blob: 254a81a4e6f4e5293b6b97891c070a39b0ff09ae [file] [log] [blame]
/* Copyright (c) 2014, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/module.h>
#include <linux/io.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/sysfs.h>
#include <linux/stat.h>
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/coresight.h>
#include <linux/pm_wakeup.h>
#include <linux/amba/bus.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
#include <linux/pm_runtime.h>
#include <asm/sections.h>
#include "coresight-etm4x.h"
static int boot_enable;
module_param_named(boot_enable, boot_enable, int, S_IRUGO);
/* The number of ETMv4 currently registered */
static int etm4_count;
static struct etmv4_drvdata *etmdrvdata[NR_CPUS];
static void etm4_os_unlock(void *info)
{
struct etmv4_drvdata *drvdata = (struct etmv4_drvdata *)info;
/* Writing any value to ETMOSLAR unlocks the trace registers */
writel_relaxed(0x0, drvdata->base + TRCOSLAR);
isb();
}
static bool etm4_arch_supported(u8 arch)
{
switch (arch) {
case ETM_ARCH_V4:
break;
default:
return false;
}
return true;
}
static int etm4_trace_id(struct coresight_device *csdev)
{
struct etmv4_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
unsigned long flags;
int trace_id = -1;
if (!drvdata->enable)
return drvdata->trcid;
pm_runtime_get_sync(drvdata->dev);
spin_lock_irqsave(&drvdata->spinlock, flags);
CS_UNLOCK(drvdata->base);
trace_id = readl_relaxed(drvdata->base + TRCTRACEIDR);
trace_id &= ETM_TRACEID_MASK;
CS_LOCK(drvdata->base);
spin_unlock_irqrestore(&drvdata->spinlock, flags);
pm_runtime_put(drvdata->dev);
return trace_id;
}
static void etm4_enable_hw(void *info)
{
int i;
struct etmv4_drvdata *drvdata = info;
CS_UNLOCK(drvdata->base);
etm4_os_unlock(drvdata);
/* Disable the trace unit before programming trace registers */
writel_relaxed(0, drvdata->base + TRCPRGCTLR);
/* wait for TRCSTATR.IDLE to go up */
if (coresight_timeout(drvdata->base, TRCSTATR, TRCSTATR_IDLE_BIT, 1))
dev_err(drvdata->dev,
"timeout observed when probing at offset %#x\n",
TRCSTATR);
writel_relaxed(drvdata->pe_sel, drvdata->base + TRCPROCSELR);
writel_relaxed(drvdata->cfg, drvdata->base + TRCCONFIGR);
/* nothing specific implemented */
writel_relaxed(0x0, drvdata->base + TRCAUXCTLR);
writel_relaxed(drvdata->eventctrl0, drvdata->base + TRCEVENTCTL0R);
writel_relaxed(drvdata->eventctrl1, drvdata->base + TRCEVENTCTL1R);
writel_relaxed(drvdata->stall_ctrl, drvdata->base + TRCSTALLCTLR);
writel_relaxed(drvdata->ts_ctrl, drvdata->base + TRCTSCTLR);
writel_relaxed(drvdata->syncfreq, drvdata->base + TRCSYNCPR);
writel_relaxed(drvdata->ccctlr, drvdata->base + TRCCCCTLR);
writel_relaxed(drvdata->bb_ctrl, drvdata->base + TRCBBCTLR);
writel_relaxed(drvdata->trcid, drvdata->base + TRCTRACEIDR);
writel_relaxed(drvdata->vinst_ctrl, drvdata->base + TRCVICTLR);
writel_relaxed(drvdata->viiectlr, drvdata->base + TRCVIIECTLR);
writel_relaxed(drvdata->vissctlr,
drvdata->base + TRCVISSCTLR);
writel_relaxed(drvdata->vipcssctlr,
drvdata->base + TRCVIPCSSCTLR);
for (i = 0; i < drvdata->nrseqstate - 1; i++)
writel_relaxed(drvdata->seq_ctrl[i],
drvdata->base + TRCSEQEVRn(i));
writel_relaxed(drvdata->seq_rst, drvdata->base + TRCSEQRSTEVR);
writel_relaxed(drvdata->seq_state, drvdata->base + TRCSEQSTR);
writel_relaxed(drvdata->ext_inp, drvdata->base + TRCEXTINSELR);
for (i = 0; i < drvdata->nr_cntr; i++) {
writel_relaxed(drvdata->cntrldvr[i],
drvdata->base + TRCCNTRLDVRn(i));
writel_relaxed(drvdata->cntr_ctrl[i],
drvdata->base + TRCCNTCTLRn(i));
writel_relaxed(drvdata->cntr_val[i],
drvdata->base + TRCCNTVRn(i));
}
for (i = 0; i < drvdata->nr_resource; i++)
writel_relaxed(drvdata->res_ctrl[i],
drvdata->base + TRCRSCTLRn(i));
for (i = 0; i < drvdata->nr_ss_cmp; i++) {
writel_relaxed(drvdata->ss_ctrl[i],
drvdata->base + TRCSSCCRn(i));
writel_relaxed(drvdata->ss_status[i],
drvdata->base + TRCSSCSRn(i));
writel_relaxed(drvdata->ss_pe_cmp[i],
drvdata->base + TRCSSPCICRn(i));
}
for (i = 0; i < drvdata->nr_addr_cmp; i++) {
writeq_relaxed(drvdata->addr_val[i],
drvdata->base + TRCACVRn(i));
writeq_relaxed(drvdata->addr_acc[i],
drvdata->base + TRCACATRn(i));
}
for (i = 0; i < drvdata->numcidc; i++)
writeq_relaxed(drvdata->ctxid_pid[i],
drvdata->base + TRCCIDCVRn(i));
writel_relaxed(drvdata->ctxid_mask0, drvdata->base + TRCCIDCCTLR0);
writel_relaxed(drvdata->ctxid_mask1, drvdata->base + TRCCIDCCTLR1);
for (i = 0; i < drvdata->numvmidc; i++)
writeq_relaxed(drvdata->vmid_val[i],
drvdata->base + TRCVMIDCVRn(i));
writel_relaxed(drvdata->vmid_mask0, drvdata->base + TRCVMIDCCTLR0);
writel_relaxed(drvdata->vmid_mask1, drvdata->base + TRCVMIDCCTLR1);
/* Enable the trace unit */
writel_relaxed(1, drvdata->base + TRCPRGCTLR);
/* wait for TRCSTATR.IDLE to go back down to '0' */
if (coresight_timeout(drvdata->base, TRCSTATR, TRCSTATR_IDLE_BIT, 0))
dev_err(drvdata->dev,
"timeout observed when probing at offset %#x\n",
TRCSTATR);
CS_LOCK(drvdata->base);
dev_dbg(drvdata->dev, "cpu: %d enable smp call done\n", drvdata->cpu);
}
static int etm4_enable(struct coresight_device *csdev)
{
struct etmv4_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
int ret;
pm_runtime_get_sync(drvdata->dev);
spin_lock(&drvdata->spinlock);
/*
* Executing etm4_enable_hw on the cpu whose ETM is being enabled
* ensures that register writes occur when cpu is powered.
*/
ret = smp_call_function_single(drvdata->cpu,
etm4_enable_hw, drvdata, 1);
if (ret)
goto err;
drvdata->enable = true;
drvdata->sticky_enable = true;
spin_unlock(&drvdata->spinlock);
dev_info(drvdata->dev, "ETM tracing enabled\n");
return 0;
err:
spin_unlock(&drvdata->spinlock);
pm_runtime_put(drvdata->dev);
return ret;
}
static void etm4_disable_hw(void *info)
{
u32 control;
struct etmv4_drvdata *drvdata = info;
CS_UNLOCK(drvdata->base);
control = readl_relaxed(drvdata->base + TRCPRGCTLR);
/* EN, bit[0] Trace unit enable bit */
control &= ~0x1;
/* make sure everything completes before disabling */
mb();
isb();
writel_relaxed(control, drvdata->base + TRCPRGCTLR);
CS_LOCK(drvdata->base);
dev_dbg(drvdata->dev, "cpu: %d disable smp call done\n", drvdata->cpu);
}
static void etm4_disable(struct coresight_device *csdev)
{
struct etmv4_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
/*
* Taking hotplug lock here protects from clocks getting disabled
* with tracing being left on (crash scenario) if user disable occurs
* after cpu online mask indicates the cpu is offline but before the
* DYING hotplug callback is serviced by the ETM driver.
*/
get_online_cpus();
spin_lock(&drvdata->spinlock);
/*
* Executing etm4_disable_hw on the cpu whose ETM is being disabled
* ensures that register writes occur when cpu is powered.
*/
smp_call_function_single(drvdata->cpu, etm4_disable_hw, drvdata, 1);
drvdata->enable = false;
spin_unlock(&drvdata->spinlock);
put_online_cpus();
pm_runtime_put(drvdata->dev);
dev_info(drvdata->dev, "ETM tracing disabled\n");
}
static const struct coresight_ops_source etm4_source_ops = {
.trace_id = etm4_trace_id,
.enable = etm4_enable,
.disable = etm4_disable,
};
static const struct coresight_ops etm4_cs_ops = {
.source_ops = &etm4_source_ops,
};
static int etm4_set_mode_exclude(struct etmv4_drvdata *drvdata, bool exclude)
{
u8 idx = drvdata->addr_idx;
/*
* TRCACATRn.TYPE bit[1:0]: type of comparison
* the trace unit performs
*/
if (BMVAL(drvdata->addr_acc[idx], 0, 1) == ETM_INSTR_ADDR) {
if (idx % 2 != 0)
return -EINVAL;
/*
* We are performing instruction address comparison. Set the
* relevant bit of ViewInst Include/Exclude Control register
* for corresponding address comparator pair.
*/
if (drvdata->addr_type[idx] != ETM_ADDR_TYPE_RANGE ||
drvdata->addr_type[idx + 1] != ETM_ADDR_TYPE_RANGE)
return -EINVAL;
if (exclude == true) {
/*
* Set exclude bit and unset the include bit
* corresponding to comparator pair
*/
drvdata->viiectlr |= BIT(idx / 2 + 16);
drvdata->viiectlr &= ~BIT(idx / 2);
} else {
/*
* Set include bit and unset exclude bit
* corresponding to comparator pair
*/
drvdata->viiectlr |= BIT(idx / 2);
drvdata->viiectlr &= ~BIT(idx / 2 + 16);
}
}
return 0;
}
static ssize_t nr_pe_cmp_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->nr_pe_cmp;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static DEVICE_ATTR_RO(nr_pe_cmp);
static ssize_t nr_addr_cmp_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->nr_addr_cmp;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static DEVICE_ATTR_RO(nr_addr_cmp);
static ssize_t nr_cntr_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->nr_cntr;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static DEVICE_ATTR_RO(nr_cntr);
static ssize_t nr_ext_inp_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->nr_ext_inp;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static DEVICE_ATTR_RO(nr_ext_inp);
static ssize_t numcidc_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->numcidc;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static DEVICE_ATTR_RO(numcidc);
static ssize_t numvmidc_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->numvmidc;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static DEVICE_ATTR_RO(numvmidc);
static ssize_t nrseqstate_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->nrseqstate;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static DEVICE_ATTR_RO(nrseqstate);
static ssize_t nr_resource_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->nr_resource;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static DEVICE_ATTR_RO(nr_resource);
static ssize_t nr_ss_cmp_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->nr_ss_cmp;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static DEVICE_ATTR_RO(nr_ss_cmp);
static ssize_t reset_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int i;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
spin_lock(&drvdata->spinlock);
if (val)
drvdata->mode = 0x0;
/* Disable data tracing: do not trace load and store data transfers */
drvdata->mode &= ~(ETM_MODE_LOAD | ETM_MODE_STORE);
drvdata->cfg &= ~(BIT(1) | BIT(2));
/* Disable data value and data address tracing */
drvdata->mode &= ~(ETM_MODE_DATA_TRACE_ADDR |
ETM_MODE_DATA_TRACE_VAL);
drvdata->cfg &= ~(BIT(16) | BIT(17));
/* Disable all events tracing */
drvdata->eventctrl0 = 0x0;
drvdata->eventctrl1 = 0x0;
/* Disable timestamp event */
drvdata->ts_ctrl = 0x0;
/* Disable stalling */
drvdata->stall_ctrl = 0x0;
/* Reset trace synchronization period to 2^8 = 256 bytes*/
if (drvdata->syncpr == false)
drvdata->syncfreq = 0x8;
/*
* Enable ViewInst to trace everything with start-stop logic in
* started state. ARM recommends start-stop logic is set before
* each trace run.
*/
drvdata->vinst_ctrl |= BIT(0);
if (drvdata->nr_addr_cmp == true) {
drvdata->mode |= ETM_MODE_VIEWINST_STARTSTOP;
/* SSSTATUS, bit[9] */
drvdata->vinst_ctrl |= BIT(9);
}
/* No address range filtering for ViewInst */
drvdata->viiectlr = 0x0;
/* No start-stop filtering for ViewInst */
drvdata->vissctlr = 0x0;
/* Disable seq events */
for (i = 0; i < drvdata->nrseqstate-1; i++)
drvdata->seq_ctrl[i] = 0x0;
drvdata->seq_rst = 0x0;
drvdata->seq_state = 0x0;
/* Disable external input events */
drvdata->ext_inp = 0x0;
drvdata->cntr_idx = 0x0;
for (i = 0; i < drvdata->nr_cntr; i++) {
drvdata->cntrldvr[i] = 0x0;
drvdata->cntr_ctrl[i] = 0x0;
drvdata->cntr_val[i] = 0x0;
}
drvdata->res_idx = 0x0;
for (i = 0; i < drvdata->nr_resource; i++)
drvdata->res_ctrl[i] = 0x0;
for (i = 0; i < drvdata->nr_ss_cmp; i++) {
drvdata->ss_ctrl[i] = 0x0;
drvdata->ss_pe_cmp[i] = 0x0;
}
drvdata->addr_idx = 0x0;
for (i = 0; i < drvdata->nr_addr_cmp * 2; i++) {
drvdata->addr_val[i] = 0x0;
drvdata->addr_acc[i] = 0x0;
drvdata->addr_type[i] = ETM_ADDR_TYPE_NONE;
}
drvdata->ctxid_idx = 0x0;
for (i = 0; i < drvdata->numcidc; i++) {
drvdata->ctxid_pid[i] = 0x0;
drvdata->ctxid_vpid[i] = 0x0;
}
drvdata->ctxid_mask0 = 0x0;
drvdata->ctxid_mask1 = 0x0;
drvdata->vmid_idx = 0x0;
for (i = 0; i < drvdata->numvmidc; i++)
drvdata->vmid_val[i] = 0x0;
drvdata->vmid_mask0 = 0x0;
drvdata->vmid_mask1 = 0x0;
drvdata->trcid = drvdata->cpu + 1;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_WO(reset);
static ssize_t mode_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->mode;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long val, mode;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
spin_lock(&drvdata->spinlock);
drvdata->mode = val & ETMv4_MODE_ALL;
if (drvdata->mode & ETM_MODE_EXCLUDE)
etm4_set_mode_exclude(drvdata, true);
else
etm4_set_mode_exclude(drvdata, false);
if (drvdata->instrp0 == true) {
/* start by clearing instruction P0 field */
drvdata->cfg &= ~(BIT(1) | BIT(2));
if (drvdata->mode & ETM_MODE_LOAD)
/* 0b01 Trace load instructions as P0 instructions */
drvdata->cfg |= BIT(1);
if (drvdata->mode & ETM_MODE_STORE)
/* 0b10 Trace store instructions as P0 instructions */
drvdata->cfg |= BIT(2);
if (drvdata->mode & ETM_MODE_LOAD_STORE)
/*
* 0b11 Trace load and store instructions
* as P0 instructions
*/
drvdata->cfg |= BIT(1) | BIT(2);
}
/* bit[3], Branch broadcast mode */
if ((drvdata->mode & ETM_MODE_BB) && (drvdata->trcbb == true))
drvdata->cfg |= BIT(3);
else
drvdata->cfg &= ~BIT(3);
/* bit[4], Cycle counting instruction trace bit */
if ((drvdata->mode & ETMv4_MODE_CYCACC) &&
(drvdata->trccci == true))
drvdata->cfg |= BIT(4);
else
drvdata->cfg &= ~BIT(4);
/* bit[6], Context ID tracing bit */
if ((drvdata->mode & ETMv4_MODE_CTXID) && (drvdata->ctxid_size))
drvdata->cfg |= BIT(6);
else
drvdata->cfg &= ~BIT(6);
if ((drvdata->mode & ETM_MODE_VMID) && (drvdata->vmid_size))
drvdata->cfg |= BIT(7);
else
drvdata->cfg &= ~BIT(7);
/* bits[10:8], Conditional instruction tracing bit */
mode = ETM_MODE_COND(drvdata->mode);
if (drvdata->trccond == true) {
drvdata->cfg &= ~(BIT(8) | BIT(9) | BIT(10));
drvdata->cfg |= mode << 8;
}
/* bit[11], Global timestamp tracing bit */
if ((drvdata->mode & ETMv4_MODE_TIMESTAMP) && (drvdata->ts_size))
drvdata->cfg |= BIT(11);
else
drvdata->cfg &= ~BIT(11);
/* bit[12], Return stack enable bit */
if ((drvdata->mode & ETM_MODE_RETURNSTACK) &&
(drvdata->retstack == true))
drvdata->cfg |= BIT(12);
else
drvdata->cfg &= ~BIT(12);
/* bits[14:13], Q element enable field */
mode = ETM_MODE_QELEM(drvdata->mode);
/* start by clearing QE bits */
drvdata->cfg &= ~(BIT(13) | BIT(14));
/* if supported, Q elements with instruction counts are enabled */
if ((mode & BIT(0)) && (drvdata->q_support & BIT(0)))
drvdata->cfg |= BIT(13);
/*
* if supported, Q elements with and without instruction
* counts are enabled
*/
if ((mode & BIT(1)) && (drvdata->q_support & BIT(1)))
drvdata->cfg |= BIT(14);
/* bit[11], AMBA Trace Bus (ATB) trigger enable bit */
if ((drvdata->mode & ETM_MODE_ATB_TRIGGER) &&
(drvdata->atbtrig == true))
drvdata->eventctrl1 |= BIT(11);
else
drvdata->eventctrl1 &= ~BIT(11);
/* bit[12], Low-power state behavior override bit */
if ((drvdata->mode & ETM_MODE_LPOVERRIDE) &&
(drvdata->lpoverride == true))
drvdata->eventctrl1 |= BIT(12);
else
drvdata->eventctrl1 &= ~BIT(12);
/* bit[8], Instruction stall bit */
if (drvdata->mode & ETM_MODE_ISTALL_EN)
drvdata->stall_ctrl |= BIT(8);
else
drvdata->stall_ctrl &= ~BIT(8);
/* bit[10], Prioritize instruction trace bit */
if (drvdata->mode & ETM_MODE_INSTPRIO)
drvdata->stall_ctrl |= BIT(10);
else
drvdata->stall_ctrl &= ~BIT(10);
/* bit[13], Trace overflow prevention bit */
if ((drvdata->mode & ETM_MODE_NOOVERFLOW) &&
(drvdata->nooverflow == true))
drvdata->stall_ctrl |= BIT(13);
else
drvdata->stall_ctrl &= ~BIT(13);
/* bit[9] Start/stop logic control bit */
if (drvdata->mode & ETM_MODE_VIEWINST_STARTSTOP)
drvdata->vinst_ctrl |= BIT(9);
else
drvdata->vinst_ctrl &= ~BIT(9);
/* bit[10], Whether a trace unit must trace a Reset exception */
if (drvdata->mode & ETM_MODE_TRACE_RESET)
drvdata->vinst_ctrl |= BIT(10);
else
drvdata->vinst_ctrl &= ~BIT(10);
/* bit[11], Whether a trace unit must trace a system error exception */
if ((drvdata->mode & ETM_MODE_TRACE_ERR) &&
(drvdata->trc_error == true))
drvdata->vinst_ctrl |= BIT(11);
else
drvdata->vinst_ctrl &= ~BIT(11);
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(mode);
static ssize_t pe_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->pe_sel;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t pe_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
spin_lock(&drvdata->spinlock);
if (val > drvdata->nr_pe) {
spin_unlock(&drvdata->spinlock);
return -EINVAL;
}
drvdata->pe_sel = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(pe);
static ssize_t event_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->eventctrl0;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
spin_lock(&drvdata->spinlock);
switch (drvdata->nr_event) {
case 0x0:
/* EVENT0, bits[7:0] */
drvdata->eventctrl0 = val & 0xFF;
break;
case 0x1:
/* EVENT1, bits[15:8] */
drvdata->eventctrl0 = val & 0xFFFF;
break;
case 0x2:
/* EVENT2, bits[23:16] */
drvdata->eventctrl0 = val & 0xFFFFFF;
break;
case 0x3:
/* EVENT3, bits[31:24] */
drvdata->eventctrl0 = val;
break;
default:
break;
}
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(event);
static ssize_t event_instren_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = BMVAL(drvdata->eventctrl1, 0, 3);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t event_instren_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
spin_lock(&drvdata->spinlock);
/* start by clearing all instruction event enable bits */
drvdata->eventctrl1 &= ~(BIT(0) | BIT(1) | BIT(2) | BIT(3));
switch (drvdata->nr_event) {
case 0x0:
/* generate Event element for event 1 */
drvdata->eventctrl1 |= val & BIT(1);
break;
case 0x1:
/* generate Event element for event 1 and 2 */
drvdata->eventctrl1 |= val & (BIT(0) | BIT(1));
break;
case 0x2:
/* generate Event element for event 1, 2 and 3 */
drvdata->eventctrl1 |= val & (BIT(0) | BIT(1) | BIT(2));
break;
case 0x3:
/* generate Event element for all 4 events */
drvdata->eventctrl1 |= val & 0xF;
break;
default:
break;
}
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(event_instren);
static ssize_t event_ts_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->ts_ctrl;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t event_ts_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
if (!drvdata->ts_size)
return -EINVAL;
drvdata->ts_ctrl = val & ETMv4_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(event_ts);
static ssize_t syncfreq_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->syncfreq;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t syncfreq_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
if (drvdata->syncpr == true)
return -EINVAL;
drvdata->syncfreq = val & ETMv4_SYNC_MASK;
return size;
}
static DEVICE_ATTR_RW(syncfreq);
static ssize_t cyc_threshold_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->ccctlr;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t cyc_threshold_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
if (val < drvdata->ccitmin)
return -EINVAL;
drvdata->ccctlr = val & ETM_CYC_THRESHOLD_MASK;
return size;
}
static DEVICE_ATTR_RW(cyc_threshold);
static ssize_t bb_ctrl_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->bb_ctrl;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t bb_ctrl_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
if (drvdata->trcbb == false)
return -EINVAL;
if (!drvdata->nr_addr_cmp)
return -EINVAL;
/*
* Bit[7:0] selects which address range comparator is used for
* branch broadcast control.
*/
if (BMVAL(val, 0, 7) > drvdata->nr_addr_cmp)
return -EINVAL;
drvdata->bb_ctrl = val;
return size;
}
static DEVICE_ATTR_RW(bb_ctrl);
static ssize_t event_vinst_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->vinst_ctrl & ETMv4_EVENT_MASK;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t event_vinst_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
spin_lock(&drvdata->spinlock);
val &= ETMv4_EVENT_MASK;
drvdata->vinst_ctrl &= ~ETMv4_EVENT_MASK;
drvdata->vinst_ctrl |= val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(event_vinst);
static ssize_t s_exlevel_vinst_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = BMVAL(drvdata->vinst_ctrl, 16, 19);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t s_exlevel_vinst_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
spin_lock(&drvdata->spinlock);
/* clear all EXLEVEL_S bits (bit[18] is never implemented) */
drvdata->vinst_ctrl &= ~(BIT(16) | BIT(17) | BIT(19));
/* enable instruction tracing for corresponding exception level */
val &= drvdata->s_ex_level;
drvdata->vinst_ctrl |= (val << 16);
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(s_exlevel_vinst);
static ssize_t ns_exlevel_vinst_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
/* EXLEVEL_NS, bits[23:20] */
val = BMVAL(drvdata->vinst_ctrl, 20, 23);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t ns_exlevel_vinst_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
spin_lock(&drvdata->spinlock);
/* clear EXLEVEL_NS bits (bit[23] is never implemented */
drvdata->vinst_ctrl &= ~(BIT(20) | BIT(21) | BIT(22));
/* enable instruction tracing for corresponding exception level */
val &= drvdata->ns_ex_level;
drvdata->vinst_ctrl |= (val << 20);
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(ns_exlevel_vinst);
static ssize_t addr_idx_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->addr_idx;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t addr_idx_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
if (val >= drvdata->nr_addr_cmp * 2)
return -EINVAL;
/*
* Use spinlock to ensure index doesn't change while it gets
* dereferenced multiple times within a spinlock block elsewhere.
*/
spin_lock(&drvdata->spinlock);
drvdata->addr_idx = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_idx);
static ssize_t addr_instdatatype_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
ssize_t len;
u8 val, idx;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
val = BMVAL(drvdata->addr_acc[idx], 0, 1);
len = scnprintf(buf, PAGE_SIZE, "%s\n",
val == ETM_INSTR_ADDR ? "instr" :
(val == ETM_DATA_LOAD_ADDR ? "data_load" :
(val == ETM_DATA_STORE_ADDR ? "data_store" :
"data_load_store")));
spin_unlock(&drvdata->spinlock);
return len;
}
static ssize_t addr_instdatatype_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
char str[20] = "";
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (strlen(buf) >= 20)
return -EINVAL;
if (sscanf(buf, "%s", str) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!strcmp(str, "instr"))
/* TYPE, bits[1:0] */
drvdata->addr_acc[idx] &= ~(BIT(0) | BIT(1));
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_instdatatype);
static ssize_t addr_single_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
idx = drvdata->addr_idx;
spin_lock(&drvdata->spinlock);
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val = (unsigned long)drvdata->addr_val[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t addr_single_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->addr_val[idx] = (u64)val;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_SINGLE;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_single);
static ssize_t addr_range_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
u8 idx;
unsigned long val1, val2;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) ||
(drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val1 = (unsigned long)drvdata->addr_val[idx];
val2 = (unsigned long)drvdata->addr_val[idx + 1];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx %#lx\n", val1, val2);
}
static ssize_t addr_range_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
unsigned long val1, val2;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (sscanf(buf, "%lx %lx", &val1, &val2) != 2)
return -EINVAL;
/* lower address comparator cannot have a higher address value */
if (val1 > val2)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) ||
(drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->addr_val[idx] = (u64)val1;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_RANGE;
drvdata->addr_val[idx + 1] = (u64)val2;
drvdata->addr_type[idx + 1] = ETM_ADDR_TYPE_RANGE;
/*
* Program include or exclude control bits for vinst or vdata
* whenever we change addr comparators to ETM_ADDR_TYPE_RANGE
*/
if (drvdata->mode & ETM_MODE_EXCLUDE)
etm4_set_mode_exclude(drvdata, true);
else
etm4_set_mode_exclude(drvdata, false);
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_range);
static ssize_t addr_start_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val = (unsigned long)drvdata->addr_val[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t addr_start_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!drvdata->nr_addr_cmp) {
spin_unlock(&drvdata->spinlock);
return -EINVAL;
}
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->addr_val[idx] = (u64)val;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_START;
drvdata->vissctlr |= BIT(idx);
/* SSSTATUS, bit[9] - turn on start/stop logic */
drvdata->vinst_ctrl |= BIT(9);
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_start);
static ssize_t addr_stop_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val = (unsigned long)drvdata->addr_val[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t addr_stop_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!drvdata->nr_addr_cmp) {
spin_unlock(&drvdata->spinlock);
return -EINVAL;
}
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->addr_val[idx] = (u64)val;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_STOP;
drvdata->vissctlr |= BIT(idx + 16);
/* SSSTATUS, bit[9] - turn on start/stop logic */
drvdata->vinst_ctrl |= BIT(9);
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_stop);
static ssize_t addr_ctxtype_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
ssize_t len;
u8 idx, val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
/* CONTEXTTYPE, bits[3:2] */
val = BMVAL(drvdata->addr_acc[idx], 2, 3);
len = scnprintf(buf, PAGE_SIZE, "%s\n", val == ETM_CTX_NONE ? "none" :
(val == ETM_CTX_CTXID ? "ctxid" :
(val == ETM_CTX_VMID ? "vmid" : "all")));
spin_unlock(&drvdata->spinlock);
return len;
}
static ssize_t addr_ctxtype_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
char str[10] = "";
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (strlen(buf) >= 10)
return -EINVAL;
if (sscanf(buf, "%s", str) != 1)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!strcmp(str, "none"))
/* start by clearing context type bits */
drvdata->addr_acc[idx] &= ~(BIT(2) | BIT(3));
else if (!strcmp(str, "ctxid")) {
/* 0b01 The trace unit performs a Context ID */
if (drvdata->numcidc) {
drvdata->addr_acc[idx] |= BIT(2);
drvdata->addr_acc[idx] &= ~BIT(3);
}
} else if (!strcmp(str, "vmid")) {
/* 0b10 The trace unit performs a VMID */
if (drvdata->numvmidc) {
drvdata->addr_acc[idx] &= ~BIT(2);
drvdata->addr_acc[idx] |= BIT(3);
}
} else if (!strcmp(str, "all")) {
/*
* 0b11 The trace unit performs a Context ID
* comparison and a VMID
*/
if (drvdata->numcidc)
drvdata->addr_acc[idx] |= BIT(2);
if (drvdata->numvmidc)
drvdata->addr_acc[idx] |= BIT(3);
}
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_ctxtype);
static ssize_t addr_context_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
/* context ID comparator bits[6:4] */
val = BMVAL(drvdata->addr_acc[idx], 4, 6);
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t addr_context_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
if ((drvdata->numcidc <= 1) && (drvdata->numvmidc <= 1))
return -EINVAL;
if (val >= (drvdata->numcidc >= drvdata->numvmidc ?
drvdata->numcidc : drvdata->numvmidc))
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
/* clear context ID comparator bits[6:4] */
drvdata->addr_acc[idx] &= ~(BIT(4) | BIT(5) | BIT(6));
drvdata->addr_acc[idx] |= (val << 4);
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_context);
static ssize_t seq_idx_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->seq_idx;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t seq_idx_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
if (val >= drvdata->nrseqstate - 1)
return -EINVAL;
/*
* Use spinlock to ensure index doesn't change while it gets
* dereferenced multiple times within a spinlock block elsewhere.
*/
spin_lock(&drvdata->spinlock);
drvdata->seq_idx = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(seq_idx);
static ssize_t seq_state_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->seq_state;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t seq_state_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
if (val >= drvdata->nrseqstate)
return -EINVAL;
drvdata->seq_state = val;
return size;
}
static DEVICE_ATTR_RW(seq_state);
static ssize_t seq_event_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->seq_idx;
val = drvdata->seq_ctrl[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t seq_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->seq_idx;
/* RST, bits[7:0] */
drvdata->seq_ctrl[idx] = val & 0xFF;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(seq_event);
static ssize_t seq_reset_event_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->seq_rst;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t seq_reset_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
if (!(drvdata->nrseqstate))
return -EINVAL;
drvdata->seq_rst = val & ETMv4_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(seq_reset_event);
static ssize_t cntr_idx_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->cntr_idx;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t cntr_idx_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
if (val >= drvdata->nr_cntr)
return -EINVAL;
/*
* Use spinlock to ensure index doesn't change while it gets
* dereferenced multiple times within a spinlock block elsewhere.
*/
spin_lock(&drvdata->spinlock);
drvdata->cntr_idx = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(cntr_idx);
static ssize_t cntrldvr_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->cntr_idx;
val = drvdata->cntrldvr[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t cntrldvr_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
if (val > ETM_CNTR_MAX_VAL)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->cntr_idx;
drvdata->cntrldvr[idx] = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(cntrldvr);
static ssize_t cntr_val_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->cntr_idx;
val = drvdata->cntr_val[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t cntr_val_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
if (val > ETM_CNTR_MAX_VAL)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->cntr_idx;
drvdata->cntr_val[idx] = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(cntr_val);
static ssize_t cntr_ctrl_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->cntr_idx;
val = drvdata->cntr_ctrl[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t cntr_ctrl_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->cntr_idx;
drvdata->cntr_ctrl[idx] = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(cntr_ctrl);
static ssize_t res_idx_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->res_idx;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t res_idx_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
/* Resource selector pair 0 is always implemented and reserved */
if ((val == 0) || (val >= drvdata->nr_resource))
return -EINVAL;
/*
* Use spinlock to ensure index doesn't change while it gets
* dereferenced multiple times within a spinlock block elsewhere.
*/
spin_lock(&drvdata->spinlock);
drvdata->res_idx = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(res_idx);
static ssize_t res_ctrl_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->res_idx;
val = drvdata->res_ctrl[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t res_ctrl_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->res_idx;
/* For odd idx pair inversal bit is RES0 */
if (idx % 2 != 0)
/* PAIRINV, bit[21] */
val &= ~BIT(21);
drvdata->res_ctrl[idx] = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(res_ctrl);
static ssize_t ctxid_idx_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->ctxid_idx;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t ctxid_idx_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
if (val >= drvdata->numcidc)
return -EINVAL;
/*
* Use spinlock to ensure index doesn't change while it gets
* dereferenced multiple times within a spinlock block elsewhere.
*/
spin_lock(&drvdata->spinlock);
drvdata->ctxid_idx = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(ctxid_idx);
static ssize_t ctxid_pid_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
u8 idx;
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->ctxid_idx;
val = (unsigned long)drvdata->ctxid_vpid[idx];
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t ctxid_pid_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
unsigned long vpid, pid;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
/*
* only implemented when ctxid tracing is enabled, i.e. at least one
* ctxid comparator is implemented and ctxid is greater than 0 bits
* in length
*/
if (!drvdata->ctxid_size || !drvdata->numcidc)
return -EINVAL;
if (kstrtoul(buf, 16, &vpid))
return -EINVAL;
pid = coresight_vpid_to_pid(vpid);
spin_lock(&drvdata->spinlock);
idx = drvdata->ctxid_idx;
drvdata->ctxid_pid[idx] = (u64)pid;
drvdata->ctxid_vpid[idx] = (u64)vpid;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(ctxid_pid);
static ssize_t ctxid_masks_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val1, val2;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
val1 = drvdata->ctxid_mask0;
val2 = drvdata->ctxid_mask1;
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx %#lx\n", val1, val2);
}
static ssize_t ctxid_masks_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 i, j, maskbyte;
unsigned long val1, val2, mask;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
/*
* only implemented when ctxid tracing is enabled, i.e. at least one
* ctxid comparator is implemented and ctxid is greater than 0 bits
* in length
*/
if (!drvdata->ctxid_size || !drvdata->numcidc)
return -EINVAL;
if (sscanf(buf, "%lx %lx", &val1, &val2) != 2)
return -EINVAL;
spin_lock(&drvdata->spinlock);
/*
* each byte[0..3] controls mask value applied to ctxid
* comparator[0..3]
*/
switch (drvdata->numcidc) {
case 0x1:
/* COMP0, bits[7:0] */
drvdata->ctxid_mask0 = val1 & 0xFF;
break;
case 0x2:
/* COMP1, bits[15:8] */
drvdata->ctxid_mask0 = val1 & 0xFFFF;
break;
case 0x3:
/* COMP2, bits[23:16] */
drvdata->ctxid_mask0 = val1 & 0xFFFFFF;
break;
case 0x4:
/* COMP3, bits[31:24] */
drvdata->ctxid_mask0 = val1;
break;
case 0x5:
/* COMP4, bits[7:0] */
drvdata->ctxid_mask0 = val1;
drvdata->ctxid_mask1 = val2 & 0xFF;
break;
case 0x6:
/* COMP5, bits[15:8] */
drvdata->ctxid_mask0 = val1;
drvdata->ctxid_mask1 = val2 & 0xFFFF;
break;
case 0x7:
/* COMP6, bits[23:16] */
drvdata->ctxid_mask0 = val1;
drvdata->ctxid_mask1 = val2 & 0xFFFFFF;
break;
case 0x8:
/* COMP7, bits[31:24] */
drvdata->ctxid_mask0 = val1;
drvdata->ctxid_mask1 = val2;
break;
default:
break;
}
/*
* If software sets a mask bit to 1, it must program relevant byte
* of ctxid comparator value 0x0, otherwise behavior is unpredictable.
* For example, if bit[3] of ctxid_mask0 is 1, we must clear bits[31:24]
* of ctxid comparator0 value (corresponding to byte 0) register.
*/
mask = drvdata->ctxid_mask0;
for (i = 0; i < drvdata->numcidc; i++) {
/* mask value of corresponding ctxid comparator */
maskbyte = mask & ETMv4_EVENT_MASK;
/*
* each bit corresponds to a byte of respective ctxid comparator
* value register
*/
for (j = 0; j < 8; j++) {
if (maskbyte & 1)
drvdata->ctxid_pid[i] &= ~(0xFF << (j * 8));
maskbyte >>= 1;
}
/* Select the next ctxid comparator mask value */
if (i == 3)
/* ctxid comparators[4-7] */
mask = drvdata->ctxid_mask1;
else
mask >>= 0x8;
}
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(ctxid_masks);
static ssize_t vmid_idx_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->vmid_idx;
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t vmid_idx_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (kstrtoul(buf, 16, &val))
return -EINVAL;
if (val >= drvdata->numvmidc)
return -EINVAL;
/*
* Use spinlock to ensure index doesn't change while it gets
* dereferenced multiple times within a spinlock block elsewhere.
*/
spin_lock(&drvdata->spinlock);
drvdata->vmid_idx = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(vmid_idx);
static ssize_t vmid_val_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = (unsigned long)drvdata->vmid_val[drvdata->vmid_idx];
return scnprintf(buf, PAGE_SIZE, "%#lx\n", val);
}
static ssize_t vmid_val_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
unsigned long val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
/*
* only implemented when vmid tracing is enabled, i.e. at least one
* vmid comparator is implemented and at least 8 bit vmid size
*/
if (!drvdata->vmid_size || !drvdata->numvmidc)
return -EINVAL;
if (kstrtoul(buf, 16, &val))
return -EINVAL;
spin_lock(&drvdata->spinlock);
drvdata->vmid_val[drvdata->vmid_idx] = (u64)val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(vmid_val);
static ssize_t vmid_masks_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val1, val2;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
val1 = drvdata->vmid_mask0;
val2 = drvdata->vmid_mask1;
spin_unlock(&drvdata->spinlock);
return scnprintf(buf, PAGE_SIZE, "%#lx %#lx\n", val1, val2);
}
static ssize_t vmid_masks_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 i, j, maskbyte;
unsigned long val1, val2, mask;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
/*
* only implemented when vmid tracing is enabled, i.e. at least one
* vmid comparator is implemented and at least 8 bit vmid size
*/
if (!drvdata->vmid_size || !drvdata->numvmidc)
return -EINVAL;
if (sscanf(buf, "%lx %lx", &val1, &val2) != 2)
return -EINVAL;
spin_lock(&drvdata->spinlock);
/*
* each byte[0..3] controls mask value applied to vmid
* comparator[0..3]
*/
switch (drvdata->numvmidc) {
case 0x1:
/* COMP0, bits[7:0] */
drvdata->vmid_mask0 = val1 & 0xFF;
break;
case 0x2:
/* COMP1, bits[15:8] */
drvdata->vmid_mask0 = val1 & 0xFFFF;
break;
case 0x3:
/* COMP2, bits[23:16] */
drvdata->vmid_mask0 = val1 & 0xFFFFFF;
break;
case 0x4:
/* COMP3, bits[31:24] */
drvdata->vmid_mask0 = val1;
break;
case 0x5:
/* COMP4, bits[7:0] */
drvdata->vmid_mask0 = val1;
drvdata->vmid_mask1 = val2 & 0xFF;
break;
case 0x6:
/* COMP5, bits[15:8] */
drvdata->vmid_mask0 = val1;
drvdata->vmid_mask1 = val2 & 0xFFFF;
break;
case 0x7:
/* COMP6, bits[23:16] */
drvdata->vmid_mask0 = val1;
drvdata->vmid_mask1 = val2 & 0xFFFFFF;
break;
case 0x8:
/* COMP7, bits[31:24] */
drvdata->vmid_mask0 = val1;
drvdata->vmid_mask1 = val2;
break;
default:
break;
}
/*
* If software sets a mask bit to 1, it must program relevant byte
* of vmid comparator value 0x0, otherwise behavior is unpredictable.
* For example, if bit[3] of vmid_mask0 is 1, we must clear bits[31:24]
* of vmid comparator0 value (corresponding to byte 0) register.
*/
mask = drvdata->vmid_mask0;
for (i = 0; i < drvdata->numvmidc; i++) {
/* mask value of corresponding vmid comparator */
maskbyte = mask & ETMv4_EVENT_MASK;
/*
* each bit corresponds to a byte of respective vmid comparator
* value register
*/
for (j = 0; j < 8; j++) {
if (maskbyte & 1)
drvdata->vmid_val[i] &= ~(0xFF << (j * 8));
maskbyte >>= 1;
}
/* Select the next vmid comparator mask value */
if (i == 3)
/* vmid comparators[4-7] */
mask = drvdata->vmid_mask1;
else
mask >>= 0x8;
}
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(vmid_masks);
static ssize_t cpu_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int val;
struct etmv4_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->cpu;
return scnprintf(buf, PAGE_SIZE, "%d\n", val);
}
static DEVICE_ATTR_RO(cpu);
static struct attribute *coresight_etmv4_attrs[] = {
&dev_attr_nr_pe_cmp.attr,
&dev_attr_nr_addr_cmp.attr,
&dev_attr_nr_cntr.attr,
&dev_attr_nr_ext_inp.attr,
&dev_attr_numcidc.attr,
&dev_attr_numvmidc.attr,
&dev_attr_nrseqstate.attr,
&dev_attr_nr_resource.attr,
&dev_attr_nr_ss_cmp.attr,
&dev_attr_reset.attr,
&dev_attr_mode.attr,
&dev_attr_pe.attr,
&dev_attr_event.attr,
&dev_attr_event_instren.attr,
&dev_attr_event_ts.attr,
&dev_attr_syncfreq.attr,
&dev_attr_cyc_threshold.attr,
&dev_attr_bb_ctrl.attr,
&dev_attr_event_vinst.attr,
&dev_attr_s_exlevel_vinst.attr,
&dev_attr_ns_exlevel_vinst.attr,
&dev_attr_addr_idx.attr,
&dev_attr_addr_instdatatype.attr,
&dev_attr_addr_single.attr,
&dev_attr_addr_range.attr,
&dev_attr_addr_start.attr,
&dev_attr_addr_stop.attr,
&dev_attr_addr_ctxtype.attr,
&dev_attr_addr_context.attr,
&dev_attr_seq_idx.attr,
&dev_attr_seq_state.attr,
&dev_attr_seq_event.attr,
&dev_attr_seq_reset_event.attr,
&dev_attr_cntr_idx.attr,
&dev_attr_cntrldvr.attr,
&dev_attr_cntr_val.attr,
&dev_attr_cntr_ctrl.attr,
&dev_attr_res_idx.attr,
&dev_attr_res_ctrl.attr,
&dev_attr_ctxid_idx.attr,
&dev_attr_ctxid_pid.attr,
&dev_attr_ctxid_masks.attr,
&dev_attr_vmid_idx.attr,
&dev_attr_vmid_val.attr,
&dev_attr_vmid_masks.attr,
&dev_attr_cpu.attr,
NULL,
};
#define coresight_simple_func(name, offset) \
static ssize_t name##_show(struct device *_dev, \
struct device_attribute *attr, char *buf) \
{ \
struct etmv4_drvdata *drvdata = dev_get_drvdata(_dev->parent); \
return scnprintf(buf, PAGE_SIZE, "0x%x\n", \
readl_relaxed(drvdata->base + offset)); \
} \
DEVICE_ATTR_RO(name)
coresight_simple_func(trcoslsr, TRCOSLSR);
coresight_simple_func(trcpdcr, TRCPDCR);
coresight_simple_func(trcpdsr, TRCPDSR);
coresight_simple_func(trclsr, TRCLSR);
coresight_simple_func(trcauthstatus, TRCAUTHSTATUS);
coresight_simple_func(trcdevid, TRCDEVID);
coresight_simple_func(trcdevtype, TRCDEVTYPE);
coresight_simple_func(trcpidr0, TRCPIDR0);
coresight_simple_func(trcpidr1, TRCPIDR1);
coresight_simple_func(trcpidr2, TRCPIDR2);
coresight_simple_func(trcpidr3, TRCPIDR3);
static struct attribute *coresight_etmv4_mgmt_attrs[] = {
&dev_attr_trcoslsr.attr,
&dev_attr_trcpdcr.attr,
&dev_attr_trcpdsr.attr,
&dev_attr_trclsr.attr,
&dev_attr_trcauthstatus.attr,
&dev_attr_trcdevid.attr,
&dev_attr_trcdevtype.attr,
&dev_attr_trcpidr0.attr,
&dev_attr_trcpidr1.attr,
&dev_attr_trcpidr2.attr,
&dev_attr_trcpidr3.attr,
NULL,
};
coresight_simple_func(trcidr0, TRCIDR0);
coresight_simple_func(trcidr1, TRCIDR1);
coresight_simple_func(trcidr2, TRCIDR2);
coresight_simple_func(trcidr3, TRCIDR3);
coresight_simple_func(trcidr4, TRCIDR4);
coresight_simple_func(trcidr5, TRCIDR5);
/* trcidr[6,7] are reserved */
coresight_simple_func(trcidr8, TRCIDR8);
coresight_simple_func(trcidr9, TRCIDR9);
coresight_simple_func(trcidr10, TRCIDR10);
coresight_simple_func(trcidr11, TRCIDR11);
coresight_simple_func(trcidr12, TRCIDR12);
coresight_simple_func(trcidr13, TRCIDR13);
static struct attribute *coresight_etmv4_trcidr_attrs[] = {
&dev_attr_trcidr0.attr,
&dev_attr_trcidr1.attr,
&dev_attr_trcidr2.attr,
&dev_attr_trcidr3.attr,
&dev_attr_trcidr4.attr,
&dev_attr_trcidr5.attr,
/* trcidr[6,7] are reserved */
&dev_attr_trcidr8.attr,
&dev_attr_trcidr9.attr,
&dev_attr_trcidr10.attr,
&dev_attr_trcidr11.attr,
&dev_attr_trcidr12.attr,
&dev_attr_trcidr13.attr,
NULL,
};
static const struct attribute_group coresight_etmv4_group = {
.attrs = coresight_etmv4_attrs,
};
static const struct attribute_group coresight_etmv4_mgmt_group = {
.attrs = coresight_etmv4_mgmt_attrs,
.name = "mgmt",
};
static const struct attribute_group coresight_etmv4_trcidr_group = {
.attrs = coresight_etmv4_trcidr_attrs,
.name = "trcidr",
};
static const struct attribute_group *coresight_etmv4_groups[] = {
&coresight_etmv4_group,
&coresight_etmv4_mgmt_group,
&coresight_etmv4_trcidr_group,
NULL,
};
static void etm4_init_arch_data(void *info)
{
u32 etmidr0;
u32 etmidr1;
u32 etmidr2;
u32 etmidr3;
u32 etmidr4;
u32 etmidr5;
struct etmv4_drvdata *drvdata = info;
CS_UNLOCK(drvdata->base);
/* find all capabilities of the tracing unit */
etmidr0 = readl_relaxed(drvdata->base + TRCIDR0);
/* INSTP0, bits[2:1] P0 tracing support field */
if (BMVAL(etmidr0, 1, 1) && BMVAL(etmidr0, 2, 2))
drvdata->instrp0 = true;
else
drvdata->instrp0 = false;
/* TRCBB, bit[5] Branch broadcast tracing support bit */
if (BMVAL(etmidr0, 5, 5))
drvdata->trcbb = true;
else
drvdata->trcbb = false;
/* TRCCOND, bit[6] Conditional instruction tracing support bit */
if (BMVAL(etmidr0, 6, 6))
drvdata->trccond = true;
else
drvdata->trccond = false;
/* TRCCCI, bit[7] Cycle counting instruction bit */
if (BMVAL(etmidr0, 7, 7))
drvdata->trccci = true;
else
drvdata->trccci = false;
/* RETSTACK, bit[9] Return stack bit */
if (BMVAL(etmidr0, 9, 9))
drvdata->retstack = true;
else
drvdata->retstack = false;
/* NUMEVENT, bits[11:10] Number of events field */
drvdata->nr_event = BMVAL(etmidr0, 10, 11);
/* QSUPP, bits[16:15] Q element support field */
drvdata->q_support = BMVAL(etmidr0, 15, 16);
/* TSSIZE, bits[28:24] Global timestamp size field */
drvdata->ts_size = BMVAL(etmidr0, 24, 28);
/* base architecture of trace unit */
etmidr1 = readl_relaxed(drvdata->base + TRCIDR1);
/*
* TRCARCHMIN, bits[7:4] architecture the minor version number
* TRCARCHMAJ, bits[11:8] architecture major versin number
*/
drvdata->arch = BMVAL(etmidr1, 4, 11);
/* maximum size of resources */
etmidr2 = readl_relaxed(drvdata->base + TRCIDR2);
/* CIDSIZE, bits[9:5] Indicates the Context ID size */
drvdata->ctxid_size = BMVAL(etmidr2, 5, 9);
/* VMIDSIZE, bits[14:10] Indicates the VMID size */
drvdata->vmid_size = BMVAL(etmidr2, 10, 14);
/* CCSIZE, bits[28:25] size of the cycle counter in bits minus 12 */
drvdata->ccsize = BMVAL(etmidr2, 25, 28);
etmidr3 = readl_relaxed(drvdata->base + TRCIDR3);
/* CCITMIN, bits[11:0] minimum threshold value that can be programmed */
drvdata->ccitmin = BMVAL(etmidr3, 0, 11);
/* EXLEVEL_S, bits[19:16] Secure state instruction tracing */
drvdata->s_ex_level = BMVAL(etmidr3, 16, 19);
/* EXLEVEL_NS, bits[23:20] Non-secure state instruction tracing */
drvdata->ns_ex_level = BMVAL(etmidr3, 20, 23);
/*
* TRCERR, bit[24] whether a trace unit can trace a
* system error exception.
*/
if (BMVAL(etmidr3, 24, 24))
drvdata->trc_error = true;
else
drvdata->trc_error = false;
/* SYNCPR, bit[25] implementation has a fixed synchronization period? */
if (BMVAL(etmidr3, 25, 25))
drvdata->syncpr = true;
else
drvdata->syncpr = false;
/* STALLCTL, bit[26] is stall control implemented? */
if (BMVAL(etmidr3, 26, 26))
drvdata->stallctl = true;
else
drvdata->stallctl = false;
/* SYSSTALL, bit[27] implementation can support stall control? */
if (BMVAL(etmidr3, 27, 27))
drvdata->sysstall = true;
else
drvdata->sysstall = false;
/* NUMPROC, bits[30:28] the number of PEs available for tracing */
drvdata->nr_pe = BMVAL(etmidr3, 28, 30);
/* NOOVERFLOW, bit[31] is trace overflow prevention supported */
if (BMVAL(etmidr3, 31, 31))
drvdata->nooverflow = true;
else
drvdata->nooverflow = false;
/* number of resources trace unit supports */
etmidr4 = readl_relaxed(drvdata->base + TRCIDR4);
/* NUMACPAIRS, bits[0:3] number of addr comparator pairs for tracing */
drvdata->nr_addr_cmp = BMVAL(etmidr4, 0, 3);
/* NUMPC, bits[15:12] number of PE comparator inputs for tracing */
drvdata->nr_pe_cmp = BMVAL(etmidr4, 12, 15);
/* NUMRSPAIR, bits[19:16] the number of resource pairs for tracing */
drvdata->nr_resource = BMVAL(etmidr4, 16, 19);
/*
* NUMSSCC, bits[23:20] the number of single-shot
* comparator control for tracing
*/
drvdata->nr_ss_cmp = BMVAL(etmidr4, 20, 23);
/* NUMCIDC, bits[27:24] number of Context ID comparators for tracing */
drvdata->numcidc = BMVAL(etmidr4, 24, 27);
/* NUMVMIDC, bits[31:28] number of VMID comparators for tracing */
drvdata->numvmidc = BMVAL(etmidr4, 28, 31);
etmidr5 = readl_relaxed(drvdata->base + TRCIDR5);
/* NUMEXTIN, bits[8:0] number of external inputs implemented */
drvdata->nr_ext_inp = BMVAL(etmidr5, 0, 8);
/* TRACEIDSIZE, bits[21:16] indicates the trace ID width */
drvdata->trcid_size = BMVAL(etmidr5, 16, 21);
/* ATBTRIG, bit[22] implementation can support ATB triggers? */
if (BMVAL(etmidr5, 22, 22))
drvdata->atbtrig = true;
else
drvdata->atbtrig = false;
/*
* LPOVERRIDE, bit[23] implementation supports
* low-power state override
*/
if (BMVAL(etmidr5, 23, 23))
drvdata->lpoverride = true;
else
drvdata->lpoverride = false;
/* NUMSEQSTATE, bits[27:25] number of sequencer states implemented */
drvdata->nrseqstate = BMVAL(etmidr5, 25, 27);
/* NUMCNTR, bits[30:28] number of counters available for tracing */
drvdata->nr_cntr = BMVAL(etmidr5, 28, 30);
CS_LOCK(drvdata->base);
}
static void etm4_init_default_data(struct etmv4_drvdata *drvdata)
{
int i;
drvdata->pe_sel = 0x0;
drvdata->cfg = (ETMv4_MODE_CTXID | ETM_MODE_VMID |
ETMv4_MODE_TIMESTAMP | ETM_MODE_RETURNSTACK);
/* disable all events tracing */
drvdata->eventctrl0 = 0x0;
drvdata->eventctrl1 = 0x0;
/* disable stalling */
drvdata->stall_ctrl = 0x0;
/* disable timestamp event */
drvdata->ts_ctrl = 0x0;
/* enable trace synchronization every 4096 bytes for trace */
if (drvdata->syncpr == false)
drvdata->syncfreq = 0xC;
/*
* enable viewInst to trace everything with start-stop logic in
* started state
*/
drvdata->vinst_ctrl |= BIT(0);
/* set initial state of start-stop logic */
if (drvdata->nr_addr_cmp)
drvdata->vinst_ctrl |= BIT(9);
/* no address range filtering for ViewInst */
drvdata->viiectlr = 0x0;
/* no start-stop filtering for ViewInst */
drvdata->vissctlr = 0x0;
/* disable seq events */
for (i = 0; i < drvdata->nrseqstate-1; i++)
drvdata->seq_ctrl[i] = 0x0;
drvdata->seq_rst = 0x0;
drvdata->seq_state = 0x0;
/* disable external input events */
drvdata->ext_inp = 0x0;
for (i = 0; i < drvdata->nr_cntr; i++) {
drvdata->cntrldvr[i] = 0x0;
drvdata->cntr_ctrl[i] = 0x0;
drvdata->cntr_val[i] = 0x0;
}
for (i = 2; i < drvdata->nr_resource * 2; i++)
drvdata->res_ctrl[i] = 0x0;
for (i = 0; i < drvdata->nr_ss_cmp; i++) {
drvdata->ss_ctrl[i] = 0x0;
drvdata->ss_pe_cmp[i] = 0x0;
}
if (drvdata->nr_addr_cmp >= 1) {
drvdata->addr_val[0] = (unsigned long)_stext;
drvdata->addr_val[1] = (unsigned long)_etext;
drvdata->addr_type[0] = ETM_ADDR_TYPE_RANGE;
drvdata->addr_type[1] = ETM_ADDR_TYPE_RANGE;
}
for (i = 0; i < drvdata->numcidc; i++) {
drvdata->ctxid_pid[i] = 0x0;
drvdata->ctxid_vpid[i] = 0x0;
}
drvdata->ctxid_mask0 = 0x0;
drvdata->ctxid_mask1 = 0x0;
for (i = 0; i < drvdata->numvmidc; i++)
drvdata->vmid_val[i] = 0x0;
drvdata->vmid_mask0 = 0x0;
drvdata->vmid_mask1 = 0x0;
/*
* A trace ID value of 0 is invalid, so let's start at some
* random value that fits in 7 bits. ETMv3.x has 0x10 so let's
* start at 0x20.
*/
drvdata->trcid = 0x20 + drvdata->cpu;
}
static int etm4_cpu_callback(struct notifier_block *nfb, unsigned long action,
void *hcpu)
{
unsigned int cpu = (unsigned long)hcpu;
if (!etmdrvdata[cpu])
goto out;
switch (action & (~CPU_TASKS_FROZEN)) {
case CPU_STARTING:
spin_lock(&etmdrvdata[cpu]->spinlock);
if (!etmdrvdata[cpu]->os_unlock) {
etm4_os_unlock(etmdrvdata[cpu]);
etmdrvdata[cpu]->os_unlock = true;
}
if (etmdrvdata[cpu]->enable)
etm4_enable_hw(etmdrvdata[cpu]);
spin_unlock(&etmdrvdata[cpu]->spinlock);
break;
case CPU_ONLINE:
if (etmdrvdata[cpu]->boot_enable &&
!etmdrvdata[cpu]->sticky_enable)
coresight_enable(etmdrvdata[cpu]->csdev);
break;
case CPU_DYING:
spin_lock(&etmdrvdata[cpu]->spinlock);
if (etmdrvdata[cpu]->enable)
etm4_disable_hw(etmdrvdata[cpu]);
spin_unlock(&etmdrvdata[cpu]->spinlock);
break;
}
out:
return NOTIFY_OK;
}
static struct notifier_block etm4_cpu_notifier = {
.notifier_call = etm4_cpu_callback,
};
static int etm4_probe(struct amba_device *adev, const struct amba_id *id)
{
int ret;
void __iomem *base;
struct device *dev = &adev->dev;
struct coresight_platform_data *pdata = NULL;
struct etmv4_drvdata *drvdata;
struct resource *res = &adev->res;
struct coresight_desc *desc;
struct device_node *np = adev->dev.of_node;
desc = devm_kzalloc(dev, sizeof(*desc), GFP_KERNEL);
if (!desc)
return -ENOMEM;
drvdata = devm_kzalloc(dev, sizeof(*drvdata), GFP_KERNEL);
if (!drvdata)
return -ENOMEM;
if (np) {
pdata = of_get_coresight_platform_data(dev, np);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
adev->dev.platform_data = pdata;
}
drvdata->dev = &adev->dev;
dev_set_drvdata(dev, drvdata);
/* Validity for the resource is already checked by the AMBA core */
base = devm_ioremap_resource(dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
drvdata->base = base;
spin_lock_init(&drvdata->spinlock);
drvdata->cpu = pdata ? pdata->cpu : 0;
get_online_cpus();
etmdrvdata[drvdata->cpu] = drvdata;
if (!smp_call_function_single(drvdata->cpu, etm4_os_unlock, drvdata, 1))
drvdata->os_unlock = true;
if (smp_call_function_single(drvdata->cpu,
etm4_init_arch_data, drvdata, 1))
dev_err(dev, "ETM arch init failed\n");
if (!etm4_count++)
register_hotcpu_notifier(&etm4_cpu_notifier);
put_online_cpus();