mm, page_alloc: fallback to smallest page when not stealing whole pageblock

Since commit 3bc48f96cf11 ("mm, page_alloc: split smallest stolen page
in fallback") we pick the smallest (but sufficient) page of all that
have been stolen from a pageblock of different migratetype.  However,
there are cases when we decide not to steal the whole pageblock.

Practically in the current implementation it means that we are trying to
fallback for a MIGRATE_MOVABLE allocation of order X, go through the
freelists from MAX_ORDER-1 down to X, and find free page of order Y.  If
Y is less than pageblock_order / 2, we decide not to steal all pages
from the pageblock.  When Y > X, it means we are potentially splitting a
larger page than we need, as there might be other pages of order Z,
where X <= Z < Y.  Since Y is already too small to steal whole
pageblock, picking smallest available Z will result in the same decision
and we avoid splitting a higher-order page in a MIGRATE_UNMOVABLE or
MIGRATE_RECLAIMABLE pageblock.

This patch therefore changes the fallback algorithm so that in the
situation described above, we switch the fallback search strategy to go
from order X upwards to find the smallest suitable fallback.  In theory
there shouldn't be a downside of this change wrt fragmentation.

This has been tested with mmtests' stress-highalloc performing
GFP_KERNEL order-4 allocations, here is the relevant extfrag tracepoint
statistics:

                                                        4.12.0-rc2      4.12.0-rc2
                                                         1-kernel4       2-kernel4
  Page alloc extfrag event                                  25640976    69680977
  Extfrag fragmenting                                       25621086    69661364
  Extfrag fragmenting for unmovable                            74409       73204
  Extfrag fragmenting unmovable placed with movable            69003       67684
  Extfrag fragmenting unmovable placed with reclaim.            5406        5520
  Extfrag fragmenting for reclaimable                           6398        8467
  Extfrag fragmenting reclaimable placed with movable            869         884
  Extfrag fragmenting reclaimable placed with unmov.            5529        7583
  Extfrag fragmenting for movable                           25540279    69579693

Since we force movable allocations to steal the smallest available page
(which we then practially always split), we steal less per fallback, so
the number of fallbacks increases and steals potentially happen from
different pageblocks.  This is however not an issue for movable pages
that can be compacted.

Importantly, the "unmovable placed with movable" statistics is lower,
which is the result of less fragmentation in the unmovable pageblocks.
The effect on reclaimable allocation is a bit unclear.

Link: http://lkml.kernel.org/r/20170529093947.22618-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1 file changed