blob: dc498b605d5dd36137eaba7bd0ee93da72a36c33 [file] [log] [blame]
/* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
* Copyright (c) 2016 Facebook
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/bpf.h>
#include <linux/bpf_perf_event.h>
#include <linux/filter.h>
#include <linux/uaccess.h>
#include <linux/ctype.h>
#include "trace.h"
/**
* trace_call_bpf - invoke BPF program
* @prog: BPF program
* @ctx: opaque context pointer
*
* kprobe handlers execute BPF programs via this helper.
* Can be used from static tracepoints in the future.
*
* Return: BPF programs always return an integer which is interpreted by
* kprobe handler as:
* 0 - return from kprobe (event is filtered out)
* 1 - store kprobe event into ring buffer
* Other values are reserved and currently alias to 1
*/
unsigned int trace_call_bpf(struct bpf_prog *prog, void *ctx)
{
unsigned int ret;
if (in_nmi()) /* not supported yet */
return 1;
preempt_disable();
if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
/*
* since some bpf program is already running on this cpu,
* don't call into another bpf program (same or different)
* and don't send kprobe event into ring-buffer,
* so return zero here
*/
ret = 0;
goto out;
}
rcu_read_lock();
ret = BPF_PROG_RUN(prog, ctx);
rcu_read_unlock();
out:
__this_cpu_dec(bpf_prog_active);
preempt_enable();
return ret;
}
EXPORT_SYMBOL_GPL(trace_call_bpf);
BPF_CALL_3(bpf_probe_read, void *, dst, u32, size, const void *, unsafe_ptr)
{
int ret;
ret = probe_kernel_read(dst, unsafe_ptr, size);
if (unlikely(ret < 0))
memset(dst, 0, size);
return ret;
}
static const struct bpf_func_proto bpf_probe_read_proto = {
.func = bpf_probe_read,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE,
.arg3_type = ARG_ANYTHING,
};
BPF_CALL_3(bpf_probe_write_user, void *, unsafe_ptr, const void *, src,
u32, size)
{
/*
* Ensure we're in user context which is safe for the helper to
* run. This helper has no business in a kthread.
*
* access_ok() should prevent writing to non-user memory, but in
* some situations (nommu, temporary switch, etc) access_ok() does
* not provide enough validation, hence the check on KERNEL_DS.
*/
if (unlikely(in_interrupt() ||
current->flags & (PF_KTHREAD | PF_EXITING)))
return -EPERM;
if (unlikely(uaccess_kernel()))
return -EPERM;
if (!access_ok(VERIFY_WRITE, unsafe_ptr, size))
return -EPERM;
return probe_kernel_write(unsafe_ptr, src, size);
}
static const struct bpf_func_proto bpf_probe_write_user_proto = {
.func = bpf_probe_write_user,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_ANYTHING,
.arg2_type = ARG_PTR_TO_MEM,
.arg3_type = ARG_CONST_SIZE,
};
static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
{
pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
current->comm, task_pid_nr(current));
return &bpf_probe_write_user_proto;
}
/*
* Only limited trace_printk() conversion specifiers allowed:
* %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s
*/
BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
u64, arg2, u64, arg3)
{
bool str_seen = false;
int mod[3] = {};
int fmt_cnt = 0;
u64 unsafe_addr;
char buf[64];
int i;
/*
* bpf_check()->check_func_arg()->check_stack_boundary()
* guarantees that fmt points to bpf program stack,
* fmt_size bytes of it were initialized and fmt_size > 0
*/
if (fmt[--fmt_size] != 0)
return -EINVAL;
/* check format string for allowed specifiers */
for (i = 0; i < fmt_size; i++) {
if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
return -EINVAL;
if (fmt[i] != '%')
continue;
if (fmt_cnt >= 3)
return -EINVAL;
/* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
i++;
if (fmt[i] == 'l') {
mod[fmt_cnt]++;
i++;
} else if (fmt[i] == 'p' || fmt[i] == 's') {
mod[fmt_cnt]++;
i++;
if (!isspace(fmt[i]) && !ispunct(fmt[i]) && fmt[i] != 0)
return -EINVAL;
fmt_cnt++;
if (fmt[i - 1] == 's') {
if (str_seen)
/* allow only one '%s' per fmt string */
return -EINVAL;
str_seen = true;
switch (fmt_cnt) {
case 1:
unsafe_addr = arg1;
arg1 = (long) buf;
break;
case 2:
unsafe_addr = arg2;
arg2 = (long) buf;
break;
case 3:
unsafe_addr = arg3;
arg3 = (long) buf;
break;
}
buf[0] = 0;
strncpy_from_unsafe(buf,
(void *) (long) unsafe_addr,
sizeof(buf));
}
continue;
}
if (fmt[i] == 'l') {
mod[fmt_cnt]++;
i++;
}
if (fmt[i] != 'i' && fmt[i] != 'd' &&
fmt[i] != 'u' && fmt[i] != 'x')
return -EINVAL;
fmt_cnt++;
}
/* Horrid workaround for getting va_list handling working with different
* argument type combinations generically for 32 and 64 bit archs.
*/
#define __BPF_TP_EMIT() __BPF_ARG3_TP()
#define __BPF_TP(...) \
__trace_printk(1 /* Fake ip will not be printed. */, \
fmt, ##__VA_ARGS__)
#define __BPF_ARG1_TP(...) \
((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64)) \
? __BPF_TP(arg1, ##__VA_ARGS__) \
: ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32)) \
? __BPF_TP((long)arg1, ##__VA_ARGS__) \
: __BPF_TP((u32)arg1, ##__VA_ARGS__)))
#define __BPF_ARG2_TP(...) \
((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64)) \
? __BPF_ARG1_TP(arg2, ##__VA_ARGS__) \
: ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32)) \
? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__) \
: __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
#define __BPF_ARG3_TP(...) \
((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64)) \
? __BPF_ARG2_TP(arg3, ##__VA_ARGS__) \
: ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32)) \
? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__) \
: __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
return __BPF_TP_EMIT();
}
static const struct bpf_func_proto bpf_trace_printk_proto = {
.func = bpf_trace_printk,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_MEM,
.arg2_type = ARG_CONST_SIZE,
};
const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
{
/*
* this program might be calling bpf_trace_printk,
* so allocate per-cpu printk buffers
*/
trace_printk_init_buffers();
return &bpf_trace_printk_proto;
}
BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
unsigned int cpu = smp_processor_id();
u64 index = flags & BPF_F_INDEX_MASK;
struct bpf_event_entry *ee;
u64 value = 0;
int err;
if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
return -EINVAL;
if (index == BPF_F_CURRENT_CPU)
index = cpu;
if (unlikely(index >= array->map.max_entries))
return -E2BIG;
ee = READ_ONCE(array->ptrs[index]);
if (!ee)
return -ENOENT;
err = perf_event_read_local(ee->event, &value);
/*
* this api is ugly since we miss [-22..-2] range of valid
* counter values, but that's uapi
*/
if (err)
return err;
return value;
}
static const struct bpf_func_proto bpf_perf_event_read_proto = {
.func = bpf_perf_event_read,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_ANYTHING,
};
static DEFINE_PER_CPU(struct perf_sample_data, bpf_sd);
static __always_inline u64
__bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
u64 flags, struct perf_raw_record *raw)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
struct perf_sample_data *sd = this_cpu_ptr(&bpf_sd);
unsigned int cpu = smp_processor_id();
u64 index = flags & BPF_F_INDEX_MASK;
struct bpf_event_entry *ee;
struct perf_event *event;
if (index == BPF_F_CURRENT_CPU)
index = cpu;
if (unlikely(index >= array->map.max_entries))
return -E2BIG;
ee = READ_ONCE(array->ptrs[index]);
if (!ee)
return -ENOENT;
event = ee->event;
if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
return -EINVAL;
if (unlikely(event->oncpu != cpu))
return -EOPNOTSUPP;
perf_sample_data_init(sd, 0, 0);
sd->raw = raw;
perf_event_output(event, sd, regs);
return 0;
}
BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
u64, flags, void *, data, u64, size)
{
struct perf_raw_record raw = {
.frag = {
.size = size,
.data = data,
},
};
if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
return -EINVAL;
return __bpf_perf_event_output(regs, map, flags, &raw);
}
static const struct bpf_func_proto bpf_perf_event_output_proto = {
.func = bpf_perf_event_output,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_CONST_MAP_PTR,
.arg3_type = ARG_ANYTHING,
.arg4_type = ARG_PTR_TO_MEM,
.arg5_type = ARG_CONST_SIZE,
};
static DEFINE_PER_CPU(struct pt_regs, bpf_pt_regs);
u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
{
struct pt_regs *regs = this_cpu_ptr(&bpf_pt_regs);
struct perf_raw_frag frag = {
.copy = ctx_copy,
.size = ctx_size,
.data = ctx,
};
struct perf_raw_record raw = {
.frag = {
{
.next = ctx_size ? &frag : NULL,
},
.size = meta_size,
.data = meta,
},
};
perf_fetch_caller_regs(regs);
return __bpf_perf_event_output(regs, map, flags, &raw);
}
BPF_CALL_0(bpf_get_current_task)
{
return (long) current;
}
static const struct bpf_func_proto bpf_get_current_task_proto = {
.func = bpf_get_current_task,
.gpl_only = true,
.ret_type = RET_INTEGER,
};
BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
{
struct bpf_array *array = container_of(map, struct bpf_array, map);
struct cgroup *cgrp;
if (unlikely(in_interrupt()))
return -EINVAL;
if (unlikely(idx >= array->map.max_entries))
return -E2BIG;
cgrp = READ_ONCE(array->ptrs[idx]);
if (unlikely(!cgrp))
return -EAGAIN;
return task_under_cgroup_hierarchy(current, cgrp);
}
static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
.func = bpf_current_task_under_cgroup,
.gpl_only = false,
.ret_type = RET_INTEGER,
.arg1_type = ARG_CONST_MAP_PTR,
.arg2_type = ARG_ANYTHING,
};
BPF_CALL_3(bpf_probe_read_str, void *, dst, u32, size,
const void *, unsafe_ptr)
{
int ret;
/*
* The strncpy_from_unsafe() call will likely not fill the entire
* buffer, but that's okay in this circumstance as we're probing
* arbitrary memory anyway similar to bpf_probe_read() and might
* as well probe the stack. Thus, memory is explicitly cleared
* only in error case, so that improper users ignoring return
* code altogether don't copy garbage; otherwise length of string
* is returned that can be used for bpf_perf_event_output() et al.
*/
ret = strncpy_from_unsafe(dst, unsafe_ptr, size);
if (unlikely(ret < 0))
memset(dst, 0, size);
return ret;
}
static const struct bpf_func_proto bpf_probe_read_str_proto = {
.func = bpf_probe_read_str,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
.arg2_type = ARG_CONST_SIZE,
.arg3_type = ARG_ANYTHING,
};
static const struct bpf_func_proto *tracing_func_proto(enum bpf_func_id func_id)
{
switch (func_id) {
case BPF_FUNC_map_lookup_elem:
return &bpf_map_lookup_elem_proto;
case BPF_FUNC_map_update_elem:
return &bpf_map_update_elem_proto;
case BPF_FUNC_map_delete_elem:
return &bpf_map_delete_elem_proto;
case BPF_FUNC_probe_read:
return &bpf_probe_read_proto;
case BPF_FUNC_ktime_get_ns:
return &bpf_ktime_get_ns_proto;
case BPF_FUNC_tail_call:
return &bpf_tail_call_proto;
case BPF_FUNC_get_current_pid_tgid:
return &bpf_get_current_pid_tgid_proto;
case BPF_FUNC_get_current_task:
return &bpf_get_current_task_proto;
case BPF_FUNC_get_current_uid_gid:
return &bpf_get_current_uid_gid_proto;
case BPF_FUNC_get_current_comm:
return &bpf_get_current_comm_proto;
case BPF_FUNC_trace_printk:
return bpf_get_trace_printk_proto();
case BPF_FUNC_get_smp_processor_id:
return &bpf_get_smp_processor_id_proto;
case BPF_FUNC_get_numa_node_id:
return &bpf_get_numa_node_id_proto;
case BPF_FUNC_perf_event_read:
return &bpf_perf_event_read_proto;
case BPF_FUNC_probe_write_user:
return bpf_get_probe_write_proto();
case BPF_FUNC_current_task_under_cgroup:
return &bpf_current_task_under_cgroup_proto;
case BPF_FUNC_get_prandom_u32:
return &bpf_get_prandom_u32_proto;
case BPF_FUNC_probe_read_str:
return &bpf_probe_read_str_proto;
default:
return NULL;
}
}
static const struct bpf_func_proto *kprobe_prog_func_proto(enum bpf_func_id func_id)
{
switch (func_id) {
case BPF_FUNC_perf_event_output:
return &bpf_perf_event_output_proto;
case BPF_FUNC_get_stackid:
return &bpf_get_stackid_proto;
default:
return tracing_func_proto(func_id);
}
}
/* bpf+kprobe programs can access fields of 'struct pt_regs' */
static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
struct bpf_insn_access_aux *info)
{
if (off < 0 || off >= sizeof(struct pt_regs))
return false;
if (type != BPF_READ)
return false;
if (off % size != 0)
return false;
/*
* Assertion for 32 bit to make sure last 8 byte access
* (BPF_DW) to the last 4 byte member is disallowed.
*/
if (off + size > sizeof(struct pt_regs))
return false;
return true;
}
const struct bpf_verifier_ops kprobe_prog_ops = {
.get_func_proto = kprobe_prog_func_proto,
.is_valid_access = kprobe_prog_is_valid_access,
};
BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
u64, flags, void *, data, u64, size)
{
struct pt_regs *regs = *(struct pt_regs **)tp_buff;
/*
* r1 points to perf tracepoint buffer where first 8 bytes are hidden
* from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
* from there and call the same bpf_perf_event_output() helper inline.
*/
return ____bpf_perf_event_output(regs, map, flags, data, size);
}
static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
.func = bpf_perf_event_output_tp,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_CONST_MAP_PTR,
.arg3_type = ARG_ANYTHING,
.arg4_type = ARG_PTR_TO_MEM,
.arg5_type = ARG_CONST_SIZE,
};
BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
u64, flags)
{
struct pt_regs *regs = *(struct pt_regs **)tp_buff;
/*
* Same comment as in bpf_perf_event_output_tp(), only that this time
* the other helper's function body cannot be inlined due to being
* external, thus we need to call raw helper function.
*/
return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
flags, 0, 0);
}
static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
.func = bpf_get_stackid_tp,
.gpl_only = true,
.ret_type = RET_INTEGER,
.arg1_type = ARG_PTR_TO_CTX,
.arg2_type = ARG_CONST_MAP_PTR,
.arg3_type = ARG_ANYTHING,
};
static const struct bpf_func_proto *tp_prog_func_proto(enum bpf_func_id func_id)
{
switch (func_id) {
case BPF_FUNC_perf_event_output:
return &bpf_perf_event_output_proto_tp;
case BPF_FUNC_get_stackid:
return &bpf_get_stackid_proto_tp;
default:
return tracing_func_proto(func_id);
}
}
static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
struct bpf_insn_access_aux *info)
{
if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
return false;
if (type != BPF_READ)
return false;
if (off % size != 0)
return false;
BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
return true;
}
const struct bpf_verifier_ops tracepoint_prog_ops = {
.get_func_proto = tp_prog_func_proto,
.is_valid_access = tp_prog_is_valid_access,
};
static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
struct bpf_insn_access_aux *info)
{
const int size_sp = FIELD_SIZEOF(struct bpf_perf_event_data,
sample_period);
if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
return false;
if (type != BPF_READ)
return false;
if (off % size != 0)
return false;
switch (off) {
case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
bpf_ctx_record_field_size(info, size_sp);
if (!bpf_ctx_narrow_access_ok(off, size, size_sp))
return false;
break;
default:
if (size != sizeof(long))
return false;
}
return true;
}
static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
const struct bpf_insn *si,
struct bpf_insn *insn_buf,
struct bpf_prog *prog, u32 *target_size)
{
struct bpf_insn *insn = insn_buf;
switch (si->off) {
case offsetof(struct bpf_perf_event_data, sample_period):
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
data), si->dst_reg, si->src_reg,
offsetof(struct bpf_perf_event_data_kern, data));
*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
bpf_target_off(struct perf_sample_data, period, 8,
target_size));
break;
default:
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
regs), si->dst_reg, si->src_reg,
offsetof(struct bpf_perf_event_data_kern, regs));
*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
si->off);
break;
}
return insn - insn_buf;
}
const struct bpf_verifier_ops perf_event_prog_ops = {
.get_func_proto = tp_prog_func_proto,
.is_valid_access = pe_prog_is_valid_access,
.convert_ctx_access = pe_prog_convert_ctx_access,
};