| // SPDX-License-Identifier: GPL-2.0 |
| #include "builtin.h" |
| #include "perf.h" |
| |
| #include "util/util.h" |
| #include "util/evlist.h" |
| #include "util/cache.h" |
| #include "util/evsel.h" |
| #include "util/symbol.h" |
| #include "util/thread.h" |
| #include "util/header.h" |
| #include "util/session.h" |
| #include "util/tool.h" |
| #include "util/cloexec.h" |
| #include "util/thread_map.h" |
| #include "util/color.h" |
| #include "util/stat.h" |
| #include "util/callchain.h" |
| #include "util/time-utils.h" |
| |
| #include <subcmd/parse-options.h> |
| #include "util/trace-event.h" |
| |
| #include "util/debug.h" |
| |
| #include <linux/kernel.h> |
| #include <linux/log2.h> |
| #include <sys/prctl.h> |
| #include <sys/resource.h> |
| #include <inttypes.h> |
| |
| #include <errno.h> |
| #include <semaphore.h> |
| #include <pthread.h> |
| #include <math.h> |
| #include <api/fs/fs.h> |
| #include <linux/time64.h> |
| |
| #include "sane_ctype.h" |
| |
| #define PR_SET_NAME 15 /* Set process name */ |
| #define MAX_CPUS 4096 |
| #define COMM_LEN 20 |
| #define SYM_LEN 129 |
| #define MAX_PID 1024000 |
| |
| struct sched_atom; |
| |
| struct task_desc { |
| unsigned long nr; |
| unsigned long pid; |
| char comm[COMM_LEN]; |
| |
| unsigned long nr_events; |
| unsigned long curr_event; |
| struct sched_atom **atoms; |
| |
| pthread_t thread; |
| sem_t sleep_sem; |
| |
| sem_t ready_for_work; |
| sem_t work_done_sem; |
| |
| u64 cpu_usage; |
| }; |
| |
| enum sched_event_type { |
| SCHED_EVENT_RUN, |
| SCHED_EVENT_SLEEP, |
| SCHED_EVENT_WAKEUP, |
| SCHED_EVENT_MIGRATION, |
| }; |
| |
| struct sched_atom { |
| enum sched_event_type type; |
| int specific_wait; |
| u64 timestamp; |
| u64 duration; |
| unsigned long nr; |
| sem_t *wait_sem; |
| struct task_desc *wakee; |
| }; |
| |
| #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP" |
| |
| /* task state bitmask, copied from include/linux/sched.h */ |
| #define TASK_RUNNING 0 |
| #define TASK_INTERRUPTIBLE 1 |
| #define TASK_UNINTERRUPTIBLE 2 |
| #define __TASK_STOPPED 4 |
| #define __TASK_TRACED 8 |
| /* in tsk->exit_state */ |
| #define EXIT_DEAD 16 |
| #define EXIT_ZOMBIE 32 |
| #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) |
| /* in tsk->state again */ |
| #define TASK_DEAD 64 |
| #define TASK_WAKEKILL 128 |
| #define TASK_WAKING 256 |
| #define TASK_PARKED 512 |
| |
| enum thread_state { |
| THREAD_SLEEPING = 0, |
| THREAD_WAIT_CPU, |
| THREAD_SCHED_IN, |
| THREAD_IGNORE |
| }; |
| |
| struct work_atom { |
| struct list_head list; |
| enum thread_state state; |
| u64 sched_out_time; |
| u64 wake_up_time; |
| u64 sched_in_time; |
| u64 runtime; |
| }; |
| |
| struct work_atoms { |
| struct list_head work_list; |
| struct thread *thread; |
| struct rb_node node; |
| u64 max_lat; |
| u64 max_lat_at; |
| u64 total_lat; |
| u64 nb_atoms; |
| u64 total_runtime; |
| int num_merged; |
| }; |
| |
| typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *); |
| |
| struct perf_sched; |
| |
| struct trace_sched_handler { |
| int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel, |
| struct perf_sample *sample, struct machine *machine); |
| |
| int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel, |
| struct perf_sample *sample, struct machine *machine); |
| |
| int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel, |
| struct perf_sample *sample, struct machine *machine); |
| |
| /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */ |
| int (*fork_event)(struct perf_sched *sched, union perf_event *event, |
| struct machine *machine); |
| |
| int (*migrate_task_event)(struct perf_sched *sched, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| struct machine *machine); |
| }; |
| |
| #define COLOR_PIDS PERF_COLOR_BLUE |
| #define COLOR_CPUS PERF_COLOR_BG_RED |
| |
| struct perf_sched_map { |
| DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS); |
| int *comp_cpus; |
| bool comp; |
| struct thread_map *color_pids; |
| const char *color_pids_str; |
| struct cpu_map *color_cpus; |
| const char *color_cpus_str; |
| struct cpu_map *cpus; |
| const char *cpus_str; |
| }; |
| |
| struct perf_sched { |
| struct perf_tool tool; |
| const char *sort_order; |
| unsigned long nr_tasks; |
| struct task_desc **pid_to_task; |
| struct task_desc **tasks; |
| const struct trace_sched_handler *tp_handler; |
| pthread_mutex_t start_work_mutex; |
| pthread_mutex_t work_done_wait_mutex; |
| int profile_cpu; |
| /* |
| * Track the current task - that way we can know whether there's any |
| * weird events, such as a task being switched away that is not current. |
| */ |
| int max_cpu; |
| u32 curr_pid[MAX_CPUS]; |
| struct thread *curr_thread[MAX_CPUS]; |
| char next_shortname1; |
| char next_shortname2; |
| unsigned int replay_repeat; |
| unsigned long nr_run_events; |
| unsigned long nr_sleep_events; |
| unsigned long nr_wakeup_events; |
| unsigned long nr_sleep_corrections; |
| unsigned long nr_run_events_optimized; |
| unsigned long targetless_wakeups; |
| unsigned long multitarget_wakeups; |
| unsigned long nr_runs; |
| unsigned long nr_timestamps; |
| unsigned long nr_unordered_timestamps; |
| unsigned long nr_context_switch_bugs; |
| unsigned long nr_events; |
| unsigned long nr_lost_chunks; |
| unsigned long nr_lost_events; |
| u64 run_measurement_overhead; |
| u64 sleep_measurement_overhead; |
| u64 start_time; |
| u64 cpu_usage; |
| u64 runavg_cpu_usage; |
| u64 parent_cpu_usage; |
| u64 runavg_parent_cpu_usage; |
| u64 sum_runtime; |
| u64 sum_fluct; |
| u64 run_avg; |
| u64 all_runtime; |
| u64 all_count; |
| u64 cpu_last_switched[MAX_CPUS]; |
| struct rb_root atom_root, sorted_atom_root, merged_atom_root; |
| struct list_head sort_list, cmp_pid; |
| bool force; |
| bool skip_merge; |
| struct perf_sched_map map; |
| |
| /* options for timehist command */ |
| bool summary; |
| bool summary_only; |
| bool idle_hist; |
| bool show_callchain; |
| unsigned int max_stack; |
| bool show_cpu_visual; |
| bool show_wakeups; |
| bool show_next; |
| bool show_migrations; |
| bool show_state; |
| u64 skipped_samples; |
| const char *time_str; |
| struct perf_time_interval ptime; |
| struct perf_time_interval hist_time; |
| }; |
| |
| /* per thread run time data */ |
| struct thread_runtime { |
| u64 last_time; /* time of previous sched in/out event */ |
| u64 dt_run; /* run time */ |
| u64 dt_sleep; /* time between CPU access by sleep (off cpu) */ |
| u64 dt_iowait; /* time between CPU access by iowait (off cpu) */ |
| u64 dt_preempt; /* time between CPU access by preempt (off cpu) */ |
| u64 dt_delay; /* time between wakeup and sched-in */ |
| u64 ready_to_run; /* time of wakeup */ |
| |
| struct stats run_stats; |
| u64 total_run_time; |
| u64 total_sleep_time; |
| u64 total_iowait_time; |
| u64 total_preempt_time; |
| u64 total_delay_time; |
| |
| int last_state; |
| u64 migrations; |
| }; |
| |
| /* per event run time data */ |
| struct evsel_runtime { |
| u64 *last_time; /* time this event was last seen per cpu */ |
| u32 ncpu; /* highest cpu slot allocated */ |
| }; |
| |
| /* per cpu idle time data */ |
| struct idle_thread_runtime { |
| struct thread_runtime tr; |
| struct thread *last_thread; |
| struct rb_root sorted_root; |
| struct callchain_root callchain; |
| struct callchain_cursor cursor; |
| }; |
| |
| /* track idle times per cpu */ |
| static struct thread **idle_threads; |
| static int idle_max_cpu; |
| static char idle_comm[] = "<idle>"; |
| |
| static u64 get_nsecs(void) |
| { |
| struct timespec ts; |
| |
| clock_gettime(CLOCK_MONOTONIC, &ts); |
| |
| return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec; |
| } |
| |
| static void burn_nsecs(struct perf_sched *sched, u64 nsecs) |
| { |
| u64 T0 = get_nsecs(), T1; |
| |
| do { |
| T1 = get_nsecs(); |
| } while (T1 + sched->run_measurement_overhead < T0 + nsecs); |
| } |
| |
| static void sleep_nsecs(u64 nsecs) |
| { |
| struct timespec ts; |
| |
| ts.tv_nsec = nsecs % 999999999; |
| ts.tv_sec = nsecs / 999999999; |
| |
| nanosleep(&ts, NULL); |
| } |
| |
| static void calibrate_run_measurement_overhead(struct perf_sched *sched) |
| { |
| u64 T0, T1, delta, min_delta = NSEC_PER_SEC; |
| int i; |
| |
| for (i = 0; i < 10; i++) { |
| T0 = get_nsecs(); |
| burn_nsecs(sched, 0); |
| T1 = get_nsecs(); |
| delta = T1-T0; |
| min_delta = min(min_delta, delta); |
| } |
| sched->run_measurement_overhead = min_delta; |
| |
| printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta); |
| } |
| |
| static void calibrate_sleep_measurement_overhead(struct perf_sched *sched) |
| { |
| u64 T0, T1, delta, min_delta = NSEC_PER_SEC; |
| int i; |
| |
| for (i = 0; i < 10; i++) { |
| T0 = get_nsecs(); |
| sleep_nsecs(10000); |
| T1 = get_nsecs(); |
| delta = T1-T0; |
| min_delta = min(min_delta, delta); |
| } |
| min_delta -= 10000; |
| sched->sleep_measurement_overhead = min_delta; |
| |
| printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta); |
| } |
| |
| static struct sched_atom * |
| get_new_event(struct task_desc *task, u64 timestamp) |
| { |
| struct sched_atom *event = zalloc(sizeof(*event)); |
| unsigned long idx = task->nr_events; |
| size_t size; |
| |
| event->timestamp = timestamp; |
| event->nr = idx; |
| |
| task->nr_events++; |
| size = sizeof(struct sched_atom *) * task->nr_events; |
| task->atoms = realloc(task->atoms, size); |
| BUG_ON(!task->atoms); |
| |
| task->atoms[idx] = event; |
| |
| return event; |
| } |
| |
| static struct sched_atom *last_event(struct task_desc *task) |
| { |
| if (!task->nr_events) |
| return NULL; |
| |
| return task->atoms[task->nr_events - 1]; |
| } |
| |
| static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task, |
| u64 timestamp, u64 duration) |
| { |
| struct sched_atom *event, *curr_event = last_event(task); |
| |
| /* |
| * optimize an existing RUN event by merging this one |
| * to it: |
| */ |
| if (curr_event && curr_event->type == SCHED_EVENT_RUN) { |
| sched->nr_run_events_optimized++; |
| curr_event->duration += duration; |
| return; |
| } |
| |
| event = get_new_event(task, timestamp); |
| |
| event->type = SCHED_EVENT_RUN; |
| event->duration = duration; |
| |
| sched->nr_run_events++; |
| } |
| |
| static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task, |
| u64 timestamp, struct task_desc *wakee) |
| { |
| struct sched_atom *event, *wakee_event; |
| |
| event = get_new_event(task, timestamp); |
| event->type = SCHED_EVENT_WAKEUP; |
| event->wakee = wakee; |
| |
| wakee_event = last_event(wakee); |
| if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) { |
| sched->targetless_wakeups++; |
| return; |
| } |
| if (wakee_event->wait_sem) { |
| sched->multitarget_wakeups++; |
| return; |
| } |
| |
| wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem)); |
| sem_init(wakee_event->wait_sem, 0, 0); |
| wakee_event->specific_wait = 1; |
| event->wait_sem = wakee_event->wait_sem; |
| |
| sched->nr_wakeup_events++; |
| } |
| |
| static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task, |
| u64 timestamp, u64 task_state __maybe_unused) |
| { |
| struct sched_atom *event = get_new_event(task, timestamp); |
| |
| event->type = SCHED_EVENT_SLEEP; |
| |
| sched->nr_sleep_events++; |
| } |
| |
| static struct task_desc *register_pid(struct perf_sched *sched, |
| unsigned long pid, const char *comm) |
| { |
| struct task_desc *task; |
| static int pid_max; |
| |
| if (sched->pid_to_task == NULL) { |
| if (sysctl__read_int("kernel/pid_max", &pid_max) < 0) |
| pid_max = MAX_PID; |
| BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL); |
| } |
| if (pid >= (unsigned long)pid_max) { |
| BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) * |
| sizeof(struct task_desc *))) == NULL); |
| while (pid >= (unsigned long)pid_max) |
| sched->pid_to_task[pid_max++] = NULL; |
| } |
| |
| task = sched->pid_to_task[pid]; |
| |
| if (task) |
| return task; |
| |
| task = zalloc(sizeof(*task)); |
| task->pid = pid; |
| task->nr = sched->nr_tasks; |
| strcpy(task->comm, comm); |
| /* |
| * every task starts in sleeping state - this gets ignored |
| * if there's no wakeup pointing to this sleep state: |
| */ |
| add_sched_event_sleep(sched, task, 0, 0); |
| |
| sched->pid_to_task[pid] = task; |
| sched->nr_tasks++; |
| sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *)); |
| BUG_ON(!sched->tasks); |
| sched->tasks[task->nr] = task; |
| |
| if (verbose > 0) |
| printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm); |
| |
| return task; |
| } |
| |
| |
| static void print_task_traces(struct perf_sched *sched) |
| { |
| struct task_desc *task; |
| unsigned long i; |
| |
| for (i = 0; i < sched->nr_tasks; i++) { |
| task = sched->tasks[i]; |
| printf("task %6ld (%20s:%10ld), nr_events: %ld\n", |
| task->nr, task->comm, task->pid, task->nr_events); |
| } |
| } |
| |
| static void add_cross_task_wakeups(struct perf_sched *sched) |
| { |
| struct task_desc *task1, *task2; |
| unsigned long i, j; |
| |
| for (i = 0; i < sched->nr_tasks; i++) { |
| task1 = sched->tasks[i]; |
| j = i + 1; |
| if (j == sched->nr_tasks) |
| j = 0; |
| task2 = sched->tasks[j]; |
| add_sched_event_wakeup(sched, task1, 0, task2); |
| } |
| } |
| |
| static void perf_sched__process_event(struct perf_sched *sched, |
| struct sched_atom *atom) |
| { |
| int ret = 0; |
| |
| switch (atom->type) { |
| case SCHED_EVENT_RUN: |
| burn_nsecs(sched, atom->duration); |
| break; |
| case SCHED_EVENT_SLEEP: |
| if (atom->wait_sem) |
| ret = sem_wait(atom->wait_sem); |
| BUG_ON(ret); |
| break; |
| case SCHED_EVENT_WAKEUP: |
| if (atom->wait_sem) |
| ret = sem_post(atom->wait_sem); |
| BUG_ON(ret); |
| break; |
| case SCHED_EVENT_MIGRATION: |
| break; |
| default: |
| BUG_ON(1); |
| } |
| } |
| |
| static u64 get_cpu_usage_nsec_parent(void) |
| { |
| struct rusage ru; |
| u64 sum; |
| int err; |
| |
| err = getrusage(RUSAGE_SELF, &ru); |
| BUG_ON(err); |
| |
| sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC; |
| sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC; |
| |
| return sum; |
| } |
| |
| static int self_open_counters(struct perf_sched *sched, unsigned long cur_task) |
| { |
| struct perf_event_attr attr; |
| char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE]; |
| int fd; |
| struct rlimit limit; |
| bool need_privilege = false; |
| |
| memset(&attr, 0, sizeof(attr)); |
| |
| attr.type = PERF_TYPE_SOFTWARE; |
| attr.config = PERF_COUNT_SW_TASK_CLOCK; |
| |
| force_again: |
| fd = sys_perf_event_open(&attr, 0, -1, -1, |
| perf_event_open_cloexec_flag()); |
| |
| if (fd < 0) { |
| if (errno == EMFILE) { |
| if (sched->force) { |
| BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1); |
| limit.rlim_cur += sched->nr_tasks - cur_task; |
| if (limit.rlim_cur > limit.rlim_max) { |
| limit.rlim_max = limit.rlim_cur; |
| need_privilege = true; |
| } |
| if (setrlimit(RLIMIT_NOFILE, &limit) == -1) { |
| if (need_privilege && errno == EPERM) |
| strcpy(info, "Need privilege\n"); |
| } else |
| goto force_again; |
| } else |
| strcpy(info, "Have a try with -f option\n"); |
| } |
| pr_err("Error: sys_perf_event_open() syscall returned " |
| "with %d (%s)\n%s", fd, |
| str_error_r(errno, sbuf, sizeof(sbuf)), info); |
| exit(EXIT_FAILURE); |
| } |
| return fd; |
| } |
| |
| static u64 get_cpu_usage_nsec_self(int fd) |
| { |
| u64 runtime; |
| int ret; |
| |
| ret = read(fd, &runtime, sizeof(runtime)); |
| BUG_ON(ret != sizeof(runtime)); |
| |
| return runtime; |
| } |
| |
| struct sched_thread_parms { |
| struct task_desc *task; |
| struct perf_sched *sched; |
| int fd; |
| }; |
| |
| static void *thread_func(void *ctx) |
| { |
| struct sched_thread_parms *parms = ctx; |
| struct task_desc *this_task = parms->task; |
| struct perf_sched *sched = parms->sched; |
| u64 cpu_usage_0, cpu_usage_1; |
| unsigned long i, ret; |
| char comm2[22]; |
| int fd = parms->fd; |
| |
| zfree(&parms); |
| |
| sprintf(comm2, ":%s", this_task->comm); |
| prctl(PR_SET_NAME, comm2); |
| if (fd < 0) |
| return NULL; |
| again: |
| ret = sem_post(&this_task->ready_for_work); |
| BUG_ON(ret); |
| ret = pthread_mutex_lock(&sched->start_work_mutex); |
| BUG_ON(ret); |
| ret = pthread_mutex_unlock(&sched->start_work_mutex); |
| BUG_ON(ret); |
| |
| cpu_usage_0 = get_cpu_usage_nsec_self(fd); |
| |
| for (i = 0; i < this_task->nr_events; i++) { |
| this_task->curr_event = i; |
| perf_sched__process_event(sched, this_task->atoms[i]); |
| } |
| |
| cpu_usage_1 = get_cpu_usage_nsec_self(fd); |
| this_task->cpu_usage = cpu_usage_1 - cpu_usage_0; |
| ret = sem_post(&this_task->work_done_sem); |
| BUG_ON(ret); |
| |
| ret = pthread_mutex_lock(&sched->work_done_wait_mutex); |
| BUG_ON(ret); |
| ret = pthread_mutex_unlock(&sched->work_done_wait_mutex); |
| BUG_ON(ret); |
| |
| goto again; |
| } |
| |
| static void create_tasks(struct perf_sched *sched) |
| { |
| struct task_desc *task; |
| pthread_attr_t attr; |
| unsigned long i; |
| int err; |
| |
| err = pthread_attr_init(&attr); |
| BUG_ON(err); |
| err = pthread_attr_setstacksize(&attr, |
| (size_t) max(16 * 1024, PTHREAD_STACK_MIN)); |
| BUG_ON(err); |
| err = pthread_mutex_lock(&sched->start_work_mutex); |
| BUG_ON(err); |
| err = pthread_mutex_lock(&sched->work_done_wait_mutex); |
| BUG_ON(err); |
| for (i = 0; i < sched->nr_tasks; i++) { |
| struct sched_thread_parms *parms = malloc(sizeof(*parms)); |
| BUG_ON(parms == NULL); |
| parms->task = task = sched->tasks[i]; |
| parms->sched = sched; |
| parms->fd = self_open_counters(sched, i); |
| sem_init(&task->sleep_sem, 0, 0); |
| sem_init(&task->ready_for_work, 0, 0); |
| sem_init(&task->work_done_sem, 0, 0); |
| task->curr_event = 0; |
| err = pthread_create(&task->thread, &attr, thread_func, parms); |
| BUG_ON(err); |
| } |
| } |
| |
| static void wait_for_tasks(struct perf_sched *sched) |
| { |
| u64 cpu_usage_0, cpu_usage_1; |
| struct task_desc *task; |
| unsigned long i, ret; |
| |
| sched->start_time = get_nsecs(); |
| sched->cpu_usage = 0; |
| pthread_mutex_unlock(&sched->work_done_wait_mutex); |
| |
| for (i = 0; i < sched->nr_tasks; i++) { |
| task = sched->tasks[i]; |
| ret = sem_wait(&task->ready_for_work); |
| BUG_ON(ret); |
| sem_init(&task->ready_for_work, 0, 0); |
| } |
| ret = pthread_mutex_lock(&sched->work_done_wait_mutex); |
| BUG_ON(ret); |
| |
| cpu_usage_0 = get_cpu_usage_nsec_parent(); |
| |
| pthread_mutex_unlock(&sched->start_work_mutex); |
| |
| for (i = 0; i < sched->nr_tasks; i++) { |
| task = sched->tasks[i]; |
| ret = sem_wait(&task->work_done_sem); |
| BUG_ON(ret); |
| sem_init(&task->work_done_sem, 0, 0); |
| sched->cpu_usage += task->cpu_usage; |
| task->cpu_usage = 0; |
| } |
| |
| cpu_usage_1 = get_cpu_usage_nsec_parent(); |
| if (!sched->runavg_cpu_usage) |
| sched->runavg_cpu_usage = sched->cpu_usage; |
| sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat; |
| |
| sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0; |
| if (!sched->runavg_parent_cpu_usage) |
| sched->runavg_parent_cpu_usage = sched->parent_cpu_usage; |
| sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) + |
| sched->parent_cpu_usage)/sched->replay_repeat; |
| |
| ret = pthread_mutex_lock(&sched->start_work_mutex); |
| BUG_ON(ret); |
| |
| for (i = 0; i < sched->nr_tasks; i++) { |
| task = sched->tasks[i]; |
| sem_init(&task->sleep_sem, 0, 0); |
| task->curr_event = 0; |
| } |
| } |
| |
| static void run_one_test(struct perf_sched *sched) |
| { |
| u64 T0, T1, delta, avg_delta, fluct; |
| |
| T0 = get_nsecs(); |
| wait_for_tasks(sched); |
| T1 = get_nsecs(); |
| |
| delta = T1 - T0; |
| sched->sum_runtime += delta; |
| sched->nr_runs++; |
| |
| avg_delta = sched->sum_runtime / sched->nr_runs; |
| if (delta < avg_delta) |
| fluct = avg_delta - delta; |
| else |
| fluct = delta - avg_delta; |
| sched->sum_fluct += fluct; |
| if (!sched->run_avg) |
| sched->run_avg = delta; |
| sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat; |
| |
| printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC); |
| |
| printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC); |
| |
| printf("cpu: %0.2f / %0.2f", |
| (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC); |
| |
| #if 0 |
| /* |
| * rusage statistics done by the parent, these are less |
| * accurate than the sched->sum_exec_runtime based statistics: |
| */ |
| printf(" [%0.2f / %0.2f]", |
| (double)sched->parent_cpu_usage / NSEC_PER_MSEC, |
| (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC); |
| #endif |
| |
| printf("\n"); |
| |
| if (sched->nr_sleep_corrections) |
| printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections); |
| sched->nr_sleep_corrections = 0; |
| } |
| |
| static void test_calibrations(struct perf_sched *sched) |
| { |
| u64 T0, T1; |
| |
| T0 = get_nsecs(); |
| burn_nsecs(sched, NSEC_PER_MSEC); |
| T1 = get_nsecs(); |
| |
| printf("the run test took %" PRIu64 " nsecs\n", T1 - T0); |
| |
| T0 = get_nsecs(); |
| sleep_nsecs(NSEC_PER_MSEC); |
| T1 = get_nsecs(); |
| |
| printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0); |
| } |
| |
| static int |
| replay_wakeup_event(struct perf_sched *sched, |
| struct perf_evsel *evsel, struct perf_sample *sample, |
| struct machine *machine __maybe_unused) |
| { |
| const char *comm = perf_evsel__strval(evsel, sample, "comm"); |
| const u32 pid = perf_evsel__intval(evsel, sample, "pid"); |
| struct task_desc *waker, *wakee; |
| |
| if (verbose > 0) { |
| printf("sched_wakeup event %p\n", evsel); |
| |
| printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid); |
| } |
| |
| waker = register_pid(sched, sample->tid, "<unknown>"); |
| wakee = register_pid(sched, pid, comm); |
| |
| add_sched_event_wakeup(sched, waker, sample->time, wakee); |
| return 0; |
| } |
| |
| static int replay_switch_event(struct perf_sched *sched, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| struct machine *machine __maybe_unused) |
| { |
| const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"), |
| *next_comm = perf_evsel__strval(evsel, sample, "next_comm"); |
| const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), |
| next_pid = perf_evsel__intval(evsel, sample, "next_pid"); |
| const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); |
| struct task_desc *prev, __maybe_unused *next; |
| u64 timestamp0, timestamp = sample->time; |
| int cpu = sample->cpu; |
| s64 delta; |
| |
| if (verbose > 0) |
| printf("sched_switch event %p\n", evsel); |
| |
| if (cpu >= MAX_CPUS || cpu < 0) |
| return 0; |
| |
| timestamp0 = sched->cpu_last_switched[cpu]; |
| if (timestamp0) |
| delta = timestamp - timestamp0; |
| else |
| delta = 0; |
| |
| if (delta < 0) { |
| pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); |
| return -1; |
| } |
| |
| pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n", |
| prev_comm, prev_pid, next_comm, next_pid, delta); |
| |
| prev = register_pid(sched, prev_pid, prev_comm); |
| next = register_pid(sched, next_pid, next_comm); |
| |
| sched->cpu_last_switched[cpu] = timestamp; |
| |
| add_sched_event_run(sched, prev, timestamp, delta); |
| add_sched_event_sleep(sched, prev, timestamp, prev_state); |
| |
| return 0; |
| } |
| |
| static int replay_fork_event(struct perf_sched *sched, |
| union perf_event *event, |
| struct machine *machine) |
| { |
| struct thread *child, *parent; |
| |
| child = machine__findnew_thread(machine, event->fork.pid, |
| event->fork.tid); |
| parent = machine__findnew_thread(machine, event->fork.ppid, |
| event->fork.ptid); |
| |
| if (child == NULL || parent == NULL) { |
| pr_debug("thread does not exist on fork event: child %p, parent %p\n", |
| child, parent); |
| goto out_put; |
| } |
| |
| if (verbose > 0) { |
| printf("fork event\n"); |
| printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid); |
| printf("... child: %s/%d\n", thread__comm_str(child), child->tid); |
| } |
| |
| register_pid(sched, parent->tid, thread__comm_str(parent)); |
| register_pid(sched, child->tid, thread__comm_str(child)); |
| out_put: |
| thread__put(child); |
| thread__put(parent); |
| return 0; |
| } |
| |
| struct sort_dimension { |
| const char *name; |
| sort_fn_t cmp; |
| struct list_head list; |
| }; |
| |
| static int |
| thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r) |
| { |
| struct sort_dimension *sort; |
| int ret = 0; |
| |
| BUG_ON(list_empty(list)); |
| |
| list_for_each_entry(sort, list, list) { |
| ret = sort->cmp(l, r); |
| if (ret) |
| return ret; |
| } |
| |
| return ret; |
| } |
| |
| static struct work_atoms * |
| thread_atoms_search(struct rb_root *root, struct thread *thread, |
| struct list_head *sort_list) |
| { |
| struct rb_node *node = root->rb_node; |
| struct work_atoms key = { .thread = thread }; |
| |
| while (node) { |
| struct work_atoms *atoms; |
| int cmp; |
| |
| atoms = container_of(node, struct work_atoms, node); |
| |
| cmp = thread_lat_cmp(sort_list, &key, atoms); |
| if (cmp > 0) |
| node = node->rb_left; |
| else if (cmp < 0) |
| node = node->rb_right; |
| else { |
| BUG_ON(thread != atoms->thread); |
| return atoms; |
| } |
| } |
| return NULL; |
| } |
| |
| static void |
| __thread_latency_insert(struct rb_root *root, struct work_atoms *data, |
| struct list_head *sort_list) |
| { |
| struct rb_node **new = &(root->rb_node), *parent = NULL; |
| |
| while (*new) { |
| struct work_atoms *this; |
| int cmp; |
| |
| this = container_of(*new, struct work_atoms, node); |
| parent = *new; |
| |
| cmp = thread_lat_cmp(sort_list, data, this); |
| |
| if (cmp > 0) |
| new = &((*new)->rb_left); |
| else |
| new = &((*new)->rb_right); |
| } |
| |
| rb_link_node(&data->node, parent, new); |
| rb_insert_color(&data->node, root); |
| } |
| |
| static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread) |
| { |
| struct work_atoms *atoms = zalloc(sizeof(*atoms)); |
| if (!atoms) { |
| pr_err("No memory at %s\n", __func__); |
| return -1; |
| } |
| |
| atoms->thread = thread__get(thread); |
| INIT_LIST_HEAD(&atoms->work_list); |
| __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid); |
| return 0; |
| } |
| |
| static char sched_out_state(u64 prev_state) |
| { |
| const char *str = TASK_STATE_TO_CHAR_STR; |
| |
| return str[prev_state]; |
| } |
| |
| static int |
| add_sched_out_event(struct work_atoms *atoms, |
| char run_state, |
| u64 timestamp) |
| { |
| struct work_atom *atom = zalloc(sizeof(*atom)); |
| if (!atom) { |
| pr_err("Non memory at %s", __func__); |
| return -1; |
| } |
| |
| atom->sched_out_time = timestamp; |
| |
| if (run_state == 'R') { |
| atom->state = THREAD_WAIT_CPU; |
| atom->wake_up_time = atom->sched_out_time; |
| } |
| |
| list_add_tail(&atom->list, &atoms->work_list); |
| return 0; |
| } |
| |
| static void |
| add_runtime_event(struct work_atoms *atoms, u64 delta, |
| u64 timestamp __maybe_unused) |
| { |
| struct work_atom *atom; |
| |
| BUG_ON(list_empty(&atoms->work_list)); |
| |
| atom = list_entry(atoms->work_list.prev, struct work_atom, list); |
| |
| atom->runtime += delta; |
| atoms->total_runtime += delta; |
| } |
| |
| static void |
| add_sched_in_event(struct work_atoms *atoms, u64 timestamp) |
| { |
| struct work_atom *atom; |
| u64 delta; |
| |
| if (list_empty(&atoms->work_list)) |
| return; |
| |
| atom = list_entry(atoms->work_list.prev, struct work_atom, list); |
| |
| if (atom->state != THREAD_WAIT_CPU) |
| return; |
| |
| if (timestamp < atom->wake_up_time) { |
| atom->state = THREAD_IGNORE; |
| return; |
| } |
| |
| atom->state = THREAD_SCHED_IN; |
| atom->sched_in_time = timestamp; |
| |
| delta = atom->sched_in_time - atom->wake_up_time; |
| atoms->total_lat += delta; |
| if (delta > atoms->max_lat) { |
| atoms->max_lat = delta; |
| atoms->max_lat_at = timestamp; |
| } |
| atoms->nb_atoms++; |
| } |
| |
| static int latency_switch_event(struct perf_sched *sched, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| struct machine *machine) |
| { |
| const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), |
| next_pid = perf_evsel__intval(evsel, sample, "next_pid"); |
| const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); |
| struct work_atoms *out_events, *in_events; |
| struct thread *sched_out, *sched_in; |
| u64 timestamp0, timestamp = sample->time; |
| int cpu = sample->cpu, err = -1; |
| s64 delta; |
| |
| BUG_ON(cpu >= MAX_CPUS || cpu < 0); |
| |
| timestamp0 = sched->cpu_last_switched[cpu]; |
| sched->cpu_last_switched[cpu] = timestamp; |
| if (timestamp0) |
| delta = timestamp - timestamp0; |
| else |
| delta = 0; |
| |
| if (delta < 0) { |
| pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); |
| return -1; |
| } |
| |
| sched_out = machine__findnew_thread(machine, -1, prev_pid); |
| sched_in = machine__findnew_thread(machine, -1, next_pid); |
| if (sched_out == NULL || sched_in == NULL) |
| goto out_put; |
| |
| out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); |
| if (!out_events) { |
| if (thread_atoms_insert(sched, sched_out)) |
| goto out_put; |
| out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); |
| if (!out_events) { |
| pr_err("out-event: Internal tree error"); |
| goto out_put; |
| } |
| } |
| if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp)) |
| return -1; |
| |
| in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); |
| if (!in_events) { |
| if (thread_atoms_insert(sched, sched_in)) |
| goto out_put; |
| in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); |
| if (!in_events) { |
| pr_err("in-event: Internal tree error"); |
| goto out_put; |
| } |
| /* |
| * Take came in we have not heard about yet, |
| * add in an initial atom in runnable state: |
| */ |
| if (add_sched_out_event(in_events, 'R', timestamp)) |
| goto out_put; |
| } |
| add_sched_in_event(in_events, timestamp); |
| err = 0; |
| out_put: |
| thread__put(sched_out); |
| thread__put(sched_in); |
| return err; |
| } |
| |
| static int latency_runtime_event(struct perf_sched *sched, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| struct machine *machine) |
| { |
| const u32 pid = perf_evsel__intval(evsel, sample, "pid"); |
| const u64 runtime = perf_evsel__intval(evsel, sample, "runtime"); |
| struct thread *thread = machine__findnew_thread(machine, -1, pid); |
| struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); |
| u64 timestamp = sample->time; |
| int cpu = sample->cpu, err = -1; |
| |
| if (thread == NULL) |
| return -1; |
| |
| BUG_ON(cpu >= MAX_CPUS || cpu < 0); |
| if (!atoms) { |
| if (thread_atoms_insert(sched, thread)) |
| goto out_put; |
| atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); |
| if (!atoms) { |
| pr_err("in-event: Internal tree error"); |
| goto out_put; |
| } |
| if (add_sched_out_event(atoms, 'R', timestamp)) |
| goto out_put; |
| } |
| |
| add_runtime_event(atoms, runtime, timestamp); |
| err = 0; |
| out_put: |
| thread__put(thread); |
| return err; |
| } |
| |
| static int latency_wakeup_event(struct perf_sched *sched, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| struct machine *machine) |
| { |
| const u32 pid = perf_evsel__intval(evsel, sample, "pid"); |
| struct work_atoms *atoms; |
| struct work_atom *atom; |
| struct thread *wakee; |
| u64 timestamp = sample->time; |
| int err = -1; |
| |
| wakee = machine__findnew_thread(machine, -1, pid); |
| if (wakee == NULL) |
| return -1; |
| atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); |
| if (!atoms) { |
| if (thread_atoms_insert(sched, wakee)) |
| goto out_put; |
| atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); |
| if (!atoms) { |
| pr_err("wakeup-event: Internal tree error"); |
| goto out_put; |
| } |
| if (add_sched_out_event(atoms, 'S', timestamp)) |
| goto out_put; |
| } |
| |
| BUG_ON(list_empty(&atoms->work_list)); |
| |
| atom = list_entry(atoms->work_list.prev, struct work_atom, list); |
| |
| /* |
| * As we do not guarantee the wakeup event happens when |
| * task is out of run queue, also may happen when task is |
| * on run queue and wakeup only change ->state to TASK_RUNNING, |
| * then we should not set the ->wake_up_time when wake up a |
| * task which is on run queue. |
| * |
| * You WILL be missing events if you've recorded only |
| * one CPU, or are only looking at only one, so don't |
| * skip in this case. |
| */ |
| if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING) |
| goto out_ok; |
| |
| sched->nr_timestamps++; |
| if (atom->sched_out_time > timestamp) { |
| sched->nr_unordered_timestamps++; |
| goto out_ok; |
| } |
| |
| atom->state = THREAD_WAIT_CPU; |
| atom->wake_up_time = timestamp; |
| out_ok: |
| err = 0; |
| out_put: |
| thread__put(wakee); |
| return err; |
| } |
| |
| static int latency_migrate_task_event(struct perf_sched *sched, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| struct machine *machine) |
| { |
| const u32 pid = perf_evsel__intval(evsel, sample, "pid"); |
| u64 timestamp = sample->time; |
| struct work_atoms *atoms; |
| struct work_atom *atom; |
| struct thread *migrant; |
| int err = -1; |
| |
| /* |
| * Only need to worry about migration when profiling one CPU. |
| */ |
| if (sched->profile_cpu == -1) |
| return 0; |
| |
| migrant = machine__findnew_thread(machine, -1, pid); |
| if (migrant == NULL) |
| return -1; |
| atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); |
| if (!atoms) { |
| if (thread_atoms_insert(sched, migrant)) |
| goto out_put; |
| register_pid(sched, migrant->tid, thread__comm_str(migrant)); |
| atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); |
| if (!atoms) { |
| pr_err("migration-event: Internal tree error"); |
| goto out_put; |
| } |
| if (add_sched_out_event(atoms, 'R', timestamp)) |
| goto out_put; |
| } |
| |
| BUG_ON(list_empty(&atoms->work_list)); |
| |
| atom = list_entry(atoms->work_list.prev, struct work_atom, list); |
| atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp; |
| |
| sched->nr_timestamps++; |
| |
| if (atom->sched_out_time > timestamp) |
| sched->nr_unordered_timestamps++; |
| err = 0; |
| out_put: |
| thread__put(migrant); |
| return err; |
| } |
| |
| static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list) |
| { |
| int i; |
| int ret; |
| u64 avg; |
| char max_lat_at[32]; |
| |
| if (!work_list->nb_atoms) |
| return; |
| /* |
| * Ignore idle threads: |
| */ |
| if (!strcmp(thread__comm_str(work_list->thread), "swapper")) |
| return; |
| |
| sched->all_runtime += work_list->total_runtime; |
| sched->all_count += work_list->nb_atoms; |
| |
| if (work_list->num_merged > 1) |
| ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged); |
| else |
| ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid); |
| |
| for (i = 0; i < 24 - ret; i++) |
| printf(" "); |
| |
| avg = work_list->total_lat / work_list->nb_atoms; |
| timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at)); |
| |
| printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n", |
| (double)work_list->total_runtime / NSEC_PER_MSEC, |
| work_list->nb_atoms, (double)avg / NSEC_PER_MSEC, |
| (double)work_list->max_lat / NSEC_PER_MSEC, |
| max_lat_at); |
| } |
| |
| static int pid_cmp(struct work_atoms *l, struct work_atoms *r) |
| { |
| if (l->thread == r->thread) |
| return 0; |
| if (l->thread->tid < r->thread->tid) |
| return -1; |
| if (l->thread->tid > r->thread->tid) |
| return 1; |
| return (int)(l->thread - r->thread); |
| } |
| |
| static int avg_cmp(struct work_atoms *l, struct work_atoms *r) |
| { |
| u64 avgl, avgr; |
| |
| if (!l->nb_atoms) |
| return -1; |
| |
| if (!r->nb_atoms) |
| return 1; |
| |
| avgl = l->total_lat / l->nb_atoms; |
| avgr = r->total_lat / r->nb_atoms; |
| |
| if (avgl < avgr) |
| return -1; |
| if (avgl > avgr) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int max_cmp(struct work_atoms *l, struct work_atoms *r) |
| { |
| if (l->max_lat < r->max_lat) |
| return -1; |
| if (l->max_lat > r->max_lat) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int switch_cmp(struct work_atoms *l, struct work_atoms *r) |
| { |
| if (l->nb_atoms < r->nb_atoms) |
| return -1; |
| if (l->nb_atoms > r->nb_atoms) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int runtime_cmp(struct work_atoms *l, struct work_atoms *r) |
| { |
| if (l->total_runtime < r->total_runtime) |
| return -1; |
| if (l->total_runtime > r->total_runtime) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int sort_dimension__add(const char *tok, struct list_head *list) |
| { |
| size_t i; |
| static struct sort_dimension avg_sort_dimension = { |
| .name = "avg", |
| .cmp = avg_cmp, |
| }; |
| static struct sort_dimension max_sort_dimension = { |
| .name = "max", |
| .cmp = max_cmp, |
| }; |
| static struct sort_dimension pid_sort_dimension = { |
| .name = "pid", |
| .cmp = pid_cmp, |
| }; |
| static struct sort_dimension runtime_sort_dimension = { |
| .name = "runtime", |
| .cmp = runtime_cmp, |
| }; |
| static struct sort_dimension switch_sort_dimension = { |
| .name = "switch", |
| .cmp = switch_cmp, |
| }; |
| struct sort_dimension *available_sorts[] = { |
| &pid_sort_dimension, |
| &avg_sort_dimension, |
| &max_sort_dimension, |
| &switch_sort_dimension, |
| &runtime_sort_dimension, |
| }; |
| |
| for (i = 0; i < ARRAY_SIZE(available_sorts); i++) { |
| if (!strcmp(available_sorts[i]->name, tok)) { |
| list_add_tail(&available_sorts[i]->list, list); |
| |
| return 0; |
| } |
| } |
| |
| return -1; |
| } |
| |
| static void perf_sched__sort_lat(struct perf_sched *sched) |
| { |
| struct rb_node *node; |
| struct rb_root *root = &sched->atom_root; |
| again: |
| for (;;) { |
| struct work_atoms *data; |
| node = rb_first(root); |
| if (!node) |
| break; |
| |
| rb_erase(node, root); |
| data = rb_entry(node, struct work_atoms, node); |
| __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list); |
| } |
| if (root == &sched->atom_root) { |
| root = &sched->merged_atom_root; |
| goto again; |
| } |
| } |
| |
| static int process_sched_wakeup_event(struct perf_tool *tool, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| struct machine *machine) |
| { |
| struct perf_sched *sched = container_of(tool, struct perf_sched, tool); |
| |
| if (sched->tp_handler->wakeup_event) |
| return sched->tp_handler->wakeup_event(sched, evsel, sample, machine); |
| |
| return 0; |
| } |
| |
| union map_priv { |
| void *ptr; |
| bool color; |
| }; |
| |
| static bool thread__has_color(struct thread *thread) |
| { |
| union map_priv priv = { |
| .ptr = thread__priv(thread), |
| }; |
| |
| return priv.color; |
| } |
| |
| static struct thread* |
| map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid) |
| { |
| struct thread *thread = machine__findnew_thread(machine, pid, tid); |
| union map_priv priv = { |
| .color = false, |
| }; |
| |
| if (!sched->map.color_pids || !thread || thread__priv(thread)) |
| return thread; |
| |
| if (thread_map__has(sched->map.color_pids, tid)) |
| priv.color = true; |
| |
| thread__set_priv(thread, priv.ptr); |
| return thread; |
| } |
| |
| static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel, |
| struct perf_sample *sample, struct machine *machine) |
| { |
| const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); |
| struct thread *sched_in; |
| int new_shortname; |
| u64 timestamp0, timestamp = sample->time; |
| s64 delta; |
| int i, this_cpu = sample->cpu; |
| int cpus_nr; |
| bool new_cpu = false; |
| const char *color = PERF_COLOR_NORMAL; |
| char stimestamp[32]; |
| |
| BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0); |
| |
| if (this_cpu > sched->max_cpu) |
| sched->max_cpu = this_cpu; |
| |
| if (sched->map.comp) { |
| cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS); |
| if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) { |
| sched->map.comp_cpus[cpus_nr++] = this_cpu; |
| new_cpu = true; |
| } |
| } else |
| cpus_nr = sched->max_cpu; |
| |
| timestamp0 = sched->cpu_last_switched[this_cpu]; |
| sched->cpu_last_switched[this_cpu] = timestamp; |
| if (timestamp0) |
| delta = timestamp - timestamp0; |
| else |
| delta = 0; |
| |
| if (delta < 0) { |
| pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); |
| return -1; |
| } |
| |
| sched_in = map__findnew_thread(sched, machine, -1, next_pid); |
| if (sched_in == NULL) |
| return -1; |
| |
| sched->curr_thread[this_cpu] = thread__get(sched_in); |
| |
| printf(" "); |
| |
| new_shortname = 0; |
| if (!sched_in->shortname[0]) { |
| if (!strcmp(thread__comm_str(sched_in), "swapper")) { |
| /* |
| * Don't allocate a letter-number for swapper:0 |
| * as a shortname. Instead, we use '.' for it. |
| */ |
| sched_in->shortname[0] = '.'; |
| sched_in->shortname[1] = ' '; |
| } else { |
| sched_in->shortname[0] = sched->next_shortname1; |
| sched_in->shortname[1] = sched->next_shortname2; |
| |
| if (sched->next_shortname1 < 'Z') { |
| sched->next_shortname1++; |
| } else { |
| sched->next_shortname1 = 'A'; |
| if (sched->next_shortname2 < '9') |
| sched->next_shortname2++; |
| else |
| sched->next_shortname2 = '0'; |
| } |
| } |
| new_shortname = 1; |
| } |
| |
| for (i = 0; i < cpus_nr; i++) { |
| int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i; |
| struct thread *curr_thread = sched->curr_thread[cpu]; |
| const char *pid_color = color; |
| const char *cpu_color = color; |
| |
| if (curr_thread && thread__has_color(curr_thread)) |
| pid_color = COLOR_PIDS; |
| |
| if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu)) |
| continue; |
| |
| if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu)) |
| cpu_color = COLOR_CPUS; |
| |
| if (cpu != this_cpu) |
| color_fprintf(stdout, color, " "); |
| else |
| color_fprintf(stdout, cpu_color, "*"); |
| |
| if (sched->curr_thread[cpu]) |
| color_fprintf(stdout, pid_color, "%2s ", sched->curr_thread[cpu]->shortname); |
| else |
| color_fprintf(stdout, color, " "); |
| } |
| |
| if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu)) |
| goto out; |
| |
| timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp)); |
| color_fprintf(stdout, color, " %12s secs ", stimestamp); |
| if (new_shortname || (verbose > 0 && sched_in->tid)) { |
| const char *pid_color = color; |
| |
| if (thread__has_color(sched_in)) |
| pid_color = COLOR_PIDS; |
| |
| color_fprintf(stdout, pid_color, "%s => %s:%d", |
| sched_in->shortname, thread__comm_str(sched_in), sched_in->tid); |
| } |
| |
| if (sched->map.comp && new_cpu) |
| color_fprintf(stdout, color, " (CPU %d)", this_cpu); |
| |
| out: |
| color_fprintf(stdout, color, "\n"); |
| |
| thread__put(sched_in); |
| |
| return 0; |
| } |
| |
| static int process_sched_switch_event(struct perf_tool *tool, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| struct machine *machine) |
| { |
| struct perf_sched *sched = container_of(tool, struct perf_sched, tool); |
| int this_cpu = sample->cpu, err = 0; |
| u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), |
| next_pid = perf_evsel__intval(evsel, sample, "next_pid"); |
| |
| if (sched->curr_pid[this_cpu] != (u32)-1) { |
| /* |
| * Are we trying to switch away a PID that is |
| * not current? |
| */ |
| if (sched->curr_pid[this_cpu] != prev_pid) |
| sched->nr_context_switch_bugs++; |
| } |
| |
| if (sched->tp_handler->switch_event) |
| err = sched->tp_handler->switch_event(sched, evsel, sample, machine); |
| |
| sched->curr_pid[this_cpu] = next_pid; |
| return err; |
| } |
| |
| static int process_sched_runtime_event(struct perf_tool *tool, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| struct machine *machine) |
| { |
| struct perf_sched *sched = container_of(tool, struct perf_sched, tool); |
| |
| if (sched->tp_handler->runtime_event) |
| return sched->tp_handler->runtime_event(sched, evsel, sample, machine); |
| |
| return 0; |
| } |
| |
| static int perf_sched__process_fork_event(struct perf_tool *tool, |
| union perf_event *event, |
| struct perf_sample *sample, |
| struct machine *machine) |
| { |
| struct perf_sched *sched = container_of(tool, struct perf_sched, tool); |
| |
| /* run the fork event through the perf machineruy */ |
| perf_event__process_fork(tool, event, sample, machine); |
| |
| /* and then run additional processing needed for this command */ |
| if (sched->tp_handler->fork_event) |
| return sched->tp_handler->fork_event(sched, event, machine); |
| |
| return 0; |
| } |
| |
| static int process_sched_migrate_task_event(struct perf_tool *tool, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| struct machine *machine) |
| { |
| struct perf_sched *sched = container_of(tool, struct perf_sched, tool); |
| |
| if (sched->tp_handler->migrate_task_event) |
| return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine); |
| |
| return 0; |
| } |
| |
| typedef int (*tracepoint_handler)(struct perf_tool *tool, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| struct machine *machine); |
| |
| static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused, |
| union perf_event *event __maybe_unused, |
| struct perf_sample *sample, |
| struct perf_evsel *evsel, |
| struct machine *machine) |
| { |
| int err = 0; |
| |
| if (evsel->handler != NULL) { |
| tracepoint_handler f = evsel->handler; |
| err = f(tool, evsel, sample, machine); |
| } |
| |
| return err; |
| } |
| |
| static int perf_sched__read_events(struct perf_sched *sched) |
| { |
| const struct perf_evsel_str_handler handlers[] = { |
| { "sched:sched_switch", process_sched_switch_event, }, |
| { "sched:sched_stat_runtime", process_sched_runtime_event, }, |
| { "sched:sched_wakeup", process_sched_wakeup_event, }, |
| { "sched:sched_wakeup_new", process_sched_wakeup_event, }, |
| { "sched:sched_migrate_task", process_sched_migrate_task_event, }, |
| }; |
| struct perf_session *session; |
| struct perf_data_file file = { |
| .path = input_name, |
| .mode = PERF_DATA_MODE_READ, |
| .force = sched->force, |
| }; |
| int rc = -1; |
| |
| session = perf_session__new(&file, false, &sched->tool); |
| if (session == NULL) { |
| pr_debug("No Memory for session\n"); |
| return -1; |
| } |
| |
| symbol__init(&session->header.env); |
| |
| if (perf_session__set_tracepoints_handlers(session, handlers)) |
| goto out_delete; |
| |
| if (perf_session__has_traces(session, "record -R")) { |
| int err = perf_session__process_events(session); |
| if (err) { |
| pr_err("Failed to process events, error %d", err); |
| goto out_delete; |
| } |
| |
| sched->nr_events = session->evlist->stats.nr_events[0]; |
| sched->nr_lost_events = session->evlist->stats.total_lost; |
| sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST]; |
| } |
| |
| rc = 0; |
| out_delete: |
| perf_session__delete(session); |
| return rc; |
| } |
| |
| /* |
| * scheduling times are printed as msec.usec |
| */ |
| static inline void print_sched_time(unsigned long long nsecs, int width) |
| { |
| unsigned long msecs; |
| unsigned long usecs; |
| |
| msecs = nsecs / NSEC_PER_MSEC; |
| nsecs -= msecs * NSEC_PER_MSEC; |
| usecs = nsecs / NSEC_PER_USEC; |
| printf("%*lu.%03lu ", width, msecs, usecs); |
| } |
| |
| /* |
| * returns runtime data for event, allocating memory for it the |
| * first time it is used. |
| */ |
| static struct evsel_runtime *perf_evsel__get_runtime(struct perf_evsel *evsel) |
| { |
| struct evsel_runtime *r = evsel->priv; |
| |
| if (r == NULL) { |
| r = zalloc(sizeof(struct evsel_runtime)); |
| evsel->priv = r; |
| } |
| |
| return r; |
| } |
| |
| /* |
| * save last time event was seen per cpu |
| */ |
| static void perf_evsel__save_time(struct perf_evsel *evsel, |
| u64 timestamp, u32 cpu) |
| { |
| struct evsel_runtime *r = perf_evsel__get_runtime(evsel); |
| |
| if (r == NULL) |
| return; |
| |
| if ((cpu >= r->ncpu) || (r->last_time == NULL)) { |
| int i, n = __roundup_pow_of_two(cpu+1); |
| void *p = r->last_time; |
| |
| p = realloc(r->last_time, n * sizeof(u64)); |
| if (!p) |
| return; |
| |
| r->last_time = p; |
| for (i = r->ncpu; i < n; ++i) |
| r->last_time[i] = (u64) 0; |
| |
| r->ncpu = n; |
| } |
| |
| r->last_time[cpu] = timestamp; |
| } |
| |
| /* returns last time this event was seen on the given cpu */ |
| static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu) |
| { |
| struct evsel_runtime *r = perf_evsel__get_runtime(evsel); |
| |
| if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu)) |
| return 0; |
| |
| return r->last_time[cpu]; |
| } |
| |
| static int comm_width = 30; |
| |
| static char *timehist_get_commstr(struct thread *thread) |
| { |
| static char str[32]; |
| const char *comm = thread__comm_str(thread); |
| pid_t tid = thread->tid; |
| pid_t pid = thread->pid_; |
| int n; |
| |
| if (pid == 0) |
| n = scnprintf(str, sizeof(str), "%s", comm); |
| |
| else if (tid != pid) |
| n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid); |
| |
| else |
| n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid); |
| |
| if (n > comm_width) |
| comm_width = n; |
| |
| return str; |
| } |
| |
| static void timehist_header(struct perf_sched *sched) |
| { |
| u32 ncpus = sched->max_cpu + 1; |
| u32 i, j; |
| |
| printf("%15s %6s ", "time", "cpu"); |
| |
| if (sched->show_cpu_visual) { |
| printf(" "); |
| for (i = 0, j = 0; i < ncpus; ++i) { |
| printf("%x", j++); |
| if (j > 15) |
| j = 0; |
| } |
| printf(" "); |
| } |
| |
| printf(" %-*s %9s %9s %9s", comm_width, |
| "task name", "wait time", "sch delay", "run time"); |
| |
| if (sched->show_state) |
| printf(" %s", "state"); |
| |
| printf("\n"); |
| |
| /* |
| * units row |
| */ |
| printf("%15s %-6s ", "", ""); |
| |
| if (sched->show_cpu_visual) |
| printf(" %*s ", ncpus, ""); |
| |
| printf(" %-*s %9s %9s %9s", comm_width, |
| "[tid/pid]", "(msec)", "(msec)", "(msec)"); |
| |
| if (sched->show_state) |
| printf(" %5s", ""); |
| |
| printf("\n"); |
| |
| /* |
| * separator |
| */ |
| printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line); |
| |
| if (sched->show_cpu_visual) |
| printf(" %.*s ", ncpus, graph_dotted_line); |
| |
| printf(" %.*s %.9s %.9s %.9s", comm_width, |
| graph_dotted_line, graph_dotted_line, graph_dotted_line, |
| graph_dotted_line); |
| |
| if (sched->show_state) |
| printf(" %.5s", graph_dotted_line); |
| |
| printf("\n"); |
| } |
| |
| static char task_state_char(struct thread *thread, int state) |
| { |
| static const char state_to_char[] = TASK_STATE_TO_CHAR_STR; |
| unsigned bit = state ? ffs(state) : 0; |
| |
| /* 'I' for idle */ |
| if (thread->tid == 0) |
| return 'I'; |
| |
| return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?'; |
| } |
| |
| static void timehist_print_sample(struct perf_sched *sched, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| struct addr_location *al, |
| struct thread *thread, |
| u64 t, int state) |
| { |
| struct thread_runtime *tr = thread__priv(thread); |
| const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm"); |
| const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); |
| u32 max_cpus = sched->max_cpu + 1; |
| char tstr[64]; |
| char nstr[30]; |
| u64 wait_time; |
| |
| timestamp__scnprintf_usec(t, tstr, sizeof(tstr)); |
| printf("%15s [%04d] ", tstr, sample->cpu); |
| |
| if (sched->show_cpu_visual) { |
| u32 i; |
| char c; |
| |
| printf(" "); |
| for (i = 0; i < max_cpus; ++i) { |
| /* flag idle times with 'i'; others are sched events */ |
| if (i == sample->cpu) |
| c = (thread->tid == 0) ? 'i' : 's'; |
| else |
| c = ' '; |
| printf("%c", c); |
| } |
| printf(" "); |
| } |
| |
| printf(" %-*s ", comm_width, timehist_get_commstr(thread)); |
| |
| wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt; |
| print_sched_time(wait_time, 6); |
| |
| print_sched_time(tr->dt_delay, 6); |
| print_sched_time(tr->dt_run, 6); |
| |
| if (sched->show_state) |
| printf(" %5c ", task_state_char(thread, state)); |
| |
| if (sched->show_next) { |
| snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid); |
| printf(" %-*s", comm_width, nstr); |
| } |
| |
| if (sched->show_wakeups && !sched->show_next) |
| printf(" %-*s", comm_width, ""); |
| |
| if (thread->tid == 0) |
| goto out; |
| |
| if (sched->show_callchain) |
| printf(" "); |
| |
| sample__fprintf_sym(sample, al, 0, |
| EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE | |
| EVSEL__PRINT_CALLCHAIN_ARROW | |
| EVSEL__PRINT_SKIP_IGNORED, |
| &callchain_cursor, stdout); |
| |
| out: |
| printf("\n"); |
| } |
| |
| /* |
| * Explanation of delta-time stats: |
| * |
| * t = time of current schedule out event |
| * tprev = time of previous sched out event |
| * also time of schedule-in event for current task |
| * last_time = time of last sched change event for current task |
| * (i.e, time process was last scheduled out) |
| * ready_to_run = time of wakeup for current task |
| * |
| * -----|------------|------------|------------|------ |
| * last ready tprev t |
| * time to run |
| * |
| * |-------- dt_wait --------| |
| * |- dt_delay -|-- dt_run --| |
| * |
| * dt_run = run time of current task |
| * dt_wait = time between last schedule out event for task and tprev |
| * represents time spent off the cpu |
| * dt_delay = time between wakeup and schedule-in of task |
| */ |
| |
| static void timehist_update_runtime_stats(struct thread_runtime *r, |
| u64 t, u64 tprev) |
| { |
| r->dt_delay = 0; |
| r->dt_sleep = 0; |
| r->dt_iowait = 0; |
| r->dt_preempt = 0; |
| r->dt_run = 0; |
| |
| if (tprev) { |
| r->dt_run = t - tprev; |
| if (r->ready_to_run) { |
| if (r->ready_to_run > tprev) |
| pr_debug("time travel: wakeup time for task > previous sched_switch event\n"); |
| else |
| r->dt_delay = tprev - r->ready_to_run; |
| } |
| |
| if (r->last_time > tprev) |
| pr_debug("time travel: last sched out time for task > previous sched_switch event\n"); |
| else if (r->last_time) { |
| u64 dt_wait = tprev - r->last_time; |
| |
| if (r->last_state == TASK_RUNNING) |
| r->dt_preempt = dt_wait; |
| else if (r->last_state == TASK_UNINTERRUPTIBLE) |
| r->dt_iowait = dt_wait; |
| else |
| r->dt_sleep = dt_wait; |
| } |
| } |
| |
| update_stats(&r->run_stats, r->dt_run); |
| |
| r->total_run_time += r->dt_run; |
| r->total_delay_time += r->dt_delay; |
| r->total_sleep_time += r->dt_sleep; |
| r->total_iowait_time += r->dt_iowait; |
| r->total_preempt_time += r->dt_preempt; |
| } |
| |
| static bool is_idle_sample(struct perf_sample *sample, |
| struct perf_evsel *evsel) |
| { |
| /* pid 0 == swapper == idle task */ |
| if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0) |
| return perf_evsel__intval(evsel, sample, "prev_pid") == 0; |
| |
| return sample->pid == 0; |
| } |
| |
| static void save_task_callchain(struct perf_sched *sched, |
| struct perf_sample *sample, |
| struct perf_evsel *evsel, |
| struct machine *machine) |
| { |
| struct callchain_cursor *cursor = &callchain_cursor; |
| struct thread *thread; |
| |
| /* want main thread for process - has maps */ |
| thread = machine__findnew_thread(machine, sample->pid, sample->pid); |
| if (thread == NULL) { |
| pr_debug("Failed to get thread for pid %d.\n", sample->pid); |
| return; |
| } |
| |
| if (!symbol_conf.use_callchain || sample->callchain == NULL) |
| return; |
| |
| if (thread__resolve_callchain(thread, cursor, evsel, sample, |
| NULL, NULL, sched->max_stack + 2) != 0) { |
| if (verbose > 0) |
| pr_err("Failed to resolve callchain. Skipping\n"); |
| |
| return; |
| } |
| |
| callchain_cursor_commit(cursor); |
| |
| while (true) { |
| struct callchain_cursor_node *node; |
| struct symbol *sym; |
| |
| node = callchain_cursor_current(cursor); |
| if (node == NULL) |
| break; |
| |
| sym = node->sym; |
| if (sym) { |
| if (!strcmp(sym->name, "schedule") || |
| !strcmp(sym->name, "__schedule") || |
| !strcmp(sym->name, "preempt_schedule")) |
| sym->ignore = 1; |
| } |
| |
| callchain_cursor_advance(cursor); |
| } |
| } |
| |
| static int init_idle_thread(struct thread *thread) |
| { |
| struct idle_thread_runtime *itr; |
| |
| thread__set_comm(thread, idle_comm, 0); |
| |
| itr = zalloc(sizeof(*itr)); |
| if (itr == NULL) |
| return -ENOMEM; |
| |
| init_stats(&itr->tr.run_stats); |
| callchain_init(&itr->callchain); |
| callchain_cursor_reset(&itr->cursor); |
| thread__set_priv(thread, itr); |
| |
| return 0; |
| } |
| |
| /* |
| * Track idle stats per cpu by maintaining a local thread |
| * struct for the idle task on each cpu. |
| */ |
| static int init_idle_threads(int ncpu) |
| { |
| int i, ret; |
| |
| idle_threads = zalloc(ncpu * sizeof(struct thread *)); |
| if (!idle_threads) |
| return -ENOMEM; |
| |
| idle_max_cpu = ncpu; |
| |
| /* allocate the actual thread struct if needed */ |
| for (i = 0; i < ncpu; ++i) { |
| idle_threads[i] = thread__new(0, 0); |
| if (idle_threads[i] == NULL) |
| return -ENOMEM; |
| |
| ret = init_idle_thread(idle_threads[i]); |
| if (ret < 0) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void free_idle_threads(void) |
| { |
| int i; |
| |
| if (idle_threads == NULL) |
| return; |
| |
| for (i = 0; i < idle_max_cpu; ++i) { |
| if ((idle_threads[i])) |
| thread__delete(idle_threads[i]); |
| } |
| |
| free(idle_threads); |
| } |
| |
| static struct thread *get_idle_thread(int cpu) |
| { |
| /* |
| * expand/allocate array of pointers to local thread |
| * structs if needed |
| */ |
| if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) { |
| int i, j = __roundup_pow_of_two(cpu+1); |
| void *p; |
| |
| p = realloc(idle_threads, j * sizeof(struct thread *)); |
| if (!p) |
| return NULL; |
| |
| idle_threads = (struct thread **) p; |
| for (i = idle_max_cpu; i < j; ++i) |
| idle_threads[i] = NULL; |
| |
| idle_max_cpu = j; |
| } |
| |
| /* allocate a new thread struct if needed */ |
| if (idle_threads[cpu] == NULL) { |
| idle_threads[cpu] = thread__new(0, 0); |
| |
| if (idle_threads[cpu]) { |
| if (init_idle_thread(idle_threads[cpu]) < 0) |
| return NULL; |
| } |
| } |
| |
| return idle_threads[cpu]; |
| } |
| |
| static void save_idle_callchain(struct idle_thread_runtime *itr, |
| struct perf_sample *sample) |
| { |
| if (!symbol_conf.use_callchain || sample->callchain == NULL) |
| return; |
| |
| callchain_cursor__copy(&itr->cursor, &callchain_cursor); |
| } |
| |
| /* |
| * handle runtime stats saved per thread |
| */ |
| static struct thread_runtime *thread__init_runtime(struct thread *thread) |
| { |
| struct thread_runtime *r; |
| |
| r = zalloc(sizeof(struct thread_runtime)); |
| if (!r) |
| return NULL; |
| |
| init_stats(&r->run_stats); |
| thread__set_priv(thread, r); |
| |
| return r; |
| } |
| |
| static struct thread_runtime *thread__get_runtime(struct thread *thread) |
| { |
| struct thread_runtime *tr; |
| |
| tr = thread__priv(thread); |
| if (tr == NULL) { |
| tr = thread__init_runtime(thread); |
| if (tr == NULL) |
| pr_debug("Failed to malloc memory for runtime data.\n"); |
| } |
| |
| return tr; |
| } |
| |
| static struct thread *timehist_get_thread(struct perf_sched *sched, |
| struct perf_sample *sample, |
| struct machine *machine, |
| struct perf_evsel *evsel) |
| { |
| struct thread *thread; |
| |
| if (is_idle_sample(sample, evsel)) { |
| thread = get_idle_thread(sample->cpu); |
| if (thread == NULL) |
| pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); |
| |
| } else { |
| /* there were samples with tid 0 but non-zero pid */ |
| thread = machine__findnew_thread(machine, sample->pid, |
| sample->tid ?: sample->pid); |
| if (thread == NULL) { |
| pr_debug("Failed to get thread for tid %d. skipping sample.\n", |
| sample->tid); |
| } |
| |
| save_task_callchain(sched, sample, evsel, machine); |
| if (sched->idle_hist) { |
| struct thread *idle; |
| struct idle_thread_runtime *itr; |
| |
| idle = get_idle_thread(sample->cpu); |
| if (idle == NULL) { |
| pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); |
| return NULL; |
| } |
| |
| itr = thread__priv(idle); |
| if (itr == NULL) |
| return NULL; |
| |
| itr->last_thread = thread; |
| |
| /* copy task callchain when entering to idle */ |
| if (perf_evsel__intval(evsel, sample, "next_pid") == 0) |
| save_idle_callchain(itr, sample); |
| } |
| } |
| |
| return thread; |
| } |
| |
| static bool timehist_skip_sample(struct perf_sched *sched, |
| struct thread *thread, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample) |
| { |
| bool rc = false; |
| |
| if (thread__is_filtered(thread)) { |
| rc = true; |
| sched->skipped_samples++; |
| } |
| |
| if (sched->idle_hist) { |
| if (strcmp(perf_evsel__name(evsel), "sched:sched_switch")) |
| rc = true; |
| else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 && |
| perf_evsel__intval(evsel, sample, "next_pid") != 0) |
| rc = true; |
| } |
| |
| return rc; |
| } |
| |
| static void timehist_print_wakeup_event(struct perf_sched *sched, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| struct machine *machine, |
| struct thread *awakened) |
| { |
| struct thread *thread; |
| char tstr[64]; |
| |
| thread = machine__findnew_thread(machine, sample->pid, sample->tid); |
| if (thread == NULL) |
| return; |
| |
| /* show wakeup unless both awakee and awaker are filtered */ |
| if (timehist_skip_sample(sched, thread, evsel, sample) && |
| timehist_skip_sample(sched, awakened, evsel, sample)) { |
| return; |
| } |
| |
| timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); |
| printf("%15s [%04d] ", tstr, sample->cpu); |
| if (sched->show_cpu_visual) |
| printf(" %*s ", sched->max_cpu + 1, ""); |
| |
| printf(" %-*s ", comm_width, timehist_get_commstr(thread)); |
| |
| /* dt spacer */ |
| printf(" %9s %9s %9s ", "", "", ""); |
| |
| printf("awakened: %s", timehist_get_commstr(awakened)); |
| |
| printf("\n"); |
| } |
| |
| static int timehist_sched_wakeup_event(struct perf_tool *tool, |
| union perf_event *event __maybe_unused, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| struct machine *machine) |
| { |
| struct perf_sched *sched = container_of(tool, struct perf_sched, tool); |
| struct thread *thread; |
| struct thread_runtime *tr = NULL; |
| /* want pid of awakened task not pid in sample */ |
| const u32 pid = perf_evsel__intval(evsel, sample, "pid"); |
| |
| thread = machine__findnew_thread(machine, 0, pid); |
| if (thread == NULL) |
| return -1; |
| |
| tr = thread__get_runtime(thread); |
| if (tr == NULL) |
| return -1; |
| |
| if (tr->ready_to_run == 0) |
| tr->ready_to_run = sample->time; |
| |
| /* show wakeups if requested */ |
| if (sched->show_wakeups && |
| !perf_time__skip_sample(&sched->ptime, sample->time)) |
| timehist_print_wakeup_event(sched, evsel, sample, machine, thread); |
| |
| return 0; |
| } |
| |
| static void timehist_print_migration_event(struct perf_sched *sched, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| struct machine *machine, |
| struct thread *migrated) |
| { |
| struct thread *thread; |
| char tstr[64]; |
| u32 max_cpus = sched->max_cpu + 1; |
| u32 ocpu, dcpu; |
| |
| if (sched->summary_only) |
| return; |
| |
| max_cpus = sched->max_cpu + 1; |
| ocpu = perf_evsel__intval(evsel, sample, "orig_cpu"); |
| dcpu = perf_evsel__intval(evsel, sample, "dest_cpu"); |
| |
| thread = machine__findnew_thread(machine, sample->pid, sample->tid); |
| if (thread == NULL) |
| return; |
| |
| if (timehist_skip_sample(sched, thread, evsel, sample) && |
| timehist_skip_sample(sched, migrated, evsel, sample)) { |
| return; |
| } |
| |
| timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); |
| printf("%15s [%04d] ", tstr, sample->cpu); |
| |
| if (sched->show_cpu_visual) { |
| u32 i; |
| char c; |
| |
| printf(" "); |
| for (i = 0; i < max_cpus; ++i) { |
| c = (i == sample->cpu) ? 'm' : ' '; |
| printf("%c", c); |
| } |
| printf(" "); |
| } |
| |
| printf(" %-*s ", comm_width, timehist_get_commstr(thread)); |
| |
| /* dt spacer */ |
| printf(" %9s %9s %9s ", "", "", ""); |
| |
| printf("migrated: %s", timehist_get_commstr(migrated)); |
| printf(" cpu %d => %d", ocpu, dcpu); |
| |
| printf("\n"); |
| } |
| |
| static int timehist_migrate_task_event(struct perf_tool *tool, |
| union perf_event *event __maybe_unused, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| struct machine *machine) |
| { |
| struct perf_sched *sched = container_of(tool, struct perf_sched, tool); |
| struct thread *thread; |
| struct thread_runtime *tr = NULL; |
| /* want pid of migrated task not pid in sample */ |
| const u32 pid = perf_evsel__intval(evsel, sample, "pid"); |
| |
| thread = machine__findnew_thread(machine, 0, pid); |
| if (thread == NULL) |
| return -1; |
| |
| tr = thread__get_runtime(thread); |
| if (tr == NULL) |
| return -1; |
| |
| tr->migrations++; |
| |
| /* show migrations if requested */ |
| timehist_print_migration_event(sched, evsel, sample, machine, thread); |
| |
| return 0; |
| } |
| |
| static int timehist_sched_change_event(struct perf_tool *tool, |
| union perf_event *event, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| struct machine *machine) |
| { |
| struct perf_sched *sched = container_of(tool, struct perf_sched, tool); |
| struct perf_time_interval *ptime = &sched->ptime; |
| struct addr_location al; |
| struct thread *thread; |
| struct thread_runtime *tr = NULL; |
| u64 tprev, t = sample->time; |
| int rc = 0; |
| int state = perf_evsel__intval(evsel, sample, "prev_state"); |
| |
| |
| if (machine__resolve(machine, &al, sample) < 0) { |
| pr_err("problem processing %d event. skipping it\n", |
| event->header.type); |
| rc = -1; |
| goto out; |
| } |
| |
| thread = timehist_get_thread(sched, sample, machine, evsel); |
| if (thread == NULL) { |
| rc = -1; |
| goto out; |
| } |
| |
| if (timehist_skip_sample(sched, thread, evsel, sample)) |
| goto out; |
| |
| tr = thread__get_runtime(thread); |
| if (tr == NULL) { |
| rc = -1; |
| goto out; |
| } |
| |
| tprev = perf_evsel__get_time(evsel, sample->cpu); |
| |
| /* |
| * If start time given: |
| * - sample time is under window user cares about - skip sample |
| * - tprev is under window user cares about - reset to start of window |
| */ |
| if (ptime->start && ptime->start > t) |
| goto out; |
| |
| if (tprev && ptime->start > tprev) |
| tprev = ptime->start; |
| |
| /* |
| * If end time given: |
| * - previous sched event is out of window - we are done |
| * - sample time is beyond window user cares about - reset it |
| * to close out stats for time window interest |
| */ |
| if (ptime->end) { |
| if (tprev > ptime->end) |
| goto out; |
| |
| if (t > ptime->end) |
| t = ptime->end; |
| } |
| |
| if (!sched->idle_hist || thread->tid == 0) { |
| timehist_update_runtime_stats(tr, t, tprev); |
| |
| if (sched->idle_hist) { |
| struct idle_thread_runtime *itr = (void *)tr; |
| struct thread_runtime *last_tr; |
| |
| BUG_ON(thread->tid != 0); |
| |
| if (itr->last_thread == NULL) |
| goto out; |
| |
| /* add current idle time as last thread's runtime */ |
| last_tr = thread__get_runtime(itr->last_thread); |
| if (last_tr == NULL) |
| goto out; |
| |
| timehist_update_runtime_stats(last_tr, t, tprev); |
| /* |
| * remove delta time of last thread as it's not updated |
| * and otherwise it will show an invalid value next |
| * time. we only care total run time and run stat. |
| */ |
| last_tr->dt_run = 0; |
| last_tr->dt_delay = 0; |
| last_tr->dt_sleep = 0; |
| last_tr->dt_iowait = 0; |
| last_tr->dt_preempt = 0; |
| |
| if (itr->cursor.nr) |
| callchain_append(&itr->callchain, &itr->cursor, t - tprev); |
| |
| itr->last_thread = NULL; |
| } |
| } |
| |
| if (!sched->summary_only) |
| timehist_print_sample(sched, evsel, sample, &al, thread, t, state); |
| |
| out: |
| if (sched->hist_time.start == 0 && t >= ptime->start) |
| sched->hist_time.start = t; |
| if (ptime->end == 0 || t <= ptime->end) |
| sched->hist_time.end = t; |
| |
| if (tr) { |
| /* time of this sched_switch event becomes last time task seen */ |
| tr->last_time = sample->time; |
| |
| /* last state is used to determine where to account wait time */ |
| tr->last_state = state; |
| |
| /* sched out event for task so reset ready to run time */ |
| tr->ready_to_run = 0; |
| } |
| |
| perf_evsel__save_time(evsel, sample->time, sample->cpu); |
| |
| return rc; |
| } |
| |
| static int timehist_sched_switch_event(struct perf_tool *tool, |
| union perf_event *event, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| struct machine *machine __maybe_unused) |
| { |
| return timehist_sched_change_event(tool, event, evsel, sample, machine); |
| } |
| |
| static int process_lost(struct perf_tool *tool __maybe_unused, |
| union perf_event *event, |
| struct perf_sample *sample, |
| struct machine *machine __maybe_unused) |
| { |
| char tstr[64]; |
| |
| timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); |
| printf("%15s ", tstr); |
| printf("lost %" PRIu64 " events on cpu %d\n", event->lost.lost, sample->cpu); |
| |
| return 0; |
| } |
| |
| |
| static void print_thread_runtime(struct thread *t, |
| struct thread_runtime *r) |
| { |
| double mean = avg_stats(&r->run_stats); |
| float stddev; |
| |
| printf("%*s %5d %9" PRIu64 " ", |
| comm_width, timehist_get_commstr(t), t->ppid, |
| (u64) r->run_stats.n); |
| |
| print_sched_time(r->total_run_time, 8); |
| stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean); |
| print_sched_time(r->run_stats.min, 6); |
| printf(" "); |
| print_sched_time((u64) mean, 6); |
| printf(" "); |
| print_sched_time(r->run_stats.max, 6); |
| printf(" "); |
| printf("%5.2f", stddev); |
| printf(" %5" PRIu64, r->migrations); |
| printf("\n"); |
| } |
| |
| static void print_thread_waittime(struct thread *t, |
| struct thread_runtime *r) |
| { |
| printf("%*s %5d %9" PRIu64 " ", |
| comm_width, timehist_get_commstr(t), t->ppid, |
| (u64) r->run_stats.n); |
| |
| print_sched_time(r->total_run_time, 8); |
| print_sched_time(r->total_sleep_time, 6); |
| printf(" "); |
| print_sched_time(r->total_iowait_time, 6); |
| printf(" "); |
| print_sched_time(r->total_preempt_time, 6); |
| printf(" "); |
| print_sched_time(r->total_delay_time, 6); |
| printf("\n"); |
| } |
| |
| struct total_run_stats { |
| struct perf_sched *sched; |
| u64 sched_count; |
| u64 task_count; |
| u64 total_run_time; |
| }; |
| |
| static int __show_thread_runtime(struct thread *t, void *priv) |
| { |
| struct total_run_stats *stats = priv; |
| struct thread_runtime *r; |
| |
| if (thread__is_filtered(t)) |
| return 0; |
| |
| r = thread__priv(t); |
| if (r && r->run_stats.n) { |
| stats->task_count++; |
| stats->sched_count += r->run_stats.n; |
| stats->total_run_time += r->total_run_time; |
| |
| if (stats->sched->show_state) |
| print_thread_waittime(t, r); |
| else |
| print_thread_runtime(t, r); |
| } |
| |
| return 0; |
| } |
| |
| static int show_thread_runtime(struct thread *t, void *priv) |
| { |
| if (t->dead) |
| return 0; |
| |
| return __show_thread_runtime(t, priv); |
| } |
| |
| static int show_deadthread_runtime(struct thread *t, void *priv) |
| { |
| if (!t->dead) |
| return 0; |
| |
| return __show_thread_runtime(t, priv); |
| } |
| |
| static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node) |
| { |
| const char *sep = " <- "; |
| struct callchain_list *chain; |
| size_t ret = 0; |
| char bf[1024]; |
| bool first; |
| |
| if (node == NULL) |
| return 0; |
| |
| ret = callchain__fprintf_folded(fp, node->parent); |
| first = (ret == 0); |
| |
| list_for_each_entry(chain, &node->val, list) { |
| if (chain->ip >= PERF_CONTEXT_MAX) |
| continue; |
| if (chain->ms.sym && chain->ms.sym->ignore) |
| continue; |
| ret += fprintf(fp, "%s%s", first ? "" : sep, |
| callchain_list__sym_name(chain, bf, sizeof(bf), |
| false)); |
| first = false; |
| } |
| |
| return ret; |
| } |
| |
| static size_t timehist_print_idlehist_callchain(struct rb_root *root) |
| { |
| size_t ret = 0; |
| FILE *fp = stdout; |
| struct callchain_node *chain; |
| struct rb_node *rb_node = rb_first(root); |
| |
| printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains"); |
| printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line, |
| graph_dotted_line); |
| |
| while (rb_node) { |
| chain = rb_entry(rb_node, struct callchain_node, rb_node); |
| rb_node = rb_next(rb_node); |
| |
| ret += fprintf(fp, " "); |
| print_sched_time(chain->hit, 12); |
| ret += 16; /* print_sched_time returns 2nd arg + 4 */ |
| ret += fprintf(fp, " %8d ", chain->count); |
| ret += callchain__fprintf_folded(fp, chain); |
| ret += fprintf(fp, "\n"); |
| } |
| |
| return ret; |
| } |
| |
| static void timehist_print_summary(struct perf_sched *sched, |
| struct perf_session *session) |
| { |
| struct machine *m = &session->machines.host; |
| struct total_run_stats totals; |
| u64 task_count; |
| struct thread *t; |
| struct thread_runtime *r; |
| int i; |
| u64 hist_time = sched->hist_time.end - sched->hist_time.start; |
| |
| memset(&totals, 0, sizeof(totals)); |
| totals.sched = sched; |
| |
| if (sched->idle_hist) { |
| printf("\nIdle-time summary\n"); |
| printf("%*s parent sched-out ", comm_width, "comm"); |
| printf(" idle-time min-idle avg-idle max-idle stddev migrations\n"); |
| } else if (sched->show_state) { |
| printf("\nWait-time summary\n"); |
| printf("%*s parent sched-in ", comm_width, "comm"); |
| printf(" run-time sleep iowait preempt delay\n"); |
| } else { |
| printf("\nRuntime summary\n"); |
| printf("%*s parent sched-in ", comm_width, "comm"); |
| printf(" run-time min-run avg-run max-run stddev migrations\n"); |
| } |
| printf("%*s (count) ", comm_width, ""); |
| printf(" (msec) (msec) (msec) (msec) %s\n", |
| sched->show_state ? "(msec)" : "%"); |
| printf("%.117s\n", graph_dotted_line); |
| |
| machine__for_each_thread(m, show_thread_runtime, &totals); |
| task_count = totals.task_count; |
| if (!task_count) |
| printf("<no still running tasks>\n"); |
| |
| printf("\nTerminated tasks:\n"); |
| machine__for_each_thread(m, show_deadthread_runtime, &totals); |
| if (task_count == totals.task_count) |
| printf("<no terminated tasks>\n"); |
| |
| /* CPU idle stats not tracked when samples were skipped */ |
| if (sched->skipped_samples && !sched->idle_hist) |
| return; |
| |
| printf("\nIdle stats:\n"); |
| for (i = 0; i < idle_max_cpu; ++i) { |
| t = idle_threads[i]; |
| if (!t) |
| continue; |
| |
| r = thread__priv(t); |
| if (r && r->run_stats.n) { |
| totals.sched_count += r->run_stats.n; |
| printf(" CPU %2d idle for ", i); |
| print_sched_time(r->total_run_time, 6); |
| printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time); |
| } else |
| printf(" CPU %2d idle entire time window\n", i); |
| } |
| |
| if (sched->idle_hist && symbol_conf.use_callchain) { |
| callchain_param.mode = CHAIN_FOLDED; |
| callchain_param.value = CCVAL_PERIOD; |
| |
| callchain_register_param(&callchain_param); |
| |
| printf("\nIdle stats by callchain:\n"); |
| for (i = 0; i < idle_max_cpu; ++i) { |
| struct idle_thread_runtime *itr; |
| |
| t = idle_threads[i]; |
| if (!t) |
| continue; |
| |
| itr = thread__priv(t); |
| if (itr == NULL) |
| continue; |
| |
| callchain_param.sort(&itr->sorted_root, &itr->callchain, |
| 0, &callchain_param); |
| |
| printf(" CPU %2d:", i); |
| print_sched_time(itr->tr.total_run_time, 6); |
| printf(" msec\n"); |
| timehist_print_idlehist_callchain(&itr->sorted_root); |
| printf("\n"); |
| } |
| } |
| |
| printf("\n" |
| " Total number of unique tasks: %" PRIu64 "\n" |
| "Total number of context switches: %" PRIu64 "\n", |
| totals.task_count, totals.sched_count); |
| |
| printf(" Total run time (msec): "); |
| print_sched_time(totals.total_run_time, 2); |
| printf("\n"); |
| |
| printf(" Total scheduling time (msec): "); |
| print_sched_time(hist_time, 2); |
| printf(" (x %d)\n", sched->max_cpu); |
| } |
| |
| typedef int (*sched_handler)(struct perf_tool *tool, |
| union perf_event *event, |
| struct perf_evsel *evsel, |
| struct perf_sample *sample, |
| struct machine *machine); |
| |
| static int perf_timehist__process_sample(struct perf_tool *tool, |
| union perf_event *event, |
| struct perf_sample *sample, |
| struct perf_evsel *evsel, |
| struct machine *machine) |
| { |
| struct perf_sched *sched = container_of(tool, struct perf_sched, tool); |
| int err = 0; |
| int this_cpu = sample->cpu; |
| |
| if (this_cpu > sched->max_cpu) |
| sched->max_cpu = this_cpu; |
| |
| if (evsel->handler != NULL) { |
| sched_handler f = evsel->handler; |
| |
| err = f(tool, event, evsel, sample, machine); |
| } |
| |
| return err; |
| } |
| |
| static int timehist_check_attr(struct perf_sched *sched, |
| struct perf_evlist *evlist) |
| { |
| struct perf_evsel *evsel; |
| struct evsel_runtime *er; |
| |
| list_for_each_entry(evsel, &evlist->entries, node) { |
| er = perf_evsel__get_runtime(evsel); |
| if (er == NULL) { |
| pr_err("Failed to allocate memory for evsel runtime data\n"); |
| return -1; |
| } |
| |
| if (sched->show_callchain && |
| !(evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN)) { |
| pr_info("Samples do not have callchains.\n"); |
| sched->show_callchain = 0; |
| symbol_conf.use_callchain = 0; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int perf_sched__timehist(struct perf_sched *sched) |
| { |
| const struct perf_evsel_str_handler handlers[] = { |
| { "sched:sched_switch", timehist_sched_switch_event, }, |
| { "sched:sched_wakeup", timehist_sched_wakeup_event, }, |
| { "sched:sched_wakeup_new", timehist_sched_wakeup_event, }, |
| }; |
| const struct perf_evsel_str_handler migrate_handlers[] = { |
| { "sched:sched_migrate_task", timehist_migrate_task_event, }, |
| }; |
| struct perf_data_file file = { |
| .path = input_name, |
| .mode = PERF_DATA_MODE_READ, |
| .force = sched->force, |
| }; |
| |
| struct perf_session *session; |
| struct perf_evlist *evlist; |
| int err = -1; |
| |
| /* |
| * event handlers for timehist option |
| */ |
| sched->tool.sample = perf_timehist__process_sample; |
| sched->tool.mmap = perf_event__process_mmap; |
| sched->tool.comm = perf_event__process_comm; |
| sched->tool.exit = perf_event__process_exit; |
| sched->tool.fork = perf_event__process_fork; |
| sched->tool.lost = process_lost; |
| sched->tool.attr = perf_event__process_attr; |
| sched->tool.tracing_data = perf_event__process_tracing_data; |
| sched->tool.build_id = perf_event__process_build_id; |
| |
| sched->tool.ordered_events = true; |
| sched->tool.ordering_requires_timestamps = true; |
| |
| symbol_conf.use_callchain = sched->show_callchain; |
| |
| session = perf_session__new(&file, false, &sched->tool); |
| if (session == NULL) |
| return -ENOMEM; |
| |
| evlist = session->evlist; |
| |
| symbol__init(&session->header.env); |
| |
| if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) { |
| pr_err("Invalid time string\n"); |
| return -EINVAL; |
| } |
| |
| if (timehist_check_attr(sched, evlist) != 0) |
| goto out; |
| |
| setup_pager(); |
| |
| /* setup per-evsel handlers */ |
| if (perf_session__set_tracepoints_handlers(session, handlers)) |
| goto out; |
| |
| /* sched_switch event at a minimum needs to exist */ |
| if (!perf_evlist__find_tracepoint_by_name(session->evlist, |
| "sched:sched_switch")) { |
| pr_err("No sched_switch events found. Have you run 'perf sched record'?\n"); |
| goto out; |
| } |
| |
| if (sched->show_migrations && |
| perf_session__set_tracepoints_handlers(session, migrate_handlers)) |
| goto out; |
| |
| /* pre-allocate struct for per-CPU idle stats */ |
| sched->max_cpu = session->header.env.nr_cpus_online; |
| if (sched->max_cpu == 0) |
| sched->max_cpu = 4; |
| if (init_idle_threads(sched->max_cpu)) |
| goto out; |
| |
| /* summary_only implies summary option, but don't overwrite summary if set */ |
| if (sched->summary_only) |
| sched->summary = sched->summary_only; |
| |
| if (!sched->summary_only) |
| timehist_header(sched); |
| |
| err = perf_session__process_events(session); |
| if (err) { |
| pr_err("Failed to process events, error %d", err); |
| goto out; |
| } |
| |
| sched->nr_events = evlist->stats.nr_events[0]; |
| sched->nr_lost_events = evlist->stats.total_lost; |
| sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST]; |
| |
| if (sched->summary) |
| timehist_print_summary(sched, session); |
| |
| out: |
| free_idle_threads(); |
| perf_session__delete(session); |
| |
| return err; |
| } |
| |
| |
| static void print_bad_events(struct perf_sched *sched) |
| { |
| if (sched->nr_unordered_timestamps && sched->nr_timestamps) { |
| printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n", |
| (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0, |
| sched->nr_unordered_timestamps, sched->nr_timestamps); |
| } |
| if (sched->nr_lost_events && sched->nr_events) { |
| printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n", |
| (double)sched->nr_lost_events/(double)sched->nr_events * 100.0, |
| sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks); |
| } |
| if (sched->nr_context_switch_bugs && sched->
|