details;
int first_task, last_task;
double convergence = 0;
u64 val = td->val;
double runtime_ns_max;
u8 *global_data;
u8 *process_data;
u8 *thread_data;
u64 bytes_done;
long work_done;
u32 l;
struct rusage rusage;
bind_to_cpumask(td->bind_cpumask);
bind_to_memnode(td->bind_node);
set_taskname("thread %d/%d", process_nr, thread_nr);
global_data = g->data;
process_data = td->process_data;
thread_data = setup_private_data(g->p.bytes_thread);
bytes_done = 0;
last_task = 0;
if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
last_task = 1;
first_task = 0;
if (process_nr == 0 && thread_nr == 0)
first_task = 1;
if (details >= 2) {
printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
process_nr, thread_nr, global_data, process_data, thread_data);
}
if (g->p.serialize_startup) {
pthread_mutex_lock(&g->startup_mutex);
g->nr_tasks_started++;
pthread_mutex_unlock(&g->startup_mutex);
/* Here we will wait for the main process to start us all at once: */
pthread_mutex_lock(&g->start_work_mutex);
g->nr_tasks_working++;
/* Last one wake the main process: */
if (g->nr_tasks_working == g->p.nr_tasks)
pthread_mutex_unlock(&g->startup_done_mutex);
pthread_mutex_unlock(&g->start_work_mutex);
}
gettimeofday(&start0, NULL);
start = stop = start0;
last_perturbance = start.tv_sec;
for (l = 0; l < g->p.nr_loops; l++) {
start = stop;
if (g->stop_work)
break;
val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val);
val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val);
val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val);
if (g->p.sleep_usecs) {
pthread_mutex_lock(td->process_lock);
usleep(g->p.sleep_usecs);
pthread_mutex_unlock(td->process_lock);
}
/*
* Amount of work to be done under a process-global lock:
*/
if (g->p.bytes_process_locked) {
pthread_mutex_lock(td->process_lock);
val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val);
pthread_mutex_unlock(td->process_lock);
}
work_done = g->p.bytes_global + g->p.bytes_process +
g->p.bytes_process_locked + g->p.bytes_thread;
update_curr_cpu(task_nr, work_done);
bytes_done += work_done;
if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
continue;
td->loops_done = l;
gettimeofday(&stop, NULL);
/* Check whether our max runtime timed out: */
if (g->p.nr_secs) {
timersub(&stop, &start0, &diff);
if ((u32)diff.tv_sec >= g->p.nr_secs) {
g->stop_work = true;
break;
}
}
/* Update the summary at most once per second: */
if (start.tv_sec == stop.tv_sec)
continue;
/*
* Perturb the first task's equilibrium every g->p.perturb_secs seconds,
* by migrating to CPU#0:
*/
if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
cpu_set_t orig_mask;
int target_cpu;
int this_cpu;
last_perturbance = stop.tv_sec;
/*
* Depending on where we are running, move into
* the other half of the system, to create some
* real disturbance:
*/
this_cpu = g->threads[task_nr].curr_cpu;
if (this_cpu < g->p.nr_cpus/2)
target_cpu = g->p.nr_cpus-1;
else
target_cpu = 0;
orig_mask = bind_to_cpu(target_cpu);
/* Here we are running on the target CPU already */
if (details >= 1)
printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
bind_to_cpumask(orig_mask);
}
if (details >= 3) {
timersub(&stop, &start, &diff);
runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
if (details >= 0) {
printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
process_nr, thread_nr, runtime_ns_max / bytes_done, val);
}
fflush(stdout);
}
if (!last_task)
continue;
timersub(&stop, &start0, &diff);
runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
show_summary(runtime_ns_max, l, &convergence);
}
gettimeofday(&stop, NULL);
timersub(&stop, &start0, &diff);
td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
td->speed_gbs = bytes_done / (td->runtime_ns / NSEC_PER_SEC) / 1e9;
getrusage(RUSAGE_THREAD, &rusage);
td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
free_data(thread_data, g->p.bytes_thread);
pthread_mutex_lock(&g->stop_work_mutex);
g->bytes_done += bytes_done;
pthread_mutex_unlock(&g->stop_work_mutex);
return NULL;
}
/*
* A worker process starts a couple of threads:
*/
static void worker_process(int process_nr)
{
pthread_mutex_t process_lock;
struct thread_data *td;
pthread_t *pthreads;
u8 *process_data;
int task_nr;
int ret;
int t;
pthread_mutex_init(&process_lock, NULL);
set_taskname("process %d", process_nr);
/*
* Pick up the memory policy and the CPU binding of our first thread,
* so that we initialize memory accordingly:
*/
task_nr = process_nr*g->p.nr_threads;
td = g->threads + task_nr;
bind_to_memnode(td->bind_node);
bind_to_cpumask(td->bind_cpumask);
pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
process_data = setup_private_data(g->p.bytes_process);
if (g->p.show_details >= 3) {
printf(" # process %2d global mem: %p, process mem: %p\n",
process_nr, g->data, process_data);
}
for (t = 0; t < g->p.nr_threads; t++) {
task_nr = process_nr*g->p.nr_threads + t;
td = g->threads + task_nr;
td->process_data = process_data;
td->process_nr = process_nr;
td->thread_nr = t;
td->task_nr = task_nr;
td->val = rand();
td->curr_cpu = -1;
td->process_lock = &process_lock;
ret = pthread_create(pthreads + t, NULL, worker_thread, td);
BUG_ON(ret);
}
for (t = 0; t < g->p.nr_threads; t++) {
ret = pthread_join(pthreads[t], NULL);
BUG_ON(ret);
}
free_data(process_data, g->p.bytes_process);
free(pthreads);
}
static void print_summary(void)
{
if (g->p.show_details < 0)
return;
printf("\n ###\n");
printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
printf(" # %5dx %5ldMB global shared mem operations\n",
g->p.nr_loops, g->p.bytes_global/1024/1024);
printf(" # %5dx %5ldMB process shared mem operations\n",
g->p.nr_loops, g->p.bytes_process/1024/1024);
printf(" # %5dx %5ldMB thread local mem operations\n",
g->p.nr_loops, g->p.bytes_thread/1024/1024);
printf(" ###\n");
printf("\n ###\n"); fflush(stdout);
}
static void init_thread_data(void)
{
ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
int t;
g->threads = zalloc_shared_data(size);
for (t = 0; t < g->p.nr_tasks; t++) {
struct thread_data *td = g->threads + t;
int cpu;
/* Allow all nodes by default: */
td->bind_node = -1;
/* Allow all CPUs by default: */
CPU_ZERO(&td->bind_cpumask);
for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
CPU_SET(cpu, &td->bind_cpumask);
}
}
static void deinit_thread_data(void)
{
ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
free_data(g->threads, size);
}
static int init(void)
{
g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
/* Copy over options: */
g->p = p0;
g->p.nr_cpus = numa_num_configured_cpus();
g->p.nr_nodes = numa_max_node() + 1;
/* char array in count_process_nodes(): */
BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
if (g->p.show_quiet && !g->p.show_details)
g->p.show_details = -1;
/* Some memory should be specified: */
if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
return -1;
if (g->p.mb_global_str) {
g->p.mb_global = atof(g->p.mb_global_str);
BUG_ON(g->p.mb_global < 0);
}
if (g->p.mb_proc_str) {
g->p.mb_proc = atof(g->p.mb_proc_str);
BUG_ON(g->p.mb_proc < 0);
}
if (g->p.mb_proc_locked_str) {
g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
BUG_ON(g->p.mb_proc_locked < 0);
BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
}
if (g->p.mb_thread_str) {
g->p.mb_thread = atof(g->p.mb_thread_str);
BUG_ON(g->p.mb_thread < 0);
}
BUG_ON(g->p.nr_threads <= 0);
BUG_ON(g->p.nr_proc <= 0);
g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
g->p.bytes_global = g->p.mb_global *1024L*1024L;
g->p.bytes_process = g->p.mb_proc *1024L*1024L;
g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L;
g->p.bytes_thread = g->p.mb_thread *1024L*1024L;
g->data = setup_shared_data(g->p.bytes_global);
/* Startup serialization: */
init_global_mutex(&g->start_work_mutex);
init_global_mutex(&g->startup_mutex);
init_global_mutex(&g->startup_done_mutex);
init_global_mutex(&g->stop_work_mutex);
init_thread_data();
tprintf("#\n");
if (parse_setup_cpu_list() || parse_setup_node_list())
return -1;
tprintf("#\n");
print_summary();
return 0;
}
static void deinit(void)
{
free_data(g->data, g->p.bytes_global);
g->data = NULL;
deinit_thread_data();
free_data(g, sizeof(*g));
g = NULL;
}
/*
* Print a short or long result, depending on the verbosity setting:
*/
static void print_res(const char *name, double val,
const char *txt_unit, const char *txt_short, const char *txt_long)
{
if (!name)
name = "main,";
if (!g->p.show_quiet)
printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
else
printf(" %14.3f %s\n", val, txt_long);
}
static int __bench_numa(const char *name)
{
struct timeval start, stop, diff;
u64 runtime_ns_min, runtime_ns_sum;
pid_t *pids, pid, wpid;
double delta_runtime;
double runtime_avg;
double runtime_sec_max;
double runtime_sec_min;
int wait_stat;
double bytes;
int i, t, p;
if (init())
return -1;
pids = zalloc(g->p.nr_proc * sizeof(*pids));
pid = -1;
/* All threads try to acquire it, this way we can wait for them to start up: */
pthread_mutex_lock(&g->start_work_mutex);
if (g->p.serialize_startup) {
tprintf(" #\n");
tprintf(" # Startup synchronization: ..."); fflush(stdout);
}
gettimeofday(&start, NULL);
for (i = 0; i < g->p.nr_proc; i++) {
pid = fork();
dprintf(" # process %2d: PID %d\n", i, pid);
BUG_ON(pid < 0);
if (!pid) {
/* Child process: */
worker_process(i);
exit(0);
}
pids[i] = pid;
}
/* Wait for all the threads to start up: */
while (g->nr_tasks_started != g->p.nr_tasks)
usleep(USEC_PER_MSEC);
BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
if (g->p.serialize_startup) {
double startup_sec;
pthread_mutex_lock(&g->startup_done_mutex);
/* This will start all threads: */
pthread_mutex_unlock(&g->start_work_mutex);
/* This mutex is locked - the last started thread will wake us: */
pthread_mutex_lock(&g->startup_done_mutex);
gettimeofday(&stop, NULL);
timersub(&stop, &start, &diff);
startup_sec = diff.tv_sec * NSEC_PER_SEC;
startup_sec += diff.tv_usec * NSEC_PER_USEC;
startup_sec /= NSEC_PER_SEC;
tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
tprintf(" #\n");
start = stop;
pthread_mutex_unlock(&g->startup_done_mutex);
} else {
gettimeofday(&start, NULL);
}
/* Parent process: */
for (i = 0; i < g->p.nr_proc; i++) {
wpid = waitpid(pids[i], &wait_stat, 0);
BUG_ON(wpid < 0);
BUG_ON(!WIFEXITED(wait_stat));
}
runtime_ns_sum = 0;
runtime_ns_min = -1LL;
for (t = 0; t < g->p.nr_tasks; t++) {
u64 thread_runtime_ns = g->threads[t].runtime_ns;
runtime_ns_sum += thread_runtime_ns;
runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
}
gettimeofday(&stop, NULL);
timersub(&stop, &start, &diff);
BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
tprintf("\n ###\n");
tprintf("\n");
runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
runtime_sec_max /= NSEC_PER_SEC;
runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
bytes = g->bytes_done;
runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
if (g->p.measure_convergence) {
print_res(name, runtime_sec_max,
"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
}
print_res(name, runtime_sec_max,
"secs,", "runtime-max/thread", "secs slowest (max) thread-runtime");
print_res(name, runtime_sec_min,
"secs,", "runtime-min/thread", "secs fastest (min) thread-runtime");
print_res(name, runtime_avg,
"secs,", "runtime-avg/thread", "secs average thread-runtime");
delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
print_res(name, delta_runtime / runtime_sec_max * 100.0,
"%,", "spread-runtime/thread", "% difference between max/avg runtime");
print_res(name, bytes / g->p.nr_tasks / 1e9,
"GB,", "data/thread", "GB data processed, per thread");
print_res(name, bytes / 1e9,
"GB,", "data-total", "GB data processed, total");
print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
"GB/sec,", "thread-speed", "GB/sec/thread speed");
print_res(name, bytes / runtime_sec_max / 1e9,
"GB/sec,", "total-speed", "GB/sec total speed");
if (g->p.show_details >= 2) {
char tname[14 + 2 * 10 + 1];
struct thread_data *td;
for (p = 0; p < g->p.nr_proc; p++) {
for (t = 0; t < g->p.nr_threads; t++) {
memset(tname, 0, sizeof(tname));
td = g->threads + p*g->p.nr_threads + t;
snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
print_res(tname, td->speed_gbs,
"GB/sec", "thread-speed", "GB/sec/thread speed");
print_res(tname, td->system_time_ns / NSEC_PER_SEC,
"secs", "thread-system-time", "system CPU time/thread");
print_res(tname, td->user_time_ns / NSEC_PER_SEC,
"secs", "thread-user-time", "user CPU time/thread");
}
}
}
free(pids);
deinit();
return 0;
}
#define MAX_ARGS 50
static int command_size(const char **argv)
{
int size = 0;
while (*argv) {
size++;
argv++;
}
BUG_ON(size >= MAX_ARGS);
return size;
}
static void init_params(struct params *p, const char *name, int argc, const char **argv)
{
int i;
printf("\n # Running %s \"perf bench numa", name);
for (i = 0; i < argc; i++)
printf(" %s", argv[i]);
printf("\"\n");
memset(p, 0, sizeof(*p));
/* Initialize nonzero defaults: */
p->serialize_startup = 1;
p->data_reads = true;
p->data_writes = true;
p->data_backwards = true;
p->data_rand_walk = true;
p->nr_loops = -1;
p->init_random = true;
p->mb_global_str = "1";
p->nr_proc = 1;
p->nr_threads = 1;
p->nr_secs = 5;
p->run_all = argc == 1;
}
static int run_bench_numa(const char *name, const char **argv)
{
int argc = command_size(argv);
init_params(&p0, name, argc, argv);
argc = parse_options(argc, argv, options, bench_numa_usage, 0);
if (argc)
goto err;
if (__bench_numa(name))
goto err;
return 0;
err:
return -1;
}
#define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk"
#define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1"
#define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1"
#define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1"
#define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1"
#define OPT_BW_NOTHP OPT_BW, "--thp", "-1"
/*
* The built-in test-suite executed by "perf bench numa -a".
*
* (A minimum of 4 nodes and 16 GB of RAM is recommended.)
*/
static const char *tests[][MAX_ARGS] = {
/* Basic single-stream NUMA bandwidth measurements: */
{ "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024",
"-C" , "0", "-M", "0", OPT_BW_RAM },
{ "RAM-bw-local-NOTHP,",
"mem", "-p", "1", "-t", "1", "-P", "1024",
"-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP },
{ "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024",
"-C" , "0", "-M", "1", OPT_BW_RAM },
/* 2-stream NUMA bandwidth measurements: */
{ "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
"-C", "0,2", "-M", "0x2", OPT_BW_RAM },
{ "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024",
"-C", "0,2", "-M", "1x2", OPT_BW_RAM },
/* Cross-stream NUMA bandwidth measurement: */
{ "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024",
"-C", "0,8", "-M", "1,0", OPT_BW_RAM },
/* Convergence latency measurements: */
{ " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV },
{ " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV },
{ " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV },
{ " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
{ " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV },
{ " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV },
{ " 4x4-convergence-NOTHP,",
"mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
{ " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV },
{ " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV },
{ " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV },
{ " 8x4-convergence-NOTHP,",
"mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP },
{ " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV },
{ " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV },
{ " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV },
{ "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV },
{ "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV },
/* Various NUMA process/thread layout bandwidth measurements: */
{ " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW },
{ " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW },
{ " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW },
{ " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW },
{ " 8x1-bw-process-NOTHP,",
"mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP },
{ "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW },
{ " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW },
{ " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW },
{ "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW },
{ "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW },
{ " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW },
{ " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW },
{ " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW },
{ " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW },
{ " 4x8-bw-thread-NOTHP,",
"mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP },
{ " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW },
{ " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW },
{ "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW },
{ "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW },
{ "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW },
{ "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP },
{ "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW },
{ "numa01-bw-thread-NOTHP,",
"mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP },
};
static int bench_all(void)
{
int nr = ARRAY_SIZE(tests);
int ret;
int i;
ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
BUG_ON(ret < 0);
for (i = 0; i < nr; i++) {
run_bench_numa(tests[i][0], tests[i] + 1);
}
printf("\n");
return 0;
}
int bench_numa(int argc, const char **argv)
{
init_params(&p0, "main,", argc, argv);
argc = parse_options(argc, argv, options, bench_numa_usage, 0);
if (argc)
goto err;
if (p0.run_all)
return bench_all();
if (__bench_numa(NULL))
goto err;
return 0;
err:
usage_with_options(numa_usage, options);
return -1;
}