| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public |
| * License v2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public |
| * License along with this program; if not, write to the |
| * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| * Boston, MA 021110-1307, USA. |
| */ |
| |
| #include <linux/fs.h> |
| #include <linux/blkdev.h> |
| #include <linux/scatterlist.h> |
| #include <linux/swap.h> |
| #include <linux/radix-tree.h> |
| #include <linux/writeback.h> |
| #include <linux/buffer_head.h> |
| #include <linux/workqueue.h> |
| #include <linux/kthread.h> |
| #include <linux/slab.h> |
| #include <linux/migrate.h> |
| #include <linux/ratelimit.h> |
| #include <linux/uuid.h> |
| #include <linux/semaphore.h> |
| #include <asm/unaligned.h> |
| #include "ctree.h" |
| #include "disk-io.h" |
| #include "hash.h" |
| #include "transaction.h" |
| #include "btrfs_inode.h" |
| #include "volumes.h" |
| #include "print-tree.h" |
| #include "locking.h" |
| #include "tree-log.h" |
| #include "free-space-cache.h" |
| #include "free-space-tree.h" |
| #include "inode-map.h" |
| #include "check-integrity.h" |
| #include "rcu-string.h" |
| #include "dev-replace.h" |
| #include "raid56.h" |
| #include "sysfs.h" |
| #include "qgroup.h" |
| #include "compression.h" |
| |
| #ifdef CONFIG_X86 |
| #include <asm/cpufeature.h> |
| #endif |
| |
| #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\ |
| BTRFS_HEADER_FLAG_RELOC |\ |
| BTRFS_SUPER_FLAG_ERROR |\ |
| BTRFS_SUPER_FLAG_SEEDING |\ |
| BTRFS_SUPER_FLAG_METADUMP) |
| |
| static const struct extent_io_ops btree_extent_io_ops; |
| static void end_workqueue_fn(struct btrfs_work *work); |
| static void free_fs_root(struct btrfs_root *root); |
| static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info); |
| static void btrfs_destroy_ordered_extents(struct btrfs_root *root); |
| static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans, |
| struct btrfs_fs_info *fs_info); |
| static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root); |
| static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info, |
| struct extent_io_tree *dirty_pages, |
| int mark); |
| static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info, |
| struct extent_io_tree *pinned_extents); |
| static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info); |
| static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info); |
| |
| /* |
| * btrfs_end_io_wq structs are used to do processing in task context when an IO |
| * is complete. This is used during reads to verify checksums, and it is used |
| * by writes to insert metadata for new file extents after IO is complete. |
| */ |
| struct btrfs_end_io_wq { |
| struct bio *bio; |
| bio_end_io_t *end_io; |
| void *private; |
| struct btrfs_fs_info *info; |
| blk_status_t status; |
| enum btrfs_wq_endio_type metadata; |
| struct btrfs_work work; |
| }; |
| |
| static struct kmem_cache *btrfs_end_io_wq_cache; |
| |
| int __init btrfs_end_io_wq_init(void) |
| { |
| btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq", |
| sizeof(struct btrfs_end_io_wq), |
| 0, |
| SLAB_MEM_SPREAD, |
| NULL); |
| if (!btrfs_end_io_wq_cache) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| void btrfs_end_io_wq_exit(void) |
| { |
| kmem_cache_destroy(btrfs_end_io_wq_cache); |
| } |
| |
| /* |
| * async submit bios are used to offload expensive checksumming |
| * onto the worker threads. They checksum file and metadata bios |
| * just before they are sent down the IO stack. |
| */ |
| struct async_submit_bio { |
| void *private_data; |
| struct btrfs_fs_info *fs_info; |
| struct bio *bio; |
| extent_submit_bio_hook_t *submit_bio_start; |
| extent_submit_bio_hook_t *submit_bio_done; |
| int mirror_num; |
| unsigned long bio_flags; |
| /* |
| * bio_offset is optional, can be used if the pages in the bio |
| * can't tell us where in the file the bio should go |
| */ |
| u64 bio_offset; |
| struct btrfs_work work; |
| blk_status_t status; |
| }; |
| |
| /* |
| * Lockdep class keys for extent_buffer->lock's in this root. For a given |
| * eb, the lockdep key is determined by the btrfs_root it belongs to and |
| * the level the eb occupies in the tree. |
| * |
| * Different roots are used for different purposes and may nest inside each |
| * other and they require separate keysets. As lockdep keys should be |
| * static, assign keysets according to the purpose of the root as indicated |
| * by btrfs_root->objectid. This ensures that all special purpose roots |
| * have separate keysets. |
| * |
| * Lock-nesting across peer nodes is always done with the immediate parent |
| * node locked thus preventing deadlock. As lockdep doesn't know this, use |
| * subclass to avoid triggering lockdep warning in such cases. |
| * |
| * The key is set by the readpage_end_io_hook after the buffer has passed |
| * csum validation but before the pages are unlocked. It is also set by |
| * btrfs_init_new_buffer on freshly allocated blocks. |
| * |
| * We also add a check to make sure the highest level of the tree is the |
| * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code |
| * needs update as well. |
| */ |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| # if BTRFS_MAX_LEVEL != 8 |
| # error |
| # endif |
| |
| static struct btrfs_lockdep_keyset { |
| u64 id; /* root objectid */ |
| const char *name_stem; /* lock name stem */ |
| char names[BTRFS_MAX_LEVEL + 1][20]; |
| struct lock_class_key keys[BTRFS_MAX_LEVEL + 1]; |
| } btrfs_lockdep_keysets[] = { |
| { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" }, |
| { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" }, |
| { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" }, |
| { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" }, |
| { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" }, |
| { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" }, |
| { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" }, |
| { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" }, |
| { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" }, |
| { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" }, |
| { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" }, |
| { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" }, |
| { .id = 0, .name_stem = "tree" }, |
| }; |
| |
| void __init btrfs_init_lockdep(void) |
| { |
| int i, j; |
| |
| /* initialize lockdep class names */ |
| for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) { |
| struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i]; |
| |
| for (j = 0; j < ARRAY_SIZE(ks->names); j++) |
| snprintf(ks->names[j], sizeof(ks->names[j]), |
| "btrfs-%s-%02d", ks->name_stem, j); |
| } |
| } |
| |
| void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb, |
| int level) |
| { |
| struct btrfs_lockdep_keyset *ks; |
| |
| BUG_ON(level >= ARRAY_SIZE(ks->keys)); |
| |
| /* find the matching keyset, id 0 is the default entry */ |
| for (ks = btrfs_lockdep_keysets; ks->id; ks++) |
| if (ks->id == objectid) |
| break; |
| |
| lockdep_set_class_and_name(&eb->lock, |
| &ks->keys[level], ks->names[level]); |
| } |
| |
| #endif |
| |
| /* |
| * extents on the btree inode are pretty simple, there's one extent |
| * that covers the entire device |
| */ |
| static struct extent_map *btree_get_extent(struct btrfs_inode *inode, |
| struct page *page, size_t pg_offset, u64 start, u64 len, |
| int create) |
| { |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); |
| struct extent_map_tree *em_tree = &inode->extent_tree; |
| struct extent_map *em; |
| int ret; |
| |
| read_lock(&em_tree->lock); |
| em = lookup_extent_mapping(em_tree, start, len); |
| if (em) { |
| em->bdev = fs_info->fs_devices->latest_bdev; |
| read_unlock(&em_tree->lock); |
| goto out; |
| } |
| read_unlock(&em_tree->lock); |
| |
| em = alloc_extent_map(); |
| if (!em) { |
| em = ERR_PTR(-ENOMEM); |
| goto out; |
| } |
| em->start = 0; |
| em->len = (u64)-1; |
| em->block_len = (u64)-1; |
| em->block_start = 0; |
| em->bdev = fs_info->fs_devices->latest_bdev; |
| |
| write_lock(&em_tree->lock); |
| ret = add_extent_mapping(em_tree, em, 0); |
| if (ret == -EEXIST) { |
| free_extent_map(em); |
| em = lookup_extent_mapping(em_tree, start, len); |
| if (!em) |
| em = ERR_PTR(-EIO); |
| } else if (ret) { |
| free_extent_map(em); |
| em = ERR_PTR(ret); |
| } |
| write_unlock(&em_tree->lock); |
| |
| out: |
| return em; |
| } |
| |
| u32 btrfs_csum_data(const char *data, u32 seed, size_t len) |
| { |
| return btrfs_crc32c(seed, data, len); |
| } |
| |
| void btrfs_csum_final(u32 crc, u8 *result) |
| { |
| put_unaligned_le32(~crc, result); |
| } |
| |
| /* |
| * compute the csum for a btree block, and either verify it or write it |
| * into the csum field of the block. |
| */ |
| static int csum_tree_block(struct btrfs_fs_info *fs_info, |
| struct extent_buffer *buf, |
| int verify) |
| { |
| u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); |
| char *result = NULL; |
| unsigned long len; |
| unsigned long cur_len; |
| unsigned long offset = BTRFS_CSUM_SIZE; |
| char *kaddr; |
| unsigned long map_start; |
| unsigned long map_len; |
| int err; |
| u32 crc = ~(u32)0; |
| unsigned long inline_result; |
| |
| len = buf->len - offset; |
| while (len > 0) { |
| err = map_private_extent_buffer(buf, offset, 32, |
| &kaddr, &map_start, &map_len); |
| if (err) |
| return err; |
| cur_len = min(len, map_len - (offset - map_start)); |
| crc = btrfs_csum_data(kaddr + offset - map_start, |
| crc, cur_len); |
| len -= cur_len; |
| offset += cur_len; |
| } |
| if (csum_size > sizeof(inline_result)) { |
| result = kzalloc(csum_size, GFP_NOFS); |
| if (!result) |
| return -ENOMEM; |
| } else { |
| result = (char *)&inline_result; |
| } |
| |
| btrfs_csum_final(crc, result); |
| |
| if (verify) { |
| if (memcmp_extent_buffer(buf, result, 0, csum_size)) { |
| u32 val; |
| u32 found = 0; |
| memcpy(&found, result, csum_size); |
| |
| read_extent_buffer(buf, &val, 0, csum_size); |
| btrfs_warn_rl(fs_info, |
| "%s checksum verify failed on %llu wanted %X found %X level %d", |
| fs_info->sb->s_id, buf->start, |
| val, found, btrfs_header_level(buf)); |
| if (result != (char *)&inline_result) |
| kfree(result); |
| return -EUCLEAN; |
| } |
| } else { |
| write_extent_buffer(buf, result, 0, csum_size); |
| } |
| if (result != (char *)&inline_result) |
| kfree(result); |
| return 0; |
| } |
| |
| /* |
| * we can't consider a given block up to date unless the transid of the |
| * block matches the transid in the parent node's pointer. This is how we |
| * detect blocks that either didn't get written at all or got written |
| * in the wrong place. |
| */ |
| static int verify_parent_transid(struct extent_io_tree *io_tree, |
| struct extent_buffer *eb, u64 parent_transid, |
| int atomic) |
| { |
| struct extent_state *cached_state = NULL; |
| int ret; |
| bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB); |
| |
| if (!parent_transid || btrfs_header_generation(eb) == parent_transid) |
| return 0; |
| |
| if (atomic) |
| return -EAGAIN; |
| |
| if (need_lock) { |
| btrfs_tree_read_lock(eb); |
| btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); |
| } |
| |
| lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1, |
| &cached_state); |
| if (extent_buffer_uptodate(eb) && |
| btrfs_header_generation(eb) == parent_transid) { |
| ret = 0; |
| goto out; |
| } |
| btrfs_err_rl(eb->fs_info, |
| "parent transid verify failed on %llu wanted %llu found %llu", |
| eb->start, |
| parent_transid, btrfs_header_generation(eb)); |
| ret = 1; |
| |
| /* |
| * Things reading via commit roots that don't have normal protection, |
| * like send, can have a really old block in cache that may point at a |
| * block that has been freed and re-allocated. So don't clear uptodate |
| * if we find an eb that is under IO (dirty/writeback) because we could |
| * end up reading in the stale data and then writing it back out and |
| * making everybody very sad. |
| */ |
| if (!extent_buffer_under_io(eb)) |
| clear_extent_buffer_uptodate(eb); |
| out: |
| unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1, |
| &cached_state, GFP_NOFS); |
| if (need_lock) |
| btrfs_tree_read_unlock_blocking(eb); |
| return ret; |
| } |
| |
| /* |
| * Return 0 if the superblock checksum type matches the checksum value of that |
| * algorithm. Pass the raw disk superblock data. |
| */ |
| static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info, |
| char *raw_disk_sb) |
| { |
| struct btrfs_super_block *disk_sb = |
| (struct btrfs_super_block *)raw_disk_sb; |
| u16 csum_type = btrfs_super_csum_type(disk_sb); |
| int ret = 0; |
| |
| if (csum_type == BTRFS_CSUM_TYPE_CRC32) { |
| u32 crc = ~(u32)0; |
| const int csum_size = sizeof(crc); |
| char result[csum_size]; |
| |
| /* |
| * The super_block structure does not span the whole |
| * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space |
| * is filled with zeros and is included in the checksum. |
| */ |
| crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE, |
| crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE); |
| btrfs_csum_final(crc, result); |
| |
| if (memcmp(raw_disk_sb, result, csum_size)) |
| ret = 1; |
| } |
| |
| if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) { |
| btrfs_err(fs_info, "unsupported checksum algorithm %u", |
| csum_type); |
| ret = 1; |
| } |
| |
| return ret; |
| } |
| |
| /* |
| * helper to read a given tree block, doing retries as required when |
| * the checksums don't match and we have alternate mirrors to try. |
| */ |
| static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info, |
| struct extent_buffer *eb, |
| u64 parent_transid) |
| { |
| struct extent_io_tree *io_tree; |
| int failed = 0; |
| int ret; |
| int num_copies = 0; |
| int mirror_num = 0; |
| int failed_mirror = 0; |
| |
| clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); |
| io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree; |
| while (1) { |
| ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE, |
| btree_get_extent, mirror_num); |
| if (!ret) { |
| if (!verify_parent_transid(io_tree, eb, |
| parent_transid, 0)) |
| break; |
| else |
| ret = -EIO; |
| } |
| |
| /* |
| * This buffer's crc is fine, but its contents are corrupted, so |
| * there is no reason to read the other copies, they won't be |
| * any less wrong. |
| */ |
| if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags)) |
| break; |
| |
| num_copies = btrfs_num_copies(fs_info, |
| eb->start, eb->len); |
| if (num_copies == 1) |
| break; |
| |
| if (!failed_mirror) { |
| failed = 1; |
| failed_mirror = eb->read_mirror; |
| } |
| |
| mirror_num++; |
| if (mirror_num == failed_mirror) |
| mirror_num++; |
| |
| if (mirror_num > num_copies) |
| break; |
| } |
| |
| if (failed && !ret && failed_mirror) |
| repair_eb_io_failure(fs_info, eb, failed_mirror); |
| |
| return ret; |
| } |
| |
| /* |
| * checksum a dirty tree block before IO. This has extra checks to make sure |
| * we only fill in the checksum field in the first page of a multi-page block |
| */ |
| |
| static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page) |
| { |
| u64 start = page_offset(page); |
| u64 found_start; |
| struct extent_buffer *eb; |
| |
| eb = (struct extent_buffer *)page->private; |
| if (page != eb->pages[0]) |
| return 0; |
| |
| found_start = btrfs_header_bytenr(eb); |
| /* |
| * Please do not consolidate these warnings into a single if. |
| * It is useful to know what went wrong. |
| */ |
| if (WARN_ON(found_start != start)) |
| return -EUCLEAN; |
| if (WARN_ON(!PageUptodate(page))) |
| return -EUCLEAN; |
| |
| ASSERT(memcmp_extent_buffer(eb, fs_info->fsid, |
| btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0); |
| |
| return csum_tree_block(fs_info, eb, 0); |
| } |
| |
| static int check_tree_block_fsid(struct btrfs_fs_info *fs_info, |
| struct extent_buffer *eb) |
| { |
| struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; |
| u8 fsid[BTRFS_FSID_SIZE]; |
| int ret = 1; |
| |
| read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE); |
| while (fs_devices) { |
| if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) { |
| ret = 0; |
| break; |
| } |
| fs_devices = fs_devices->seed; |
| } |
| return ret; |
| } |
| |
| #define CORRUPT(reason, eb, root, slot) \ |
| btrfs_crit(root->fs_info, \ |
| "corrupt %s, %s: block=%llu, root=%llu, slot=%d", \ |
| btrfs_header_level(eb) == 0 ? "leaf" : "node", \ |
| reason, btrfs_header_bytenr(eb), root->objectid, slot) |
| |
| static noinline int check_leaf(struct btrfs_root *root, |
| struct extent_buffer *leaf) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_key key; |
| struct btrfs_key leaf_key; |
| u32 nritems = btrfs_header_nritems(leaf); |
| int slot; |
| |
| /* |
| * Extent buffers from a relocation tree have a owner field that |
| * corresponds to the subvolume tree they are based on. So just from an |
| * extent buffer alone we can not find out what is the id of the |
| * corresponding subvolume tree, so we can not figure out if the extent |
| * buffer corresponds to the root of the relocation tree or not. So skip |
| * this check for relocation trees. |
| */ |
| if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) { |
| struct btrfs_root *check_root; |
| |
| key.objectid = btrfs_header_owner(leaf); |
| key.type = BTRFS_ROOT_ITEM_KEY; |
| key.offset = (u64)-1; |
| |
| check_root = btrfs_get_fs_root(fs_info, &key, false); |
| /* |
| * The only reason we also check NULL here is that during |
| * open_ctree() some roots has not yet been set up. |
| */ |
| if (!IS_ERR_OR_NULL(check_root)) { |
| struct extent_buffer *eb; |
| |
| eb = btrfs_root_node(check_root); |
| /* if leaf is the root, then it's fine */ |
| if (leaf != eb) { |
| CORRUPT("non-root leaf's nritems is 0", |
| leaf, check_root, 0); |
| free_extent_buffer(eb); |
| return -EIO; |
| } |
| free_extent_buffer(eb); |
| } |
| return 0; |
| } |
| |
| if (nritems == 0) |
| return 0; |
| |
| /* Check the 0 item */ |
| if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) != |
| BTRFS_LEAF_DATA_SIZE(fs_info)) { |
| CORRUPT("invalid item offset size pair", leaf, root, 0); |
| return -EIO; |
| } |
| |
| /* |
| * Check to make sure each items keys are in the correct order and their |
| * offsets make sense. We only have to loop through nritems-1 because |
| * we check the current slot against the next slot, which verifies the |
| * next slot's offset+size makes sense and that the current's slot |
| * offset is correct. |
| */ |
| for (slot = 0; slot < nritems - 1; slot++) { |
| btrfs_item_key_to_cpu(leaf, &leaf_key, slot); |
| btrfs_item_key_to_cpu(leaf, &key, slot + 1); |
| |
| /* Make sure the keys are in the right order */ |
| if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) { |
| CORRUPT("bad key order", leaf, root, slot); |
| return -EIO; |
| } |
| |
| /* |
| * Make sure the offset and ends are right, remember that the |
| * item data starts at the end of the leaf and grows towards the |
| * front. |
| */ |
| if (btrfs_item_offset_nr(leaf, slot) != |
| btrfs_item_end_nr(leaf, slot + 1)) { |
| CORRUPT("slot offset bad", leaf, root, slot); |
| return -EIO; |
| } |
| |
| /* |
| * Check to make sure that we don't point outside of the leaf, |
| * just in case all the items are consistent to each other, but |
| * all point outside of the leaf. |
| */ |
| if (btrfs_item_end_nr(leaf, slot) > |
| BTRFS_LEAF_DATA_SIZE(fs_info)) { |
| CORRUPT("slot end outside of leaf", leaf, root, slot); |
| return -EIO; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int check_node(struct btrfs_root *root, struct extent_buffer *node) |
| { |
| unsigned long nr = btrfs_header_nritems(node); |
| struct btrfs_key key, next_key; |
| int slot; |
| u64 bytenr; |
| int ret = 0; |
| |
| if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) { |
| btrfs_crit(root->fs_info, |
| "corrupt node: block %llu root %llu nritems %lu", |
| node->start, root->objectid, nr); |
| return -EIO; |
| } |
| |
| for (slot = 0; slot < nr - 1; slot++) { |
| bytenr = btrfs_node_blockptr(node, slot); |
| btrfs_node_key_to_cpu(node, &key, slot); |
| btrfs_node_key_to_cpu(node, &next_key, slot + 1); |
| |
| if (!bytenr) { |
| CORRUPT("invalid item slot", node, root, slot); |
| ret = -EIO; |
| goto out; |
| } |
| |
| if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) { |
| CORRUPT("bad key order", node, root, slot); |
| ret = -EIO; |
| goto out; |
| } |
| } |
| out: |
| return ret; |
| } |
| |
| static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio, |
| u64 phy_offset, struct page *page, |
| u64 start, u64 end, int mirror) |
| { |
| u64 found_start; |
| int found_level; |
| struct extent_buffer *eb; |
| struct btrfs_root *root = BTRFS_I(page->mapping->host)->root; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int ret = 0; |
| int reads_done; |
| |
| if (!page->private) |
| goto out; |
| |
| eb = (struct extent_buffer *)page->private; |
| |
| /* the pending IO might have been the only thing that kept this buffer |
| * in memory. Make sure we have a ref for all this other checks |
| */ |
| extent_buffer_get(eb); |
| |
| reads_done = atomic_dec_and_test(&eb->io_pages); |
| if (!reads_done) |
| goto err; |
| |
| eb->read_mirror = mirror; |
| if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) { |
| ret = -EIO; |
| goto err; |
| } |
| |
| found_start = btrfs_header_bytenr(eb); |
| if (found_start != eb->start) { |
| btrfs_err_rl(fs_info, "bad tree block start %llu %llu", |
| found_start, eb->start); |
| ret = -EIO; |
| goto err; |
| } |
| if (check_tree_block_fsid(fs_info, eb)) { |
| btrfs_err_rl(fs_info, "bad fsid on block %llu", |
| eb->start); |
| ret = -EIO; |
| goto err; |
| } |
| found_level = btrfs_header_level(eb); |
| if (found_level >= BTRFS_MAX_LEVEL) { |
| btrfs_err(fs_info, "bad tree block level %d", |
| (int)btrfs_header_level(eb)); |
| ret = -EIO; |
| goto err; |
| } |
| |
| btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), |
| eb, found_level); |
| |
| ret = csum_tree_block(fs_info, eb, 1); |
| if (ret) |
| goto err; |
| |
| /* |
| * If this is a leaf block and it is corrupt, set the corrupt bit so |
| * that we don't try and read the other copies of this block, just |
| * return -EIO. |
| */ |
| if (found_level == 0 && check_leaf(root, eb)) { |
| set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags); |
| ret = -EIO; |
| } |
| |
| if (found_level > 0 && check_node(root, eb)) |
| ret = -EIO; |
| |
| if (!ret) |
| set_extent_buffer_uptodate(eb); |
| err: |
| if (reads_done && |
| test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) |
| btree_readahead_hook(eb, ret); |
| |
| if (ret) { |
| /* |
| * our io error hook is going to dec the io pages |
| * again, we have to make sure it has something |
| * to decrement |
| */ |
| atomic_inc(&eb->io_pages); |
| clear_extent_buffer_uptodate(eb); |
| } |
| free_extent_buffer(eb); |
| out: |
| return ret; |
| } |
| |
| static int btree_io_failed_hook(struct page *page, int failed_mirror) |
| { |
| struct extent_buffer *eb; |
| |
| eb = (struct extent_buffer *)page->private; |
| set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags); |
| eb->read_mirror = failed_mirror; |
| atomic_dec(&eb->io_pages); |
| if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) |
| btree_readahead_hook(eb, -EIO); |
| return -EIO; /* we fixed nothing */ |
| } |
| |
| static void end_workqueue_bio(struct bio *bio) |
| { |
| struct btrfs_end_io_wq *end_io_wq = bio->bi_private; |
| struct btrfs_fs_info *fs_info; |
| struct btrfs_workqueue *wq; |
| btrfs_work_func_t func; |
| |
| fs_info = end_io_wq->info; |
| end_io_wq->status = bio->bi_status; |
| |
| if (bio_op(bio) == REQ_OP_WRITE) { |
| if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) { |
| wq = fs_info->endio_meta_write_workers; |
| func = btrfs_endio_meta_write_helper; |
| } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) { |
| wq = fs_info->endio_freespace_worker; |
| func = btrfs_freespace_write_helper; |
| } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { |
| wq = fs_info->endio_raid56_workers; |
| func = btrfs_endio_raid56_helper; |
| } else { |
| wq = fs_info->endio_write_workers; |
| func = btrfs_endio_write_helper; |
| } |
| } else { |
| if (unlikely(end_io_wq->metadata == |
| BTRFS_WQ_ENDIO_DIO_REPAIR)) { |
| wq = fs_info->endio_repair_workers; |
| func = btrfs_endio_repair_helper; |
| } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) { |
| wq = fs_info->endio_raid56_workers; |
| func = btrfs_endio_raid56_helper; |
| } else if (end_io_wq->metadata) { |
| wq = fs_info->endio_meta_workers; |
| func = btrfs_endio_meta_helper; |
| } else { |
| wq = fs_info->endio_workers; |
| func = btrfs_endio_helper; |
| } |
| } |
| |
| btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL); |
| btrfs_queue_work(wq, &end_io_wq->work); |
| } |
| |
| blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio, |
| enum btrfs_wq_endio_type metadata) |
| { |
| struct btrfs_end_io_wq *end_io_wq; |
| |
| end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS); |
| if (!end_io_wq) |
| return BLK_STS_RESOURCE; |
| |
| end_io_wq->private = bio->bi_private; |
| end_io_wq->end_io = bio->bi_end_io; |
| end_io_wq->info = info; |
| end_io_wq->status = 0; |
| end_io_wq->bio = bio; |
| end_io_wq->metadata = metadata; |
| |
| bio->bi_private = end_io_wq; |
| bio->bi_end_io = end_workqueue_bio; |
| return 0; |
| } |
| |
| unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info) |
| { |
| unsigned long limit = min_t(unsigned long, |
| info->thread_pool_size, |
| info->fs_devices->open_devices); |
| return 256 * limit; |
| } |
| |
| static void run_one_async_start(struct btrfs_work *work) |
| { |
| struct async_submit_bio *async; |
| blk_status_t ret; |
| |
| async = container_of(work, struct async_submit_bio, work); |
| ret = async->submit_bio_start(async->private_data, async->bio, |
| async->mirror_num, async->bio_flags, |
| async->bio_offset); |
| if (ret) |
| async->status = ret; |
| } |
| |
| static void run_one_async_done(struct btrfs_work *work) |
| { |
| struct btrfs_fs_info *fs_info; |
| struct async_submit_bio *async; |
| int limit; |
| |
| async = container_of(work, struct async_submit_bio, work); |
| fs_info = async->fs_info; |
| |
| limit = btrfs_async_submit_limit(fs_info); |
| limit = limit * 2 / 3; |
| |
| /* |
| * atomic_dec_return implies a barrier for waitqueue_active |
| */ |
| if (atomic_dec_return(&fs_info->nr_async_submits) < limit && |
| waitqueue_active(&fs_info->async_submit_wait)) |
| wake_up(&fs_info->async_submit_wait); |
| |
| /* If an error occurred we just want to clean up the bio and move on */ |
| if (async->status) { |
| async->bio->bi_status = async->status; |
| bio_endio(async->bio); |
| return; |
| } |
| |
| async->submit_bio_done(async->private_data, async->bio, async->mirror_num, |
| async->bio_flags, async->bio_offset); |
| } |
| |
| static void run_one_async_free(struct btrfs_work *work) |
| { |
| struct async_submit_bio *async; |
| |
| async = container_of(work, struct async_submit_bio, work); |
| kfree(async); |
| } |
| |
| blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, |
| int mirror_num, unsigned long bio_flags, |
| u64 bio_offset, void *private_data, |
| extent_submit_bio_hook_t *submit_bio_start, |
| extent_submit_bio_hook_t *submit_bio_done) |
| { |
| struct async_submit_bio *async; |
| |
| async = kmalloc(sizeof(*async), GFP_NOFS); |
| if (!async) |
| return BLK_STS_RESOURCE; |
| |
| async->private_data = private_data; |
| async->fs_info = fs_info; |
| async->bio = bio; |
| async->mirror_num = mirror_num; |
| async->submit_bio_start = submit_bio_start; |
| async->submit_bio_done = submit_bio_done; |
| |
| btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start, |
| run_one_async_done, run_one_async_free); |
| |
| async->bio_flags = bio_flags; |
| async->bio_offset = bio_offset; |
| |
| async->status = 0; |
| |
| atomic_inc(&fs_info->nr_async_submits); |
| |
| if (op_is_sync(bio->bi_opf)) |
| btrfs_set_work_high_priority(&async->work); |
| |
| btrfs_queue_work(fs_info->workers, &async->work); |
| |
| while (atomic_read(&fs_info->async_submit_draining) && |
| atomic_read(&fs_info->nr_async_submits)) { |
| wait_event(fs_info->async_submit_wait, |
| (atomic_read(&fs_info->nr_async_submits) == 0)); |
| } |
| |
| return 0; |
| } |
| |
| static blk_status_t btree_csum_one_bio(struct bio *bio) |
| { |
| struct bio_vec *bvec; |
| struct btrfs_root *root; |
| int i, ret = 0; |
| |
| ASSERT(!bio_flagged(bio, BIO_CLONED)); |
| bio_for_each_segment_all(bvec, bio, i) { |
| root = BTRFS_I(bvec->bv_page->mapping->host)->root; |
| ret = csum_dirty_buffer(root->fs_info, bvec->bv_page); |
| if (ret) |
| break; |
| } |
| |
| return errno_to_blk_status(ret); |
| } |
| |
| static blk_status_t __btree_submit_bio_start(void *private_data, struct bio *bio, |
| int mirror_num, unsigned long bio_flags, |
| u64 bio_offset) |
| { |
| /* |
| * when we're called for a write, we're already in the async |
| * submission context. Just jump into btrfs_map_bio |
| */ |
| return btree_csum_one_bio(bio); |
| } |
| |
| static blk_status_t __btree_submit_bio_done(void *private_data, struct bio *bio, |
| int mirror_num, unsigned long bio_flags, |
| u64 bio_offset) |
| { |
| struct inode *inode = private_data; |
| blk_status_t ret; |
| |
| /* |
| * when we're called for a write, we're already in the async |
| * submission context. Just jump into btrfs_map_bio |
| */ |
| ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1); |
| if (ret) { |
| bio->bi_status = ret; |
| bio_endio(bio); |
| } |
| return ret; |
| } |
| |
| static int check_async_write(unsigned long bio_flags) |
| { |
| if (bio_flags & EXTENT_BIO_TREE_LOG) |
| return 0; |
| #ifdef CONFIG_X86 |
| if (static_cpu_has(X86_FEATURE_XMM4_2)) |
| return 0; |
| #endif |
| return 1; |
| } |
| |
| static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio, |
| int mirror_num, unsigned long bio_flags, |
| u64 bio_offset) |
| { |
| struct inode *inode = private_data; |
| struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); |
| int async = check_async_write(bio_flags); |
| blk_status_t ret; |
| |
| if (bio_op(bio) != REQ_OP_WRITE) { |
| /* |
| * called for a read, do the setup so that checksum validation |
| * can happen in the async kernel threads |
| */ |
| ret = btrfs_bio_wq_end_io(fs_info, bio, |
| BTRFS_WQ_ENDIO_METADATA); |
| if (ret) |
| goto out_w_error; |
| ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); |
| } else if (!async) { |
| ret = btree_csum_one_bio(bio); |
| if (ret) |
| goto out_w_error; |
| ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); |
| } else { |
| /* |
| * kthread helpers are used to submit writes so that |
| * checksumming can happen in parallel across all CPUs |
| */ |
| ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0, |
| bio_offset, private_data, |
| __btree_submit_bio_start, |
| __btree_submit_bio_done); |
| } |
| |
| if (ret) |
| goto out_w_error; |
| return 0; |
| |
| out_w_error: |
| bio->bi_status = ret; |
| bio_endio(bio); |
| return ret; |
| } |
| |
| #ifdef CONFIG_MIGRATION |
| static int btree_migratepage(struct address_space *mapping, |
| struct page *newpage, struct page *page, |
| enum migrate_mode mode) |
| { |
| /* |
| * we can't safely write a btree page from here, |
| * we haven't done the locking hook |
| */ |
| if (PageDirty(page)) |
| return -EAGAIN; |
| /* |
| * Buffers may be managed in a filesystem specific way. |
| * We must have no buffers or drop them. |
| */ |
| if (page_has_private(page) && |
| !try_to_release_page(page, GFP_KERNEL)) |
| return -EAGAIN; |
| return migrate_page(mapping, newpage, page, mode); |
| } |
| #endif |
| |
| |
| static int btree_writepages(struct address_space *mapping, |
| struct writeback_control *wbc) |
| { |
| struct btrfs_fs_info *fs_info; |
| int ret; |
| |
| if (wbc->sync_mode == WB_SYNC_NONE) { |
| |
| if (wbc->for_kupdate) |
| return 0; |
| |
| fs_info = BTRFS_I(mapping->host)->root->fs_info; |
| /* this is a bit racy, but that's ok */ |
| ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes, |
| BTRFS_DIRTY_METADATA_THRESH); |
| if (ret < 0) |
| return 0; |
| } |
| return btree_write_cache_pages(mapping, wbc); |
| } |
| |
| static int btree_readpage(struct file *file, struct page *page) |
| { |
| struct extent_io_tree *tree; |
| tree = &BTRFS_I(page->mapping->host)->io_tree; |
| return extent_read_full_page(tree, page, btree_get_extent, 0); |
| } |
| |
| static int btree_releasepage(struct page *page, gfp_t gfp_flags) |
| { |
| if (PageWriteback(page) || PageDirty(page)) |
| return 0; |
| |
| return try_release_extent_buffer(page); |
| } |
| |
| static void btree_invalidatepage(struct page *page, unsigned int offset, |
| unsigned int length) |
| { |
| struct extent_io_tree *tree; |
| tree = &BTRFS_I(page->mapping->host)->io_tree; |
| extent_invalidatepage(tree, page, offset); |
| btree_releasepage(page, GFP_NOFS); |
| if (PagePrivate(page)) { |
| btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info, |
| "page private not zero on page %llu", |
| (unsigned long long)page_offset(page)); |
| ClearPagePrivate(page); |
| set_page_private(page, 0); |
| put_page(page); |
| } |
| } |
| |
| static int btree_set_page_dirty(struct page *page) |
| { |
| #ifdef DEBUG |
| struct extent_buffer *eb; |
| |
| BUG_ON(!PagePrivate(page)); |
| eb = (struct extent_buffer *)page->private; |
| BUG_ON(!eb); |
| BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); |
| BUG_ON(!atomic_read(&eb->refs)); |
| btrfs_assert_tree_locked(eb); |
| #endif |
| return __set_page_dirty_nobuffers(page); |
| } |
| |
| static const struct address_space_operations btree_aops = { |
| .readpage = btree_readpage, |
| .writepages = btree_writepages, |
| .releasepage = btree_releasepage, |
| .invalidatepage = btree_invalidatepage, |
| #ifdef CONFIG_MIGRATION |
| .migratepage = btree_migratepage, |
| #endif |
| .set_page_dirty = btree_set_page_dirty, |
| }; |
| |
| void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr) |
| { |
| struct extent_buffer *buf = NULL; |
| struct inode *btree_inode = fs_info->btree_inode; |
| |
| buf = btrfs_find_create_tree_block(fs_info, bytenr); |
| if (IS_ERR(buf)) |
| return; |
| read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, |
| buf, WAIT_NONE, btree_get_extent, 0); |
| free_extent_buffer(buf); |
| } |
| |
| int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr, |
| int mirror_num, struct extent_buffer **eb) |
| { |
| struct extent_buffer *buf = NULL; |
| struct inode *btree_inode = fs_info->btree_inode; |
| struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree; |
| int ret; |
| |
| buf = btrfs_find_create_tree_block(fs_info, bytenr); |
| if (IS_ERR(buf)) |
| return 0; |
| |
| set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags); |
| |
| ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK, |
| btree_get_extent, mirror_num); |
| if (ret) { |
| free_extent_buffer(buf); |
| return ret; |
| } |
| |
| if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) { |
| free_extent_buffer(buf); |
| return -EIO; |
| } else if (extent_buffer_uptodate(buf)) { |
| *eb = buf; |
| } else { |
| free_extent_buffer(buf); |
| } |
| return 0; |
| } |
| |
| struct extent_buffer *btrfs_find_create_tree_block( |
| struct btrfs_fs_info *fs_info, |
| u64 bytenr) |
| { |
| if (btrfs_is_testing(fs_info)) |
| return alloc_test_extent_buffer(fs_info, bytenr); |
| return alloc_extent_buffer(fs_info, bytenr); |
| } |
| |
| |
| int btrfs_write_tree_block(struct extent_buffer *buf) |
| { |
| return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start, |
| buf->start + buf->len - 1); |
| } |
| |
| void btrfs_wait_tree_block_writeback(struct extent_buffer *buf) |
| { |
| filemap_fdatawait_range(buf->pages[0]->mapping, |
| buf->start, buf->start + buf->len - 1); |
| } |
| |
| struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr, |
| u64 parent_transid) |
| { |
| struct extent_buffer *buf = NULL; |
| int ret; |
| |
| buf = btrfs_find_create_tree_block(fs_info, bytenr); |
| if (IS_ERR(buf)) |
| return buf; |
| |
| ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid); |
| if (ret) { |
| free_extent_buffer(buf); |
| return ERR_PTR(ret); |
| } |
| return buf; |
| |
| } |
| |
| void clean_tree_block(struct btrfs_fs_info *fs_info, |
| struct extent_buffer *buf) |
| { |
| if (btrfs_header_generation(buf) == |
| fs_info->running_transaction->transid) { |
| btrfs_assert_tree_locked(buf); |
| |
| if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) { |
| percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, |
| -buf->len, |
| fs_info->dirty_metadata_batch); |
| /* ugh, clear_extent_buffer_dirty needs to lock the page */ |
| btrfs_set_lock_blocking(buf); |
| clear_extent_buffer_dirty(buf); |
| } |
| } |
| } |
| |
| static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void) |
| { |
| struct btrfs_subvolume_writers *writers; |
| int ret; |
| |
| writers = kmalloc(sizeof(*writers), GFP_NOFS); |
| if (!writers) |
| return ERR_PTR(-ENOMEM); |
| |
| ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL); |
| if (ret < 0) { |
| kfree(writers); |
| return ERR_PTR(ret); |
| } |
| |
| init_waitqueue_head(&writers->wait); |
| return writers; |
| } |
| |
| static void |
| btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers) |
| { |
| percpu_counter_destroy(&writers->counter); |
| kfree(writers); |
| } |
| |
| static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info, |
| u64 objectid) |
| { |
| bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state); |
| root->node = NULL; |
| root->commit_root = NULL; |
| root->state = 0; |
| root->orphan_cleanup_state = 0; |
| |
| root->objectid = objectid; |
| root->last_trans = 0; |
| root->highest_objectid = 0; |
| root->nr_delalloc_inodes = 0; |
| root->nr_ordered_extents = 0; |
| root->name = NULL; |
| root->inode_tree = RB_ROOT; |
| INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC); |
| root->block_rsv = NULL; |
| root->orphan_block_rsv = NULL; |
| |
| INIT_LIST_HEAD(&root->dirty_list); |
| INIT_LIST_HEAD(&root->root_list); |
| INIT_LIST_HEAD(&root->delalloc_inodes); |
| INIT_LIST_HEAD(&root->delalloc_root); |
| INIT_LIST_HEAD(&root->ordered_extents); |
| INIT_LIST_HEAD(&root->ordered_root); |
| INIT_LIST_HEAD(&root->logged_list[0]); |
| INIT_LIST_HEAD(&root->logged_list[1]); |
| spin_lock_init(&root->orphan_lock); |
| spin_lock_init(&root->inode_lock); |
| spin_lock_init(&root->delalloc_lock); |
| spin_lock_init(&root->ordered_extent_lock); |
| spin_lock_init(&root->accounting_lock); |
| spin_lock_init(&root->log_extents_lock[0]); |
| spin_lock_init(&root->log_extents_lock[1]); |
| mutex_init(&root->objectid_mutex); |
| mutex_init(&root->log_mutex); |
| mutex_init(&root->ordered_extent_mutex); |
| mutex_init(&root->delalloc_mutex); |
| init_waitqueue_head(&root->log_writer_wait); |
| init_waitqueue_head(&root->log_commit_wait[0]); |
| init_waitqueue_head(&root->log_commit_wait[1]); |
| INIT_LIST_HEAD(&root->log_ctxs[0]); |
| INIT_LIST_HEAD(&root->log_ctxs[1]); |
| atomic_set(&root->log_commit[0], 0); |
| atomic_set(&root->log_commit[1], 0); |
| atomic_set(&root->log_writers, 0); |
| atomic_set(&root->log_batch, 0); |
| atomic_set(&root->orphan_inodes, 0); |
| refcount_set(&root->refs, 1); |
| atomic_set(&root->will_be_snapshotted, 0); |
| atomic64_set(&root->qgroup_meta_rsv, 0); |
| root->log_transid = 0; |
| root->log_transid_committed = -1; |
| root->last_log_commit = 0; |
| if (!dummy) |
| extent_io_tree_init(&root->dirty_log_pages, NULL); |
| |
| memset(&root->root_key, 0, sizeof(root->root_key)); |
| memset(&root->root_item, 0, sizeof(root->root_item)); |
| memset(&root->defrag_progress, 0, sizeof(root->defrag_progress)); |
| if (!dummy) |
| root->defrag_trans_start = fs_info->generation; |
| else |
| root->defrag_trans_start = 0; |
| root->root_key.objectid = objectid; |
| root->anon_dev = 0; |
| |
| spin_lock_init(&root->root_item_lock); |
| } |
| |
| static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info, |
| gfp_t flags) |
| { |
| struct btrfs_root *root = kzalloc(sizeof(*root), flags); |
| if (root) |
| root->fs_info = fs_info; |
| return root; |
| } |
| |
| #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS |
| /* Should only be used by the testing infrastructure */ |
| struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_root *root; |
| |
| if (!fs_info) |
| return ERR_PTR(-EINVAL); |
| |
| root = btrfs_alloc_root(fs_info, GFP_KERNEL); |
| if (!root) |
| return ERR_PTR(-ENOMEM); |
| |
| /* We don't use the stripesize in selftest, set it as sectorsize */ |
| __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID); |
| root->alloc_bytenr = 0; |
| |
| return root; |
| } |
| #endif |
| |
| struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_fs_info *fs_info, |
| u64 objectid) |
| { |
| struct extent_buffer *leaf; |
| struct btrfs_root *tree_root = fs_info->tree_root; |
| struct btrfs_root *root; |
| struct btrfs_key key; |
| int ret = 0; |
| uuid_le uuid; |
| |
| root = btrfs_alloc_root(fs_info, GFP_KERNEL); |
| if (!root) |
| return ERR_PTR(-ENOMEM); |
| |
| __setup_root(root, fs_info, objectid); |
| root->root_key.objectid = objectid; |
| root->root_key.type = BTRFS_ROOT_ITEM_KEY; |
| root->root_key.offset = 0; |
| |
| leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0); |
| if (IS_ERR(leaf)) { |
| ret = PTR_ERR(leaf); |
| leaf = NULL; |
| goto fail; |
| } |
| |
| memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); |
| btrfs_set_header_bytenr(leaf, leaf->start); |
| btrfs_set_header_generation(leaf, trans->transid); |
| btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); |
| btrfs_set_header_owner(leaf, objectid); |
| root->node = leaf; |
| |
| write_extent_buffer_fsid(leaf, fs_info->fsid); |
| write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid); |
| btrfs_mark_buffer_dirty(leaf); |
| |
| root->commit_root = btrfs_root_node(root); |
| set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| |
| root->root_item.flags = 0; |
| root->root_item.byte_limit = 0; |
| btrfs_set_root_bytenr(&root->root_item, leaf->start); |
| btrfs_set_root_generation(&root->root_item, trans->transid); |
| btrfs_set_root_level(&root->root_item, 0); |
| btrfs_set_root_refs(&root->root_item, 1); |
| btrfs_set_root_used(&root->root_item, leaf->len); |
| btrfs_set_root_last_snapshot(&root->root_item, 0); |
| btrfs_set_root_dirid(&root->root_item, 0); |
| uuid_le_gen(&uuid); |
| memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE); |
| root->root_item.drop_level = 0; |
| |
| key.objectid = objectid; |
| key.type = BTRFS_ROOT_ITEM_KEY; |
| key.offset = 0; |
| ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item); |
| if (ret) |
| goto fail; |
| |
| btrfs_tree_unlock(leaf); |
| |
| return root; |
| |
| fail: |
| if (leaf) { |
| btrfs_tree_unlock(leaf); |
| free_extent_buffer(root->commit_root); |
| free_extent_buffer(leaf); |
| } |
| kfree(root); |
| |
| return ERR_PTR(ret); |
| } |
| |
| static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_root *root; |
| struct extent_buffer *leaf; |
| |
| root = btrfs_alloc_root(fs_info, GFP_NOFS); |
| if (!root) |
| return ERR_PTR(-ENOMEM); |
| |
| __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID); |
| |
| root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID; |
| root->root_key.type = BTRFS_ROOT_ITEM_KEY; |
| root->root_key.offset = BTRFS_TREE_LOG_OBJECTID; |
| |
| /* |
| * DON'T set REF_COWS for log trees |
| * |
| * log trees do not get reference counted because they go away |
| * before a real commit is actually done. They do store pointers |
| * to file data extents, and those reference counts still get |
| * updated (along with back refs to the log tree). |
| */ |
| |
| leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID, |
| NULL, 0, 0, 0); |
| if (IS_ERR(leaf)) { |
| kfree(root); |
| return ERR_CAST(leaf); |
| } |
| |
| memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header)); |
| btrfs_set_header_bytenr(leaf, leaf->start); |
| btrfs_set_header_generation(leaf, trans->transid); |
| btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); |
| btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID); |
| root->node = leaf; |
| |
| write_extent_buffer_fsid(root->node, fs_info->fsid); |
| btrfs_mark_buffer_dirty(root->node); |
| btrfs_tree_unlock(root->node); |
| return root; |
| } |
| |
| int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_root *log_root; |
| |
| log_root = alloc_log_tree(trans, fs_info); |
| if (IS_ERR(log_root)) |
| return PTR_ERR(log_root); |
| WARN_ON(fs_info->log_root_tree); |
| fs_info->log_root_tree = log_root; |
| return 0; |
| } |
| |
| int btrfs_add_log_tree(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_root *log_root; |
| struct btrfs_inode_item *inode_item; |
| |
| log_root = alloc_log_tree(trans, fs_info); |
| if (IS_ERR(log_root)) |
| return PTR_ERR(log_root); |
| |
| log_root->last_trans = trans->transid; |
| log_root->root_key.offset = root->root_key.objectid; |
| |
| inode_item = &log_root->root_item.inode; |
| btrfs_set_stack_inode_generation(inode_item, 1); |
| btrfs_set_stack_inode_size(inode_item, 3); |
| btrfs_set_stack_inode_nlink(inode_item, 1); |
| btrfs_set_stack_inode_nbytes(inode_item, |
| fs_info->nodesize); |
| btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); |
| |
| btrfs_set_root_node(&log_root->root_item, log_root->node); |
| |
| WARN_ON(root->log_root); |
| root->log_root = log_root; |
| root->log_transid = 0; |
| root->log_transid_committed = -1; |
| root->last_log_commit = 0; |
| return 0; |
| } |
| |
| static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root, |
| struct btrfs_key *key) |
| { |
| struct btrfs_root *root; |
| struct btrfs_fs_info *fs_info = tree_root->fs_info; |
| struct btrfs_path *path; |
| u64 generation; |
| int ret; |
| |
| path = btrfs_alloc_path(); |
| if (!path) |
| return ERR_PTR(-ENOMEM); |
| |
| root = btrfs_alloc_root(fs_info, GFP_NOFS); |
| if (!root) { |
| ret = -ENOMEM; |
| goto alloc_fail; |
| } |
| |
| __setup_root(root, fs_info, key->objectid); |
| |
| ret = btrfs_find_root(tree_root, key, path, |
| &root->root_item, &root->root_key); |
| if (ret) { |
| if (ret > 0) |
| ret = -ENOENT; |
| goto find_fail; |
| } |
| |
| generation = btrfs_root_generation(&root->root_item); |
| root->node = read_tree_block(fs_info, |
| btrfs_root_bytenr(&root->root_item), |
| generation); |
| if (IS_ERR(root->node)) { |
| ret = PTR_ERR(root->node); |
| goto find_fail; |
| } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) { |
| ret = -EIO; |
| free_extent_buffer(root->node); |
| goto find_fail; |
| } |
| root->commit_root = btrfs_root_node(root); |
| out: |
| btrfs_free_path(path); |
| return root; |
| |
| find_fail: |
| kfree(root); |
| alloc_fail: |
| root = ERR_PTR(ret); |
| goto out; |
| } |
| |
| struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root, |
| struct btrfs_key *location) |
| { |
| struct btrfs_root *root; |
| |
| root = btrfs_read_tree_root(tree_root, location); |
| if (IS_ERR(root)) |
| return root; |
| |
| if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { |
| set_bit(BTRFS_ROOT_REF_COWS, &root->state); |
| btrfs_check_and_init_root_item(&root->root_item); |
| } |
| |
| return root; |
| } |
| |
| int btrfs_init_fs_root(struct btrfs_root *root) |
| { |
| int ret; |
| struct btrfs_subvolume_writers *writers; |
| |
| root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS); |
| root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned), |
| GFP_NOFS); |
| if (!root->free_ino_pinned || !root->free_ino_ctl) { |
| ret = -ENOMEM; |
| goto fail; |
| } |
| |
| writers = btrfs_alloc_subvolume_writers(); |
| if (IS_ERR(writers)) { |
| ret = PTR_ERR(writers); |
| goto fail; |
| } |
| root->subv_writers = writers; |
| |
| btrfs_init_free_ino_ctl(root); |
| spin_lock_init(&root->ino_cache_lock); |
| init_waitqueue_head(&root->ino_cache_wait); |
| |
| ret = get_anon_bdev(&root->anon_dev); |
| if (ret) |
| goto fail; |
| |
| mutex_lock(&root->objectid_mutex); |
| ret = btrfs_find_highest_objectid(root, |
| &root->highest_objectid); |
| if (ret) { |
| mutex_unlock(&root->objectid_mutex); |
| goto fail; |
| } |
| |
| ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); |
| |
| mutex_unlock(&root->objectid_mutex); |
| |
| return 0; |
| fail: |
| /* the caller is responsible to call free_fs_root */ |
| return ret; |
| } |
| |
| struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info, |
| u64 root_id) |
| { |
| struct btrfs_root *root; |
| |
| spin_lock(&fs_info->fs_roots_radix_lock); |
| root = radix_tree_lookup(&fs_info->fs_roots_radix, |
| (unsigned long)root_id); |
| spin_unlock(&fs_info->fs_roots_radix_lock); |
| return root; |
| } |
| |
| int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info, |
| struct btrfs_root *root) |
| { |
| int ret; |
| |
| ret = radix_tree_preload(GFP_NOFS); |
| if (ret) |
| return ret; |
| |
| spin_lock(&fs_info->fs_roots_radix_lock); |
| ret = radix_tree_insert(&fs_info->fs_roots_radix, |
| (unsigned long)root->root_key.objectid, |
| root); |
| if (ret == 0) |
| set_bit(BTRFS_ROOT_IN_RADIX, &root->state); |
| spin_unlock(&fs_info->fs_roots_radix_lock); |
| radix_tree_preload_end(); |
| |
| return ret; |
| } |
| |
| struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info, |
| struct btrfs_key *location, |
| bool check_ref) |
| { |
| struct btrfs_root *root; |
| struct btrfs_path *path; |
| struct btrfs_key key; |
| int ret; |
| |
| if (location->objectid == BTRFS_ROOT_TREE_OBJECTID) |
| return fs_info->tree_root; |
| if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID) |
| return fs_info->extent_root; |
| if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID) |
| return fs_info->chunk_root; |
| if (location->objectid == BTRFS_DEV_TREE_OBJECTID) |
| return fs_info->dev_root; |
| if (location->objectid == BTRFS_CSUM_TREE_OBJECTID) |
| return fs_info->csum_root; |
| if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID) |
| return fs_info->quota_root ? fs_info->quota_root : |
| ERR_PTR(-ENOENT); |
| if (location->objectid == BTRFS_UUID_TREE_OBJECTID) |
| return fs_info->uuid_root ? fs_info->uuid_root : |
| ERR_PTR(-ENOENT); |
| if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) |
| return fs_info->free_space_root ? fs_info->free_space_root : |
| ERR_PTR(-ENOENT); |
| again: |
| root = btrfs_lookup_fs_root(fs_info, location->objectid); |
| if (root) { |
| if (check_ref && btrfs_root_refs(&root->root_item) == 0) |
| return ERR_PTR(-ENOENT); |
| return root; |
| } |
| |
| root = btrfs_read_fs_root(fs_info->tree_root, location); |
| if (IS_ERR(root)) |
| return root; |
| |
| if (check_ref && btrfs_root_refs(&root->root_item) == 0) { |
| ret = -ENOENT; |
| goto fail; |
| } |
| |
| ret = btrfs_init_fs_root(root); |
| if (ret) |
| goto fail; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| ret = -ENOMEM; |
| goto fail; |
| } |
| key.objectid = BTRFS_ORPHAN_OBJECTID; |
| key.type = BTRFS_ORPHAN_ITEM_KEY; |
| key.offset = location->objectid; |
| |
| ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); |
| btrfs_free_path(path); |
| if (ret < 0) |
| goto fail; |
| if (ret == 0) |
| set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state); |
| |
| ret = btrfs_insert_fs_root(fs_info, root); |
| if (ret) { |
| if (ret == -EEXIST) { |
| free_fs_root(root); |
| goto again; |
| } |
| goto fail; |
| } |
| return root; |
| fail: |
| free_fs_root(root); |
| return ERR_PTR(ret); |
| } |
| |
| static int btrfs_congested_fn(void *congested_data, int bdi_bits) |
| { |
| struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data; |
| int ret = 0; |
| struct btrfs_device *device; |
| struct backing_dev_info *bdi; |
| |
| rcu_read_lock(); |
| list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) { |
| if (!device->bdev) |
| continue; |
| bdi = device->bdev->bd_bdi; |
| if (bdi_congested(bdi, bdi_bits)) { |
| ret = 1; |
| break; |
| } |
| } |
| rcu_read_unlock(); |
| return ret; |
| } |
| |
| /* |
| * called by the kthread helper functions to finally call the bio end_io |
| * functions. This is where read checksum verification actually happens |
| */ |
| static void end_workqueue_fn(struct btrfs_work *work) |
| { |
| struct bio *bio; |
| struct btrfs_end_io_wq *end_io_wq; |
| |
| end_io_wq = container_of(work, struct btrfs_end_io_wq, work); |
| bio = end_io_wq->bio; |
| |
| bio->bi_status = end_io_wq->status; |
| bio->bi_private = end_io_wq->private; |
| bio->bi_end_io = end_io_wq->end_io; |
| kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq); |
| bio_endio(bio); |
| } |
| |
| static int cleaner_kthread(void *arg) |
| { |
| struct btrfs_root *root = arg; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int again; |
| struct btrfs_trans_handle *trans; |
| |
| do { |
| again = 0; |
| |
| /* Make the cleaner go to sleep early. */ |
| if (btrfs_need_cleaner_sleep(fs_info)) |
| goto sleep; |
| |
| /* |
| * Do not do anything if we might cause open_ctree() to block |
| * before we have finished mounting the filesystem. |
| */ |
| if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) |
| goto sleep; |
| |
| if (!mutex_trylock(&fs_info->cleaner_mutex)) |
| goto sleep; |
| |
| /* |
| * Avoid the problem that we change the status of the fs |
| * during the above check and trylock. |
| */ |
| if (btrfs_need_cleaner_sleep(fs_info)) { |
| mutex_unlock(&fs_info->cleaner_mutex); |
| goto sleep; |
| } |
| |
| mutex_lock(&fs_info->cleaner_delayed_iput_mutex); |
| btrfs_run_delayed_iputs(fs_info); |
| mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); |
| |
| again = btrfs_clean_one_deleted_snapshot(root); |
| mutex_unlock(&fs_info->cleaner_mutex); |
| |
| /* |
| * The defragger has dealt with the R/O remount and umount, |
| * needn't do anything special here. |
| */ |
| btrfs_run_defrag_inodes(fs_info); |
| |
| /* |
| * Acquires fs_info->delete_unused_bgs_mutex to avoid racing |
| * with relocation (btrfs_relocate_chunk) and relocation |
| * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group) |
| * after acquiring fs_info->delete_unused_bgs_mutex. So we |
| * can't hold, nor need to, fs_info->cleaner_mutex when deleting |
| * unused block groups. |
| */ |
| btrfs_delete_unused_bgs(fs_info); |
| sleep: |
| if (!again) { |
| set_current_state(TASK_INTERRUPTIBLE); |
| if (!kthread_should_stop()) |
| schedule(); |
| __set_current_state(TASK_RUNNING); |
| } |
| } while (!kthread_should_stop()); |
| |
| /* |
| * Transaction kthread is stopped before us and wakes us up. |
| * However we might have started a new transaction and COWed some |
| * tree blocks when deleting unused block groups for example. So |
| * make sure we commit the transaction we started to have a clean |
| * shutdown when evicting the btree inode - if it has dirty pages |
| * when we do the final iput() on it, eviction will trigger a |
| * writeback for it which will fail with null pointer dereferences |
| * since work queues and other resources were already released and |
| * destroyed by the time the iput/eviction/writeback is made. |
| */ |
| trans = btrfs_attach_transaction(root); |
| if (IS_ERR(trans)) { |
| if (PTR_ERR(trans) != -ENOENT) |
| btrfs_err(fs_info, |
| "cleaner transaction attach returned %ld", |
| PTR_ERR(trans)); |
| } else { |
| int ret; |
| |
| ret = btrfs_commit_transaction(trans); |
| if (ret) |
| btrfs_err(fs_info, |
| "cleaner open transaction commit returned %d", |
| ret); |
| } |
| |
| return 0; |
| } |
| |
| static int transaction_kthread(void *arg) |
| { |
| struct btrfs_root *root = arg; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct btrfs_trans_handle *trans; |
| struct btrfs_transaction *cur; |
| u64 transid; |
| unsigned long now; |
| unsigned long delay; |
| bool cannot_commit; |
| |
| do { |
| cannot_commit = false; |
| delay = HZ * fs_info->commit_interval; |
| mutex_lock(&fs_info->transaction_kthread_mutex); |
| |
| spin_lock(&fs_info->trans_lock); |
| cur = fs_info->running_transaction; |
| if (!cur) { |
| spin_unlock(&fs_info->trans_lock); |
| goto sleep; |
| } |
| |
| now = get_seconds(); |
| if (cur->state < TRANS_STATE_BLOCKED && |
| (now < cur->start_time || |
| now - cur->start_time < fs_info->commit_interval)) { |
| spin_unlock(&fs_info->trans_lock); |
| delay = HZ * 5; |
| goto sleep; |
| } |
| transid = cur->transid; |
| spin_unlock(&fs_info->trans_lock); |
| |
| /* If the file system is aborted, this will always fail. */ |
| trans = btrfs_attach_transaction(root); |
| if (IS_ERR(trans)) { |
| if (PTR_ERR(trans) != -ENOENT) |
| cannot_commit = true; |
| goto sleep; |
| } |
| if (transid == trans->transid) { |
| btrfs_commit_transaction(trans); |
| } else { |
| btrfs_end_transaction(trans); |
| } |
| sleep: |
| wake_up_process(fs_info->cleaner_kthread); |
| mutex_unlock(&fs_info->transaction_kthread_mutex); |
| |
| if (unlikely(test_bit(BTRFS_FS_STATE_ERROR, |
| &fs_info->fs_state))) |
| btrfs_cleanup_transaction(fs_info); |
| set_current_state(TASK_INTERRUPTIBLE); |
| if (!kthread_should_stop() && |
| (!btrfs_transaction_blocked(fs_info) || |
| cannot_commit)) |
| schedule_timeout(delay); |
| __set_current_state(TASK_RUNNING); |
| } while (!kthread_should_stop()); |
| return 0; |
| } |
| |
| /* |
| * this will find the highest generation in the array of |
| * root backups. The index of the highest array is returned, |
| * or -1 if we can't find anything. |
| * |
| * We check to make sure the array is valid by comparing the |
| * generation of the latest root in the array with the generation |
| * in the super block. If they don't match we pitch it. |
| */ |
| static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen) |
| { |
| u64 cur; |
| int newest_index = -1; |
| struct btrfs_root_backup *root_backup; |
| int i; |
| |
| for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) { |
| root_backup = info->super_copy->super_roots + i; |
| cur = btrfs_backup_tree_root_gen(root_backup); |
| if (cur == newest_gen) |
| newest_index = i; |
| } |
| |
| /* check to see if we actually wrapped around */ |
| if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) { |
| root_backup = info->super_copy->super_roots; |
| cur = btrfs_backup_tree_root_gen(root_backup); |
| if (cur == newest_gen) |
| newest_index = 0; |
| } |
| return newest_index; |
| } |
| |
| |
| /* |
| * find the oldest backup so we know where to store new entries |
| * in the backup array. This will set the backup_root_index |
| * field in the fs_info struct |
| */ |
| static void find_oldest_super_backup(struct btrfs_fs_info *info, |
| u64 newest_gen) |
| { |
| int newest_index = -1; |
| |
| newest_index = find_newest_super_backup(info, newest_gen); |
| /* if there was garbage in there, just move along */ |
| if (newest_index == -1) { |
| info->backup_root_index = 0; |
| } else { |
| info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS; |
| } |
| } |
| |
| /* |
| * copy all the root pointers into the super backup array. |
| * this will bump the backup pointer by one when it is |
| * done |
| */ |
| static void backup_super_roots(struct btrfs_fs_info *info) |
| { |
| int next_backup; |
| struct btrfs_root_backup *root_backup; |
| int last_backup; |
| |
| next_backup = info->backup_root_index; |
| last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) % |
| BTRFS_NUM_BACKUP_ROOTS; |
| |
| /* |
| * just overwrite the last backup if we're at the same generation |
| * this happens only at umount |
| */ |
| root_backup = info->super_for_commit->super_roots + last_backup; |
| if (btrfs_backup_tree_root_gen(root_backup) == |
| btrfs_header_generation(info->tree_root->node)) |
| next_backup = last_backup; |
| |
| root_backup = info->super_for_commit->super_roots + next_backup; |
| |
| /* |
| * make sure all of our padding and empty slots get zero filled |
| * regardless of which ones we use today |
| */ |
| memset(root_backup, 0, sizeof(*root_backup)); |
| |
| info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS; |
| |
| btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start); |
| btrfs_set_backup_tree_root_gen(root_backup, |
| btrfs_header_generation(info->tree_root->node)); |
| |
| btrfs_set_backup_tree_root_level(root_backup, |
| btrfs_header_level(info->tree_root->node)); |
| |
| btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start); |
| btrfs_set_backup_chunk_root_gen(root_backup, |
| btrfs_header_generation(info->chunk_root->node)); |
| btrfs_set_backup_chunk_root_level(root_backup, |
| btrfs_header_level(info->chunk_root->node)); |
| |
| btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start); |
| btrfs_set_backup_extent_root_gen(root_backup, |
| btrfs_header_generation(info->extent_root->node)); |
| btrfs_set_backup_extent_root_level(root_backup, |
| btrfs_header_level(info->extent_root->node)); |
| |
| /* |
| * we might commit during log recovery, which happens before we set |
| * the fs_root. Make sure it is valid before we fill it in. |
| */ |
| if (info->fs_root && info->fs_root->node) { |
| btrfs_set_backup_fs_root(root_backup, |
| info->fs_root->node->start); |
| btrfs_set_backup_fs_root_gen(root_backup, |
| btrfs_header_generation(info->fs_root->node)); |
| btrfs_set_backup_fs_root_level(root_backup, |
| btrfs_header_level(info->fs_root->node)); |
| } |
| |
| btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start); |
| btrfs_set_backup_dev_root_gen(root_backup, |
| btrfs_header_generation(info->dev_root->node)); |
| btrfs_set_backup_dev_root_level(root_backup, |
| btrfs_header_level(info->dev_root->node)); |
| |
| btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start); |
| btrfs_set_backup_csum_root_gen(root_backup, |
| btrfs_header_generation(info->csum_root->node)); |
| btrfs_set_backup_csum_root_level(root_backup, |
| btrfs_header_level(info->csum_root->node)); |
| |
| btrfs_set_backup_total_bytes(root_backup, |
| btrfs_super_total_bytes(info->super_copy)); |
| btrfs_set_backup_bytes_used(root_backup, |
| btrfs_super_bytes_used(info->super_copy)); |
| btrfs_set_backup_num_devices(root_backup, |
| btrfs_super_num_devices(info->super_copy)); |
| |
| /* |
| * if we don't copy this out to the super_copy, it won't get remembered |
| * for the next commit |
| */ |
| memcpy(&info->super_copy->super_roots, |
| &info->super_for_commit->super_roots, |
| sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS); |
| } |
| |
| /* |
| * this copies info out of the root backup array and back into |
| * the in-memory super block. It is meant to help iterate through |
| * the array, so you send it the number of backups you've already |
| * tried and the last backup index you used. |
| * |
| * this returns -1 when it has tried all the backups |
| */ |
| static noinline int next_root_backup(struct btrfs_fs_info *info, |
| struct btrfs_super_block *super, |
| int *num_backups_tried, int *backup_index) |
| { |
| struct btrfs_root_backup *root_backup; |
| int newest = *backup_index; |
| |
| if (*num_backups_tried == 0) { |
| u64 gen = btrfs_super_generation(super); |
| |
| newest = find_newest_super_backup(info, gen); |
| if (newest == -1) |
| return -1; |
| |
| *backup_index = newest; |
| *num_backups_tried = 1; |
| } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) { |
| /* we've tried all the backups, all done */ |
| return -1; |
| } else { |
| /* jump to the next oldest backup */ |
| newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) % |
| BTRFS_NUM_BACKUP_ROOTS; |
| *backup_index = newest; |
| *num_backups_tried += 1; |
| } |
| root_backup = super->super_roots + newest; |
| |
| btrfs_set_super_generation(super, |
| btrfs_backup_tree_root_gen(root_backup)); |
| btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup)); |
| btrfs_set_super_root_level(super, |
| btrfs_backup_tree_root_level(root_backup)); |
| btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup)); |
| |
| /* |
| * fixme: the total bytes and num_devices need to match or we should |
| * need a fsck |
| */ |
| btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup)); |
| btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup)); |
| return 0; |
| } |
| |
| /* helper to cleanup workers */ |
| static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info) |
| { |
| btrfs_destroy_workqueue(fs_info->fixup_workers); |
| btrfs_destroy_workqueue(fs_info->delalloc_workers); |
| btrfs_destroy_workqueue(fs_info->workers); |
| btrfs_destroy_workqueue(fs_info->endio_workers); |
| btrfs_destroy_workqueue(fs_info->endio_raid56_workers); |
| btrfs_destroy_workqueue(fs_info->endio_repair_workers); |
| btrfs_destroy_workqueue(fs_info->rmw_workers); |
| btrfs_destroy_workqueue(fs_info->endio_write_workers); |
| btrfs_destroy_workqueue(fs_info->endio_freespace_worker); |
| btrfs_destroy_workqueue(fs_info->submit_workers); |
| btrfs_destroy_workqueue(fs_info->delayed_workers); |
| btrfs_destroy_workqueue(fs_info->caching_workers); |
| btrfs_destroy_workqueue(fs_info->readahead_workers); |
| btrfs_destroy_workqueue(fs_info->flush_workers); |
| btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers); |
| btrfs_destroy_workqueue(fs_info->extent_workers); |
| /* |
| * Now that all other work queues are destroyed, we can safely destroy |
| * the queues used for metadata I/O, since tasks from those other work |
| * queues can do metadata I/O operations. |
| */ |
| btrfs_destroy_workqueue(fs_info->endio_meta_workers); |
| btrfs_destroy_workqueue(fs_info->endio_meta_write_workers); |
| } |
| |
| static void free_root_extent_buffers(struct btrfs_root *root) |
| { |
| if (root) { |
| free_extent_buffer(root->node); |
| free_extent_buffer(root->commit_root); |
| root->node = NULL; |
| root->commit_root = NULL; |
| } |
| } |
| |
| /* helper to cleanup tree roots */ |
| static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root) |
| { |
| free_root_extent_buffers(info->tree_root); |
| |
| free_root_extent_buffers(info->dev_root); |
| free_root_extent_buffers(info->extent_root); |
| free_root_extent_buffers(info->csum_root); |
| free_root_extent_buffers(info->quota_root); |
| free_root_extent_buffers(info->uuid_root); |
| if (chunk_root) |
| free_root_extent_buffers(info->chunk_root); |
| free_root_extent_buffers(info->free_space_root); |
| } |
| |
| void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info) |
| { |
| int ret; |
| struct btrfs_root *gang[8]; |
| int i; |
| |
| while (!list_empty(&fs_info->dead_roots)) { |
| gang[0] = list_entry(fs_info->dead_roots.next, |
| struct btrfs_root, root_list); |
| list_del(&gang[0]->root_list); |
| |
| if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) { |
| btrfs_drop_and_free_fs_root(fs_info, gang[0]); |
| } else { |
| free_extent_buffer(gang[0]->node); |
| free_extent_buffer(gang[0]->commit_root); |
| btrfs_put_fs_root(gang[0]); |
| } |
| } |
| |
| while (1) { |
| ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix, |
| (void **)gang, 0, |
| ARRAY_SIZE(gang)); |
| if (!ret) |
| break; |
| for (i = 0; i < ret; i++) |
| btrfs_drop_and_free_fs_root(fs_info, gang[i]); |
| } |
| |
| if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { |
| btrfs_free_log_root_tree(NULL, fs_info); |
| btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents); |
| } |
| } |
| |
| static void btrfs_init_scrub(struct btrfs_fs_info *fs_info) |
| { |
| mutex_init(&fs_info->scrub_lock); |
| atomic_set(&fs_info->scrubs_running, 0); |
| atomic_set(&fs_info->scrub_pause_req, 0); |
| atomic_set(&fs_info->scrubs_paused, 0); |
| atomic_set(&fs_info->scrub_cancel_req, 0); |
| init_waitqueue_head(&fs_info->scrub_pause_wait); |
| fs_info->scrub_workers_refcnt = 0; |
| } |
| |
| static void btrfs_init_balance(struct btrfs_fs_info *fs_info) |
| { |
| spin_lock_init(&fs_info->balance_lock); |
| mutex_init(&fs_info->balance_mutex); |
| atomic_set(&fs_info->balance_running, 0); |
| atomic_set(&fs_info->balance_pause_req, 0); |
| atomic_set(&fs_info->balance_cancel_req, 0); |
| fs_info->balance_ctl = NULL; |
| init_waitqueue_head(&fs_info->balance_wait_q); |
| } |
| |
| static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info) |
| { |
| struct inode *inode = fs_info->btree_inode; |
| |
| inode->i_ino = BTRFS_BTREE_INODE_OBJECTID; |
| set_nlink(inode, 1); |
| /* |
| * we set the i_size on the btree inode to the max possible int. |
| * the real end of the address space is determined by all of |
| * the devices in the system |
| */ |
| inode->i_size = OFFSET_MAX; |
| inode->i_mapping->a_ops = &btree_aops; |
| |
| RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); |
| extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode); |
| BTRFS_I(inode)->io_tree.track_uptodate = 0; |
| extent_map_tree_init(&BTRFS_I(inode)->extent_tree); |
| |
| BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops; |
| |
| BTRFS_I(inode)->root = fs_info->tree_root; |
| memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key)); |
| set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); |
| btrfs_insert_inode_hash(inode); |
| } |
| |
| static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info) |
| { |
| fs_info->dev_replace.lock_owner = 0; |
| atomic_set(&fs_info->dev_replace.nesting_level, 0); |
| mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount); |
| rwlock_init(&fs_info->dev_replace.lock); |
| atomic_set(&fs_info->dev_replace.read_locks, 0); |
| atomic_set(&fs_info->dev_replace.blocking_readers, 0); |
| init_waitqueue_head(&fs_info->replace_wait); |
| init_waitqueue_head(&fs_info->dev_replace.read_lock_wq); |
| } |
| |
| static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info) |
| { |
| spin_lock_init(&fs_info->qgroup_lock); |
| mutex_init(&fs_info->qgroup_ioctl_lock); |
| fs_info->qgroup_tree = RB_ROOT; |
| fs_info->qgroup_op_tree = RB_ROOT; |
| INIT_LIST_HEAD(&fs_info->dirty_qgroups); |
| fs_info->qgroup_seq = 1; |
| fs_info->qgroup_ulist = NULL; |
| fs_info->qgroup_rescan_running = false; |
| mutex_init(&fs_info->qgroup_rescan_lock); |
| } |
| |
| static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info, |
| struct btrfs_fs_devices *fs_devices) |
| { |
| int max_active = fs_info->thread_pool_size; |
| unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND; |
| |
| fs_info->workers = |
| btrfs_alloc_workqueue(fs_info, "worker", |
| flags | WQ_HIGHPRI, max_active, 16); |
| |
| fs_info->delalloc_workers = |
| btrfs_alloc_workqueue(fs_info, "delalloc", |
| flags, max_active, 2); |
| |
| fs_info->flush_workers = |
| btrfs_alloc_workqueue(fs_info, "flush_delalloc", |
| flags, max_active, 0); |
| |
| fs_info->caching_workers = |
| btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0); |
| |
| /* |
| * a higher idle thresh on the submit workers makes it much more |
| * likely that bios will be send down in a sane order to the |
| * devices |
| */ |
| fs_info->submit_workers = |
| btrfs_alloc_workqueue(fs_info, "submit", flags, |
| min_t(u64, fs_devices->num_devices, |
| max_active), 64); |
| |
| fs_info->fixup_workers = |
| btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0); |
| |
| /* |
| * endios are largely parallel and should have a very |
| * low idle thresh |
| */ |
| fs_info->endio_workers = |
| btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4); |
| fs_info->endio_meta_workers = |
| btrfs_alloc_workqueue(fs_info, "endio-meta", flags, |
| max_active, 4); |
| fs_info->endio_meta_write_workers = |
| btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags, |
| max_active, 2); |
| fs_info->endio_raid56_workers = |
| btrfs_alloc_workqueue(fs_info, "endio-raid56", flags, |
| max_active, 4); |
| fs_info->endio_repair_workers = |
| btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0); |
| fs_info->rmw_workers = |
| btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2); |
| fs_info->endio_write_workers = |
| btrfs_alloc_workqueue(fs_info, "endio-write", flags, |
| max_active, 2); |
| fs_info->endio_freespace_worker = |
| btrfs_alloc_workqueue(fs_info, "freespace-write", flags, |
| max_active, 0); |
| fs_info->delayed_workers = |
| btrfs_alloc_workqueue(fs_info, "delayed-meta", flags, |
| max_active, 0); |
| fs_info->readahead_workers = |
| btrfs_alloc_workqueue(fs_info, "readahead", flags, |
| max_active, 2); |
| fs_info->qgroup_rescan_workers = |
| btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0); |
| fs_info->extent_workers = |
| btrfs_alloc_workqueue(fs_info, "extent-refs", flags, |
| min_t(u64, fs_devices->num_devices, |
| max_active), 8); |
| |
| if (!(fs_info->workers && fs_info->delalloc_workers && |
| fs_info->submit_workers && fs_info->flush_workers && |
| fs_info->endio_workers && fs_info->endio_meta_workers && |
| fs_info->endio_meta_write_workers && |
| fs_info->endio_repair_workers && |
| fs_info->endio_write_workers && fs_info->endio_raid56_workers && |
| fs_info->endio_freespace_worker && fs_info->rmw_workers && |
| fs_info->caching_workers && fs_info->readahead_workers && |
| fs_info->fixup_workers && fs_info->delayed_workers && |
| fs_info->extent_workers && |
| fs_info->qgroup_rescan_workers)) { |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static int btrfs_replay_log(struct btrfs_fs_info *fs_info, |
| struct btrfs_fs_devices *fs_devices) |
| { |
| int ret; |
| struct btrfs_root *log_tree_root; |
| struct btrfs_super_block *disk_super = fs_info->super_copy; |
| u64 bytenr = btrfs_super_log_root(disk_super); |
| |
| if (fs_devices->rw_devices == 0) { |
| btrfs_warn(fs_info, "log replay required on RO media"); |
| return -EIO; |
| } |
| |
| log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); |
| if (!log_tree_root) |
| return -ENOMEM; |
| |
| __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID); |
| |
| log_tree_root->node = read_tree_block(fs_info, bytenr, |
| fs_info->generation + 1); |
| if (IS_ERR(log_tree_root->node)) { |
| btrfs_warn(fs_info, "failed to read log tree"); |
| ret = PTR_ERR(log_tree_root->node); |
| kfree(log_tree_root); |
| return ret; |
| } else if (!extent_buffer_uptodate(log_tree_root->node)) { |
| btrfs_err(fs_info, "failed to read log tree"); |
| free_extent_buffer(log_tree_root->node); |
| kfree(log_tree_root); |
| return -EIO; |
| } |
| /* returns with log_tree_root freed on success */ |
| ret = btrfs_recover_log_trees(log_tree_root); |
| if (ret) { |
| btrfs_handle_fs_error(fs_info, ret, |
| "Failed to recover log tree"); |
| free_extent_buffer(log_tree_root->node); |
| kfree(log_tree_root); |
| return ret; |
| } |
| |
| if (sb_rdonly(fs_info->sb)) { |
| ret = btrfs_commit_super(fs_info); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int btrfs_read_roots(struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_root *tree_root = fs_info->tree_root; |
| struct btrfs_root *root; |
| struct btrfs_key location; |
| int ret; |
| |
| BUG_ON(!fs_info->tree_root); |
| |
| location.objectid = BTRFS_EXTENT_TREE_OBJECTID; |
| location.type = BTRFS_ROOT_ITEM_KEY; |
| location.offset = 0; |
| |
| root = btrfs_read_tree_root(tree_root, &location); |
| if (IS_ERR(root)) |
| return PTR_ERR(root); |
| set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| fs_info->extent_root = root; |
| |
| location.objectid = BTRFS_DEV_TREE_OBJECTID; |
| root = btrfs_read_tree_root(tree_root, &location); |
| if (IS_ERR(root)) |
| return PTR_ERR(root); |
| set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| fs_info->dev_root = root; |
| btrfs_init_devices_late(fs_info); |
| |
| location.objectid = BTRFS_CSUM_TREE_OBJECTID; |
| root = btrfs_read_tree_root(tree_root, &location); |
| if (IS_ERR(root)) |
| return PTR_ERR(root); |
| set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| fs_info->csum_root = root; |
| |
| location.objectid = BTRFS_QUOTA_TREE_OBJECTID; |
| root = btrfs_read_tree_root(tree_root, &location); |
| if (!IS_ERR(root)) { |
| set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags); |
| fs_info->quota_root = root; |
| } |
| |
| location.objectid = BTRFS_UUID_TREE_OBJECTID; |
| root = btrfs_read_tree_root(tree_root, &location); |
| if (IS_ERR(root)) { |
| ret = PTR_ERR(root); |
| if (ret != -ENOENT) |
| return ret; |
| } else { |
| set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| fs_info->uuid_root = root; |
| } |
| |
| if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { |
| location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID; |
| root = btrfs_read_tree_root(tree_root, &location); |
| if (IS_ERR(root)) |
| return PTR_ERR(root); |
| set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state); |
| fs_info->free_space_root = root; |
| } |
| |
| return 0; |
| } |
| |
| int open_ctree(struct super_block *sb, |
| struct btrfs_fs_devices *fs_devices, |
| char *options) |
| { |
| u32 sectorsize; |
| u32 nodesize; |
| u32 stripesize; |
| u64 generation; |
| u64 features; |
| struct btrfs_key location; |
| struct buffer_head *bh; |
| struct btrfs_super_block *disk_super; |
| struct btrfs_fs_info *fs_info = btrfs_sb(sb); |
| struct btrfs_root *tree_root; |
| struct btrfs_root *chunk_root; |
| int ret; |
| int err = -EINVAL; |
| int num_backups_tried = 0; |
| int backup_index = 0; |
| int max_active; |
| int clear_free_space_tree = 0; |
| |
| tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL); |
| chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL); |
| if (!tree_root || !chunk_root) { |
| err = -ENOMEM; |
| goto fail; |
| } |
| |
| ret = init_srcu_struct(&fs_info->subvol_srcu); |
| if (ret) { |
| err = ret; |
| goto fail; |
| } |
| |
| ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL); |
| if (ret) { |
| err = ret; |
| goto fail_srcu; |
| } |
| fs_info->dirty_metadata_batch = PAGE_SIZE * |
| (1 + ilog2(nr_cpu_ids)); |
| |
| ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL); |
| if (ret) { |
| err = ret; |
| goto fail_dirty_metadata_bytes; |
| } |
| |
| ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL); |
| if (ret) { |
| err = ret; |
| goto fail_delalloc_bytes; |
| } |
| |
| fs_info->btree_inode = new_inode(sb); |
| if (!fs_info->btree_inode) { |
| err = -ENOMEM; |
| goto fail_bio_counter; |
| } |
| |
| mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS); |
| |
| INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC); |
| INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC); |
| INIT_LIST_HEAD(&fs_info->trans_list); |
| INIT_LIST_HEAD(&fs_info->dead_roots); |
| INIT_LIST_HEAD(&fs_info->delayed_iputs); |
| INIT_LIST_HEAD(&fs_info->delalloc_roots); |
| INIT_LIST_HEAD(&fs_info->caching_block_groups); |
| spin_lock_init(&fs_info->delalloc_root_lock); |
| spin_lock_init(&fs_info->trans_lock); |
| spin_lock_init(&fs_info->fs_roots_radix_lock); |
| spin_lock_init(&fs_info->delayed_iput_lock); |
| spin_lock_init(&fs_info->defrag_inodes_lock); |
| spin_lock_init(&fs_info->tree_mod_seq_lock); |
| spin_lock_init(&fs_info->super_lock); |
| spin_lock_init(&fs_info->qgroup_op_lock); |
| spin_lock_init(&fs_info->buffer_lock); |
| spin_lock_init(&fs_info->unused_bgs_lock); |
| rwlock_init(&fs_info->tree_mod_log_lock); |
| mutex_init(&fs_info->unused_bg_unpin_mutex); |
| mutex_init(&fs_info->delete_unused_bgs_mutex); |
| mutex_init(&fs_info->reloc_mutex); |
| mutex_init(&fs_info->delalloc_root_mutex); |
| mutex_init(&fs_info->cleaner_delayed_iput_mutex); |
| seqlock_init(&fs_info->profiles_lock); |
| |
| INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots); |
| INIT_LIST_HEAD(&fs_info->space_info); |
| INIT_LIST_HEAD(&fs_info->tree_mod_seq_list); |
| INIT_LIST_HEAD(&fs_info->unused_bgs); |
| btrfs_mapping_init(&fs_info->mapping_tree); |
| btrfs_init_block_rsv(&fs_info->global_block_rsv, |
| BTRFS_BLOCK_RSV_GLOBAL); |
| btrfs_init_block_rsv(&fs_info->delalloc_block_rsv, |
| BTRFS_BLOCK_RSV_DELALLOC); |
| btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS); |
| btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK); |
| btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY); |
| btrfs_init_block_rsv(&fs_info->delayed_block_rsv, |
| BTRFS_BLOCK_RSV_DELOPS); |
| atomic_set(&fs_info->nr_async_submits, 0); |
| atomic_set(&fs_info->async_delalloc_pages, 0); |
| atomic_set(&fs_info->async_submit_draining, 0); |
| atomic_set(&fs_info->nr_async_bios, 0); |
| atomic_set(&fs_info->defrag_running, 0); |
| atomic_set(&fs_info->qgroup_op_seq, 0); |
| atomic_set(&fs_info->reada_works_cnt, 0); |
| atomic64_set(&fs_info->tree_mod_seq, 0); |
| fs_info->sb = sb; |
| fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE; |
| fs_info->metadata_ratio = 0; |
| fs_info->defrag_inodes = RB_ROOT; |
| atomic64_set(&fs_info->free_chunk_space, 0); |
| fs_info->tree_mod_log = RB_ROOT; |
| fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; |
| fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */ |
| /* readahead state */ |
| INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); |
| spin_lock_init(&fs_info->reada_lock); |
| |
| fs_info->thread_pool_size = min_t(unsigned long, |
| num_online_cpus() + 2, 8); |
| |
| INIT_LIST_HEAD(&fs_info->ordered_roots); |
| spin_lock_init(&fs_info->ordered_root_lock); |
| fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root), |
| GFP_KERNEL); |
| if (!fs_info->delayed_root) { |
| err = -ENOMEM; |
| goto fail_iput; |
| } |
| btrfs_init_delayed_root(fs_info->delayed_root); |
| |
| btrfs_init_scrub(fs_info); |
| #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY |
| fs_info->check_integrity_print_mask = 0; |
| #endif |
| btrfs_init_balance(fs_info); |
| btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work); |
| |
| sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE; |
| sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE); |
| |
| btrfs_init_btree_inode(fs_info); |
| |
| spin_lock_init(&fs_info->block_group_cache_lock); |
| fs_info->block_group_cache_tree = RB_ROOT; |
| fs_info->first_logical_byte = (u64)-1; |
| |
| extent_io_tree_init(&fs_info->freed_extents[0], NULL); |
| extent_io_tree_init(&fs_info->freed_extents[1], NULL); |
| fs_info->pinned_extents = &fs_info->freed_extents[0]; |
| set_bit(BTRFS_FS_BARRIER, &fs_info->flags); |
| |
| mutex_init(&fs_info->ordered_operations_mutex); |
| mutex_init(&fs_info->tree_log_mutex); |
| mutex_init(&fs_info->chunk_mutex); |
| mutex_init(&fs_info->transaction_kthread_mutex); |
| mutex_init(&fs_info->cleaner_mutex); |
| mutex_init(&fs_info->volume_mutex); |
| mutex_init(&fs_info->ro_block_group_mutex); |
| init_rwsem(&fs_info->commit_root_sem); |
| init_rwsem(&fs_info->cleanup_work_sem); |
| init_rwsem(&fs_info->subvol_sem); |
| sema_init(&fs_info->uuid_tree_rescan_sem, 1); |
| |
| btrfs_init_dev_replace_locks(fs_info); |
| btrfs_init_qgroup(fs_info); |
| |
| btrfs_init_free_cluster(&fs_info->meta_alloc_cluster); |
| btrfs_init_free_cluster(&fs_info->data_alloc_cluster); |
| |
| init_waitqueue_head(&fs_info->transaction_throttle); |
| init_waitqueue_head(&fs_info->transaction_wait); |
| init_waitqueue_head(&fs_info->transaction_blocked_wait); |
| init_waitqueue_head(&fs_info->async_submit_wait); |
| |
| INIT_LIST_HEAD(&fs_info->pinned_chunks); |
| |
| /* Usable values until the real ones are cached from the superblock */ |
| fs_info->nodesize = 4096; |
| fs_info->sectorsize = 4096; |
| fs_info->stripesize = 4096; |
| |
| ret = btrfs_alloc_stripe_hash_table(fs_info); |
| if (ret) { |
| err = ret; |
| goto fail_alloc; |
| } |
| |
| __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID); |
| |
| invalidate_bdev(fs_devices->latest_bdev); |
| |
| /* |
| * Read super block and check the signature bytes only |
| */ |
| bh = btrfs_read_dev_super(fs_devices->latest_bdev); |
| if (IS_ERR(bh)) { |
| err = PTR_ERR(bh); |
| goto fail_alloc; |
| } |
| |
| /* |
| * We want to check superblock checksum, the type is stored inside. |
| * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k). |
| */ |
| if (btrfs_check_super_csum(fs_info, bh->b_data)) { |
| btrfs_err(fs_info, "superblock checksum mismatch"); |
| err = -EINVAL; |
| brelse(bh); |
| goto fail_alloc; |
| } |
| |
| /* |
| * super_copy is zeroed at allocation time and we never touch the |
| * following bytes up to INFO_SIZE, the checksum is calculated from |
| * the whole block of INFO_SIZE |
| */ |
| memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy)); |
| memcpy(fs_info->super_for_commit, fs_info->super_copy, |
| sizeof(*fs_info->super_for_commit)); |
| brelse(bh); |
| |
| memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE); |
| |
| ret = btrfs_check_super_valid(fs_info); |
| if (ret) { |
| btrfs_err(fs_info, "superblock contains fatal errors"); |
| err = -EINVAL; |
| goto fail_alloc; |
| } |
| |
| disk_super = fs_info->super_copy; |
| if (!btrfs_super_root(disk_super)) |
| goto fail_alloc; |
| |
| /* check FS state, whether FS is broken. */ |
| if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR) |
| set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); |
| |
| /* |
| * run through our array of backup supers and setup |
| * our ring pointer to the oldest one |
| */ |
| generation = btrfs_super_generation(disk_super); |
| find_oldest_super_backup(fs_info, generation); |
| |
| /* |
| * In the long term, we'll store the compression type in the super |
| * block, and it'll be used for per file compression control. |
| */ |
| fs_info->compress_type = BTRFS_COMPRESS_ZLIB; |
| |
| ret = btrfs_parse_options(fs_info, options, sb->s_flags); |
| if (ret) { |
| err = ret; |
| goto fail_alloc; |
| } |
| |
| features = btrfs_super_incompat_flags(disk_super) & |
| ~BTRFS_FEATURE_INCOMPAT_SUPP; |
| if (features) { |
| btrfs_err(fs_info, |
| "cannot mount because of unsupported optional features (%llx)", |
| features); |
| err = -EINVAL; |
| goto fail_alloc; |
| } |
| |
| features = btrfs_super_incompat_flags(disk_super); |
| features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF; |
| if (fs_info->compress_type == BTRFS_COMPRESS_LZO) |
| features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO; |
| else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD) |
| features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD; |
| |
| if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA) |
| btrfs_info(fs_info, "has skinny extents"); |
| |
| /* |
| * flag our filesystem as having big metadata blocks if |
| * they are bigger than the page size |
| */ |
| if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) { |
| if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA)) |
| btrfs_info(fs_info, |
| "flagging fs with big metadata feature"); |
| features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA; |
| } |
| |
| nodesize = btrfs_super_nodesize(disk_super); |
| sectorsize = btrfs_super_sectorsize(disk_super); |
| stripesize = sectorsize; |
| fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids)); |
| fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids)); |
| |
| /* Cache block sizes */ |
| fs_info->nodesize = nodesize; |
| fs_info->sectorsize = sectorsize; |
| fs_info->stripesize = stripesize; |
| |
| /* |
| * mixed block groups end up with duplicate but slightly offset |
| * extent buffers for the same range. It leads to corruptions |
| */ |
| if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) && |
| (sectorsize != nodesize)) { |
| btrfs_err(fs_info, |
| "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups", |
| nodesize, sectorsize); |
| goto fail_alloc; |
| } |
| |
| /* |
| * Needn't use the lock because there is no other task which will |
| * update the flag. |
| */ |
| btrfs_set_super_incompat_flags(disk_super, features); |
| |
| features = btrfs_super_compat_ro_flags(disk_super) & |
| ~BTRFS_FEATURE_COMPAT_RO_SUPP; |
| if (!sb_rdonly(sb) && features) { |
| btrfs_err(fs_info, |
| "cannot mount read-write because of unsupported optional features (%llx)", |
| features); |
| err = -EINVAL; |
| goto fail_alloc; |
| } |
| |
| max_active = fs_info->thread_pool_size; |
| |
| ret = btrfs_init_workqueues(fs_info, fs_devices); |
| if (ret) { |
| err = ret; |
| goto fail_sb_buffer; |
| } |
| |
| sb->s_bdi->congested_fn = btrfs_congested_fn; |
| sb->s_bdi->congested_data = fs_info; |
| sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK; |
| sb->s_bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE; |
| sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super); |
| sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE); |
| |
| sb->s_blocksize = sectorsize; |
| sb->s_blocksize_bits = blksize_bits(sectorsize); |
| |
| mutex_lock(&fs_info->chunk_mutex); |
| ret = btrfs_read_sys_array(fs_info); |
| mutex_unlock(&fs_info->chunk_mutex); |
| if (ret) { |
| btrfs_err(fs_info, "failed to read the system array: %d", ret); |
| goto fail_sb_buffer; |
| } |
| |
| generation = btrfs_super_chunk_root_generation(disk_super); |
| |
| __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID); |
| |
| chunk_root->node = read_tree_block(fs_info, |
| btrfs_super_chunk_root(disk_super), |
| generation); |
| if (IS_ERR(chunk_root->node) || |
| !extent_buffer_uptodate(chunk_root->node)) { |
| btrfs_err(fs_info, "failed to read chunk root"); |
| if (!IS_ERR(chunk_root->node)) |
| free_extent_buffer(chunk_root->node); |
| chunk_root->node = NULL; |
| goto fail_tree_roots; |
| } |
| btrfs_set_root_node(&chunk_root->root_item, chunk_root->node); |
| chunk_root->commit_root = btrfs_root_node(chunk_root); |
| |
| read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid, |
| btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE); |
| |
| ret = btrfs_read_chunk_tree(fs_info); |
| if (ret) { |
| btrfs_err(fs_info, "failed to read chunk tree: %d", ret); |
| goto fail_tree_roots; |
| } |
| |
| /* |
| * keep the device that is marked to be the target device for the |
| * dev_replace procedure |
| */ |
| btrfs_close_extra_devices(fs_devices, 0); |
| |
| if (!fs_devices->latest_bdev) { |
| btrfs_err(fs_info, "failed to read devices"); |
| goto fail_tree_roots; |
| } |
| |
| retry_root_backup: |
| generation = btrfs_super_generation(disk_super); |
| |
| tree_root->node = read_tree_block(fs_info, |
| btrfs_super_root(disk_super), |
| generation); |
| if (IS_ERR(tree_root->node) || |
| !extent_buffer_uptodate(tree_root->node)) { |
| btrfs_warn(fs_info, "failed to read tree root"); |
| if (!IS_ERR(tree_root->node)) |
| free_extent_buffer(tree_root->node); |
| tree_root->node = NULL; |
| goto recovery_tree_root; |
| } |
| |
| btrfs_set_root_node(&tree_root->root_item, tree_root->node); |
| tree_root->commit_root = btrfs_root_node(tree_root); |
| btrfs_set_root_refs(&tree_root->root_item, 1); |
| |
| mutex_lock(&tree_root->objectid_mutex); |
| ret = btrfs_find_highest_objectid(tree_root, |
| &tree_root->highest_objectid); |
| if (ret) { |
| mutex_unlock(&tree_root->objectid_mutex); |
| goto recovery_tree_root; |
| } |
| |
| ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID); |
| |
| mutex_unlock(&tree_root->objectid_mutex); |
| |
| ret = btrfs_read_roots(fs_info); |
| if (ret) |
| goto recovery_tree_root; |
| |
| fs_info->generation = generation; |
| fs_info->last_trans_committed = generation; |
| |
| ret = btrfs_recover_balance(fs_info); |
| if (ret) { |
| btrfs_err(fs_info, "failed to recover balance: %d", ret); |
| goto fail_block_groups; |
| } |
| |
| ret = btrfs_init_dev_stats(fs_info); |
| if (ret) { |
| btrfs_err(fs_info, "failed to init dev_stats: %d", ret); |
| goto fail_block_groups; |
| } |
| |
| ret = btrfs_init_dev_replace(fs_info); |
| if (ret) { |
| btrfs_err(fs_info, "failed to init dev_replace: %d", ret); |
| goto fail_block_groups; |
| } |
| |
| btrfs_close_extra_devices(fs_devices, 1); |
| |
| ret = btrfs_sysfs_add_fsid(fs_devices, NULL); |
| if (ret) { |
| btrfs_err(fs_info, "failed to init sysfs fsid interface: %d", |
| ret); |
| goto fail_block_groups; |
| } |
| |
| ret = btrfs_sysfs_add_device(fs_devices); |
| if (ret) { |
| btrfs_err(fs_info, "failed to init sysfs device interface: %d", |
| ret); |
| goto fail_fsdev_sysfs; |
| } |
| |
| ret = btrfs_sysfs_add_mounted(fs_info); |
| if (ret) { |
| btrfs_err(fs_info, "failed to init sysfs interface: %d", ret); |
| goto fail_fsdev_sysfs; |
| } |
| |
| ret = btrfs_init_space_info(fs_info); |
| if (ret) { |
| btrfs_err(fs_info, "failed to initialize space info: %d", ret); |
| goto fail_sysfs; |
| } |
| |
| ret = btrfs_read_block_groups(fs_info); |
| if (ret) { |
| btrfs_err(fs_info, "failed to read block groups: %d", ret); |
| goto fail_sysfs; |
| } |
| |
| if (!sb_rdonly(sb) && !btrfs_check_rw_degradable(fs_info)) { |
| btrfs_warn(fs_info, |
| "writeable mount is not allowed due to too many missing devices"); |
| goto fail_sysfs; |
| } |
| |
| fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root, |
| "btrfs-cleaner"); |
| if (IS_ERR(fs_info->cleaner_kthread)) |
| goto fail_sysfs; |
| |
| fs_info->transaction_kthread = kthread_run(transaction_kthread, |
| tree_root, |
| "btrfs-transaction"); |
| if (IS_ERR(fs_info->transaction_kthread)) |
| goto fail_cleaner; |
| |
| if (!btrfs_test_opt(fs_info, NOSSD) && |
|