blob: 2eafa503f3433c38adb5eb83ce57a533bd14fb58 [file] [log] [blame]
/******************************************************************************
*
* Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
*
******************************************************************************/
#define _RTL8188E_PHYCFG_C_
#include <osdep_service.h>
#include <drv_types.h>
#include <rtw_iol.h>
#include <rtl8188e_hal.h>
#include <rf.h>
#include <phy.h>
#define MAX_PRECMD_CNT 16
#define MAX_RFDEPENDCMD_CNT 16
#define MAX_POSTCMD_CNT 16
#define MAX_DOZE_WAITING_TIMES_9x 64
static u32 cal_bit_shift(u32 bitmask)
{
u32 i;
for (i = 0; i <= 31; i++) {
if (((bitmask >> i) & 0x1) == 1)
break;
}
return i;
}
u32 phy_query_bb_reg(struct adapter *adapt, u32 regaddr, u32 bitmask)
{
u32 return_value = 0, original_value, bit_shift;
original_value = usb_read32(adapt, regaddr);
bit_shift = cal_bit_shift(bitmask);
return_value = (original_value & bitmask) >> bit_shift;
return return_value;
}
void phy_set_bb_reg(struct adapter *adapt, u32 regaddr, u32 bitmask, u32 data)
{
u32 original_value, bit_shift;
if (bitmask != bMaskDWord) { /* if not "double word" write */
original_value = usb_read32(adapt, regaddr);
bit_shift = cal_bit_shift(bitmask);
data = (original_value & (~bitmask)) | (data << bit_shift);
}
usb_write32(adapt, regaddr, data);
}
static u32 rf_serial_read(struct adapter *adapt,
enum rf_radio_path rfpath, u32 offset)
{
u32 ret = 0;
struct hal_data_8188e *hal_data = GET_HAL_DATA(adapt);
struct bb_reg_def *phyreg = &hal_data->PHYRegDef[rfpath];
u32 tmplong, tmplong2;
u8 rfpi_enable = 0;
offset &= 0xff;
tmplong = phy_query_bb_reg(adapt, rFPGA0_XA_HSSIParameter2, bMaskDWord);
if (rfpath == RF_PATH_A)
tmplong2 = tmplong;
else
tmplong2 = phy_query_bb_reg(adapt, phyreg->rfHSSIPara2,
bMaskDWord);
tmplong2 = (tmplong2 & (~bLSSIReadAddress)) |
(offset<<23) | bLSSIReadEdge;
phy_set_bb_reg(adapt, rFPGA0_XA_HSSIParameter2, bMaskDWord,
tmplong&(~bLSSIReadEdge));
udelay(10);
phy_set_bb_reg(adapt, phyreg->rfHSSIPara2, bMaskDWord, tmplong2);
udelay(100);
udelay(10);
if (rfpath == RF_PATH_A)
rfpi_enable = (u8)phy_query_bb_reg(adapt, rFPGA0_XA_HSSIParameter1, BIT8);
else if (rfpath == RF_PATH_B)
rfpi_enable = (u8)phy_query_bb_reg(adapt, rFPGA0_XB_HSSIParameter1, BIT8);
if (rfpi_enable)
ret = phy_query_bb_reg(adapt, phyreg->rfLSSIReadBackPi,
bLSSIReadBackData);
else
ret = phy_query_bb_reg(adapt, phyreg->rfLSSIReadBack,
bLSSIReadBackData);
return ret;
}
static void rf_serial_write(struct adapter *adapt,
enum rf_radio_path rfpath, u32 offset,
u32 data)
{
u32 data_and_addr = 0;
struct hal_data_8188e *hal_data = GET_HAL_DATA(adapt);
struct bb_reg_def *phyreg = &hal_data->PHYRegDef[rfpath];
offset &= 0xff;
data_and_addr = ((offset<<20) | (data&0x000fffff)) & 0x0fffffff;
phy_set_bb_reg(adapt, phyreg->rf3wireOffset, bMaskDWord, data_and_addr);
}
u32 phy_query_rf_reg(struct adapter *adapt, enum rf_radio_path rf_path,
u32 reg_addr, u32 bit_mask)
{
u32 original_value, readback_value, bit_shift;
original_value = rf_serial_read(adapt, rf_path, reg_addr);
bit_shift = cal_bit_shift(bit_mask);
readback_value = (original_value & bit_mask) >> bit_shift;
return readback_value;
}
void phy_set_rf_reg(struct adapter *adapt, enum rf_radio_path rf_path,
u32 reg_addr, u32 bit_mask, u32 data)
{
u32 original_value, bit_shift;
/* RF data is 12 bits only */
if (bit_mask != bRFRegOffsetMask) {
original_value = rf_serial_read(adapt, rf_path, reg_addr);
bit_shift = cal_bit_shift(bit_mask);
data = (original_value & (~bit_mask)) | (data << bit_shift);
}
rf_serial_write(adapt, rf_path, reg_addr, data);
}
static void get_tx_power_index(struct adapter *adapt, u8 channel, u8 *cck_pwr,
u8 *ofdm_pwr, u8 *bw20_pwr, u8 *bw40_pwr)
{
struct hal_data_8188e *hal_data = GET_HAL_DATA(adapt);
u8 index = (channel - 1);
u8 TxCount = 0, path_nums;
if ((RF_1T2R == hal_data->rf_type) || (RF_1T1R == hal_data->rf_type))
path_nums = 1;
else
path_nums = 2;
for (TxCount = 0; TxCount < path_nums; TxCount++) {
if (TxCount == RF_PATH_A) {
cck_pwr[TxCount] = hal_data->Index24G_CCK_Base[TxCount][index];
ofdm_pwr[TxCount] = hal_data->Index24G_BW40_Base[RF_PATH_A][index]+
hal_data->OFDM_24G_Diff[TxCount][RF_PATH_A];
bw20_pwr[TxCount] = hal_data->Index24G_BW40_Base[RF_PATH_A][index]+
hal_data->BW20_24G_Diff[TxCount][RF_PATH_A];
bw40_pwr[TxCount] = hal_data->Index24G_BW40_Base[TxCount][index];
} else if (TxCount == RF_PATH_B) {
cck_pwr[TxCount] = hal_data->Index24G_CCK_Base[TxCount][index];
ofdm_pwr[TxCount] = hal_data->Index24G_BW40_Base[RF_PATH_A][index]+
hal_data->BW20_24G_Diff[RF_PATH_A][index]+
hal_data->BW20_24G_Diff[TxCount][index];
bw20_pwr[TxCount] = hal_data->Index24G_BW40_Base[RF_PATH_A][index]+
hal_data->BW20_24G_Diff[TxCount][RF_PATH_A]+
hal_data->BW20_24G_Diff[TxCount][index];
bw40_pwr[TxCount] = hal_data->Index24G_BW40_Base[TxCount][index];
} else if (TxCount == RF_PATH_C) {
cck_pwr[TxCount] = hal_data->Index24G_CCK_Base[TxCount][index];
ofdm_pwr[TxCount] = hal_data->Index24G_BW40_Base[RF_PATH_A][index]+
hal_data->BW20_24G_Diff[RF_PATH_A][index]+
hal_data->BW20_24G_Diff[RF_PATH_B][index]+
hal_data->BW20_24G_Diff[TxCount][index];
bw20_pwr[TxCount] = hal_data->Index24G_BW40_Base[RF_PATH_A][index]+
hal_data->BW20_24G_Diff[RF_PATH_A][index]+
hal_data->BW20_24G_Diff[RF_PATH_B][index]+
hal_data->BW20_24G_Diff[TxCount][index];
bw40_pwr[TxCount] = hal_data->Index24G_BW40_Base[TxCount][index];
} else if (TxCount == RF_PATH_D) {
cck_pwr[TxCount] = hal_data->Index24G_CCK_Base[TxCount][index];
ofdm_pwr[TxCount] = hal_data->Index24G_BW40_Base[RF_PATH_A][index]+
hal_data->BW20_24G_Diff[RF_PATH_A][index]+
hal_data->BW20_24G_Diff[RF_PATH_B][index]+
hal_data->BW20_24G_Diff[RF_PATH_C][index]+
hal_data->BW20_24G_Diff[TxCount][index];
bw20_pwr[TxCount] = hal_data->Index24G_BW40_Base[RF_PATH_A][index]+
hal_data->BW20_24G_Diff[RF_PATH_A][index]+
hal_data->BW20_24G_Diff[RF_PATH_B][index]+
hal_data->BW20_24G_Diff[RF_PATH_C][index]+
hal_data->BW20_24G_Diff[TxCount][index];
bw40_pwr[TxCount] = hal_data->Index24G_BW40_Base[TxCount][index];
}
}
}
static void phy_power_index_check(struct adapter *adapt, u8 channel,
u8 *cck_pwr, u8 *ofdm_pwr, u8 *bw20_pwr,
u8 *bw40_pwr)
{
struct hal_data_8188e *hal_data = GET_HAL_DATA(adapt);
hal_data->CurrentCckTxPwrIdx = cck_pwr[0];
hal_data->CurrentOfdm24GTxPwrIdx = ofdm_pwr[0];
hal_data->CurrentBW2024GTxPwrIdx = bw20_pwr[0];
hal_data->CurrentBW4024GTxPwrIdx = bw40_pwr[0];
}
void phy_set_tx_power_level(struct adapter *adapt, u8 channel)
{
u8 cck_pwr[MAX_TX_COUNT] = {0};
u8 ofdm_pwr[MAX_TX_COUNT] = {0};/* [0]:RF-A, [1]:RF-B */
u8 bw20_pwr[MAX_TX_COUNT] = {0};
u8 bw40_pwr[MAX_TX_COUNT] = {0};
get_tx_power_index(adapt, channel, &cck_pwr[0], &ofdm_pwr[0],
&bw20_pwr[0], &bw40_pwr[0]);
phy_power_index_check(adapt, channel, &cck_pwr[0], &ofdm_pwr[0],
&bw20_pwr[0], &bw40_pwr[0]);
rtl88eu_phy_rf6052_set_cck_txpower(adapt, &cck_pwr[0]);
rtl88eu_phy_rf6052_set_ofdm_txpower(adapt, &ofdm_pwr[0], &bw20_pwr[0],
&bw40_pwr[0], channel);
}
static void phy_set_bw_mode_callback(struct adapter *adapt)
{
struct hal_data_8188e *hal_data = GET_HAL_DATA(adapt);
u8 reg_bw_opmode;
u8 reg_prsr_rsc;
if (hal_data->rf_chip == RF_PSEUDO_11N)
return;
/* There is no 40MHz mode in RF_8225. */
if (hal_data->rf_chip == RF_8225)
return;
if (adapt->bDriverStopped)
return;
/* Set MAC register */
reg_bw_opmode = usb_read8(adapt, REG_BWOPMODE);
reg_prsr_rsc = usb_read8(adapt, REG_RRSR+2);
switch (hal_data->CurrentChannelBW) {
case HT_CHANNEL_WIDTH_20:
reg_bw_opmode |= BW_OPMODE_20MHZ;
usb_write8(adapt, REG_BWOPMODE, reg_bw_opmode);
break;
case HT_CHANNEL_WIDTH_40:
reg_bw_opmode &= ~BW_OPMODE_20MHZ;
usb_write8(adapt, REG_BWOPMODE, reg_bw_opmode);
reg_prsr_rsc = (reg_prsr_rsc&0x90) |
(hal_data->nCur40MhzPrimeSC<<5);
usb_write8(adapt, REG_RRSR+2, reg_prsr_rsc);
break;
default:
break;
}
/* Set PHY related register */
switch (hal_data->CurrentChannelBW) {
case HT_CHANNEL_WIDTH_20:
phy_set_bb_reg(adapt, rFPGA0_RFMOD, bRFMOD, 0x0);
phy_set_bb_reg(adapt, rFPGA1_RFMOD, bRFMOD, 0x0);
break;
case HT_CHANNEL_WIDTH_40:
phy_set_bb_reg(adapt, rFPGA0_RFMOD, bRFMOD, 0x1);
phy_set_bb_reg(adapt, rFPGA1_RFMOD, bRFMOD, 0x1);
/* Set Control channel to upper or lower.
* These settings are required only for 40MHz
*/
phy_set_bb_reg(adapt, rCCK0_System, bCCKSideBand,
(hal_data->nCur40MhzPrimeSC>>1));
phy_set_bb_reg(adapt, rOFDM1_LSTF, 0xC00,
hal_data->nCur40MhzPrimeSC);
phy_set_bb_reg(adapt, 0x818, (BIT26 | BIT27),
(hal_data->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) ? 2 : 1);
break;
default:
break;
}
/* Set RF related register */
if (hal_data->rf_chip == RF_6052)
rtl88eu_phy_rf6052_set_bandwidth(adapt, hal_data->CurrentChannelBW);
}
void phy_set_bw_mode(struct adapter *adapt, enum ht_channel_width bandwidth,
unsigned char offset)
{
struct hal_data_8188e *hal_data = GET_HAL_DATA(adapt);
enum ht_channel_width tmp_bw = hal_data->CurrentChannelBW;
hal_data->CurrentChannelBW = bandwidth;
hal_data->nCur40MhzPrimeSC = offset;
if ((!adapt->bDriverStopped) && (!adapt->bSurpriseRemoved))
phy_set_bw_mode_callback(adapt);
else
hal_data->CurrentChannelBW = tmp_bw;
}
static void phy_sw_chnl_callback(struct adapter *adapt, u8 channel)
{
u8 rf_path;
u32 param1, param2;
struct hal_data_8188e *hal_data = GET_HAL_DATA(adapt);
if (adapt->bNotifyChannelChange)
DBG_88E("[%s] ch = %d\n", __func__, channel);
phy_set_tx_power_level(adapt, channel);
param1 = RF_CHNLBW;
param2 = channel;
for (rf_path = 0; rf_path < hal_data->NumTotalRFPath; rf_path++) {
hal_data->RfRegChnlVal[rf_path] = (hal_data->RfRegChnlVal[rf_path] &
0xfffffc00) | param2;
phy_set_rf_reg(adapt, (enum rf_radio_path)rf_path, param1,
bRFRegOffsetMask, hal_data->RfRegChnlVal[rf_path]);
}
}
void phy_sw_chnl(struct adapter *adapt, u8 channel)
{
struct hal_data_8188e *hal_data = GET_HAL_DATA(adapt);
u8 tmpchannel = hal_data->CurrentChannel;
if (hal_data->rf_chip == RF_PSEUDO_11N)
return;
if (channel == 0)
channel = 1;
hal_data->CurrentChannel = channel;
if ((!adapt->bDriverStopped) && (!adapt->bSurpriseRemoved))
phy_sw_chnl_callback(adapt, channel);
else
hal_data->CurrentChannel = tmpchannel;
}
#define ODM_TXPWRTRACK_MAX_IDX_88E 6
static u8 get_right_chnl_for_iqk(u8 chnl)
{
u8 place;
u8 channel_all[ODM_TARGET_CHNL_NUM_2G_5G] = {
36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64,
100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122,
124, 126, 128, 130, 132, 134, 136, 138, 140, 149, 151, 153,
155, 157, 159, 161, 163, 165
};
if (chnl > 14) {
for (place = 0; place < sizeof(channel_all); place++) {
if (channel_all[place] == chnl)
return ++place;
}
}
return 0;
}
void rtl88eu_dm_txpower_track_adjust(struct odm_dm_struct *dm_odm, u8 type,
u8 *direction, u32 *out_write_val)
{
u8 pwr_value = 0;
/* Tx power tracking BB swing table. */
if (type == 0) { /* For OFDM adjust */
ODM_RT_TRACE(dm_odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("BbSwingIdxOfdm = %d BbSwingFlagOfdm=%d\n",
dm_odm->BbSwingIdxOfdm, dm_odm->BbSwingFlagOfdm));
if (dm_odm->BbSwingIdxOfdm <= dm_odm->BbSwingIdxOfdmBase) {
*direction = 1;
pwr_value = dm_odm->BbSwingIdxOfdmBase -
dm_odm->BbSwingIdxOfdm;
} else {
*direction = 2;
pwr_value = dm_odm->BbSwingIdxOfdm -
dm_odm->BbSwingIdxOfdmBase;
}
} else if (type == 1) { /* For CCK adjust. */
ODM_RT_TRACE(dm_odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("dm_odm->BbSwingIdxCck = %d dm_odm->BbSwingIdxCckBase = %d\n",
dm_odm->BbSwingIdxCck, dm_odm->BbSwingIdxCckBase));
if (dm_odm->BbSwingIdxCck <= dm_odm->BbSwingIdxCckBase) {
*direction = 1;
pwr_value = dm_odm->BbSwingIdxCckBase -
dm_odm->BbSwingIdxCck;
} else {
*direction = 2;
pwr_value = dm_odm->BbSwingIdxCck -
dm_odm->BbSwingIdxCckBase;
}
}
if (pwr_value >= ODM_TXPWRTRACK_MAX_IDX_88E && *direction == 1)
pwr_value = ODM_TXPWRTRACK_MAX_IDX_88E;
*out_write_val = pwr_value | (pwr_value<<8) | (pwr_value<<16) |
(pwr_value<<24);
}
static void dm_txpwr_track_setpwr(struct odm_dm_struct *dm_odm)
{
if (dm_odm->BbSwingFlagOfdm || dm_odm->BbSwingFlagCck) {
ODM_RT_TRACE(dm_odm, ODM_COMP_TX_PWR_TRACK, ODM_DBG_LOUD,
("dm_txpwr_track_setpwr CH=%d\n", *(dm_odm->pChannel)));
phy_set_tx_power_level(dm_odm->Adapter, *(dm_odm->pChannel));
dm_odm->BbSwingFlagOfdm = false;
dm_odm->BbSwingFlagCck = false;
}
}
void rtl88eu_dm_txpower_tracking_callback_thermalmeter(struct adapter *adapt)
{
struct hal_data_8188e *hal_data = GET_HAL_DATA(adapt);
u8 thermal_val = 0, delta, delta_lck, delta_iqk, offset;
u8 thermal_avg_count = 0;
u32 thermal_avg = 0;
s32 ele_d, temp_cck;
s8 ofdm_index[2], cck_index = 0;
s8 ofdm_index_old[2] = {0, 0}, cck_index_old = 0;
u32 i = 0, j = 0;
bool is2t = false;
u8 ofdm_min_index = 6, rf; /* OFDM BB Swing should be less than +3.0dB */
s8 ofdm_index_mapping[2][index_mapping_NUM_88E] = {
/* 2.4G, decrease power */
{0, 0, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 10, 10, 11},
/* 2.4G, increase power */
{0, 0, -1, -2, -3, -4, -4, -4, -4, -5, -7, -8, -9, -9, -10},
};
u8 thermal_mapping[2][index_mapping_NUM_88E] = {
/* 2.4G, decrease power */
{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 27},
/* 2.4G, increase power */
{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 25, 25, 25},
};
struct odm_dm_struct *dm_odm = &hal_data->odmpriv;
dm_txpwr_track_setpwr(dm_odm);
dm_odm->RFCalibrateInfo.TXPowerTrackingCallbackCnt++;
dm_odm->RFCalibrateInfo.bTXPowerTrackingInit = true;
dm_odm->RFCalibrateInfo.RegA24 = 0x090e1317;
thermal_val = (u8)phy_query_rf_reg(adapt, RF_PATH_A,
RF_T_METER_88E, 0xfc00);
if (is2t)
rf = 2;
else
rf = 1;
if (thermal_val) {
/* Query OFDM path A default setting */
ele_d = phy_query_bb_reg(adapt, rOFDM0_XATxIQImbalance, bMaskDWord)&bMaskOFDM_D;
for (i = 0; i < OFDM_TABLE_SIZE_92D; i++) {
if (ele_d == (OFDMSwingTable[i]&bMaskOFDM_D)) {
ofdm_index_old[0] = (u8)i;
dm_odm->BbSwingIdxOfdmBase = (u8)i;
break;
}
}
/* Query OFDM path B default setting */
if (is2t) {
ele_d = phy_query_bb_reg(adapt, rOFDM0_XBTxIQImbalance, bMaskDWord)&bMaskOFDM_D;
for (i = 0; i < OFDM_TABLE_SIZE_92D; i++) {
if (ele_d == (OFDMSwingTable[i]&bMaskOFDM_D)) {
ofdm_index_old[1] = (u8)i;
break;
}
}
}
/* Query CCK default setting From 0xa24 */
temp_cck = dm_odm->RFCalibrateInfo.RegA24;
for (i = 0; i < CCK_TABLE_SIZE; i++) {
if ((dm_odm->RFCalibrateInfo.bCCKinCH14 &&
memcmp(&temp_cck, &CCKSwingTable_Ch14[i][2], 4)) ||
memcmp(&temp_cck, &CCKSwingTable_Ch1_Ch13[i][2], 4)) {
cck_index_old = (u8)i;
dm_odm->BbSwingIdxCckBase = (u8)i;
break;
}
}
if (!dm_odm->RFCalibrateInfo.ThermalValue) {
dm_odm->RFCalibrateInfo.ThermalValue = hal_data->EEPROMThermalMeter;
dm_odm->RFCalibrateInfo.ThermalValue_LCK = thermal_val;
dm_odm->RFCalibrateInfo.ThermalValue_IQK = thermal_val;
for (i = 0; i < rf; i++)
dm_odm->RFCalibrateInfo.OFDM_index[i] = ofdm_index_old[i];
dm_odm->RFCalibrateInfo.CCK_index = cck_index_old;
}
/* calculate average thermal meter */
dm_odm->RFCalibrateInfo.ThermalValue_AVG[dm_odm->RFCalibrateInfo.ThermalValue_AVG_index] = thermal_val;
dm_odm->RFCalibrateInfo.ThermalValue_AVG_index++;
if (dm_odm->RFCalibrateInfo.ThermalValue_AVG_index == AVG_THERMAL_NUM_88E)
dm_odm->RFCalibrateInfo.ThermalValue_AVG_index = 0;
for (i = 0; i < AVG_THERMAL_NUM_88E; i++) {
if (dm_odm->RFCalibrateInfo.ThermalValue_AVG[i]) {
thermal_avg += dm_odm->RFCalibrateInfo.ThermalValue_AVG[i];
thermal_avg_count++;
}
}
if (thermal_avg_count)
thermal_val = (u8)(thermal_avg / thermal_avg_count);
if (dm_odm->RFCalibrateInfo.bDoneTxpower &&
!dm_odm->RFCalibrateInfo.bReloadtxpowerindex)
delta = abs(thermal_val - dm_odm->RFCalibrateInfo.ThermalValue);
else {
delta = abs(thermal_val - hal_data->EEPROMThermalMeter);
if (dm_odm->RFCalibrateInfo.bReloadtxpowerindex) {
dm_odm->RFCalibrateInfo.bReloadtxpowerindex = false;
dm_odm->RFCalibrateInfo.bDoneTxpower = false;
}
}
delta_lck = abs(dm_odm->RFCalibrateInfo.ThermalValue_LCK - thermal_val);
delta_iqk = abs(dm_odm->RFCalibrateInfo.ThermalValue_IQK - thermal_val);
/* Delta temperature is equal to or larger than 20 centigrade.*/
if ((delta_lck >= 8)) {
dm_odm->RFCalibrateInfo.ThermalValue_LCK = thermal_val;
rtl88eu_phy_lc_calibrate(adapt);
}
if (delta > 0 && dm_odm->RFCalibrateInfo.TxPowerTrackControl) {
delta = abs(hal_data->EEPROMThermalMeter - thermal_val);
/* calculate new OFDM / CCK offset */
if (thermal_val > hal_data->EEPROMThermalMeter)
j = 1;
else
j = 0;
for (offset = 0; offset < index_mapping_NUM_88E; offset++) {
if (delta < thermal_mapping[j][offset]) {
if (offset != 0)
offset--;
break;
}
}
if (offset >= index_mapping_NUM_88E)
offset = index_mapping_NUM_88E-1;
/* Updating ofdm_index values with new OFDM / CCK offset */
for (i = 0; i < rf; i++) {
ofdm_index[i] = dm_odm->RFCalibrateInfo.OFDM_index[i] + ofdm_index_mapping[j][offset];
if (ofdm_index[i] > OFDM_TABLE_SIZE_92D-1)
ofdm_index[i] = OFDM_TABLE_SIZE_92D-1;
else if (ofdm_index[i] < ofdm_min_index)
ofdm_index[i] = ofdm_min_index;
}
cck_index = dm_odm->RFCalibrateInfo.CCK_index + ofdm_index_mapping[j][offset];
if (cck_index > CCK_TABLE_SIZE-1)
cck_index = CCK_TABLE_SIZE-1;
else if (cck_index < 0)
cck_index = 0;
/* 2 temporarily remove bNOPG */
/* Config by SwingTable */
if (dm_odm->RFCalibrateInfo.TxPowerTrackControl) {
dm_odm->RFCalibrateInfo.bDoneTxpower = true;
/* Revse TX power table. */
dm_odm->BbSwingIdxOfdm = (u8)ofdm_index[0];
dm_odm->BbSwingIdxCck = (u8)cck_index;
if (dm_odm->BbSwingIdxOfdmCurrent != dm_odm->BbSwingIdxOfdm) {
dm_odm->BbSwingIdxOfdmCurrent = dm_odm->BbSwingIdxOfdm;
dm_odm->BbSwingFlagOfdm = true;
}
if (dm_odm->BbSwingIdxCckCurrent != dm_odm->BbSwingIdxCck) {
dm_odm->BbSwingIdxCckCurrent = dm_odm->BbSwingIdxCck;
dm_odm->BbSwingFlagCck = true;
}
}
}
/* Delta temperature is equal to or larger than 20 centigrade.*/
if (delta_iqk >= 8) {
dm_odm->RFCalibrateInfo.ThermalValue_IQK = thermal_val;
rtl88eu_phy_iq_calibrate(adapt, false);
}
/* update thermal meter value */
if (dm_odm->RFCalibrateInfo.TxPowerTrackControl)
dm_odm->RFCalibrateInfo.ThermalValue = thermal_val;
}
dm_odm->RFCalibrateInfo.TXPowercount = 0;
}
#define MAX_TOLERANCE 5
static u8 phy_path_a_iqk(struct adapter *adapt, bool config_pathb)
{
u32 reg_eac, reg_e94, reg_e9c;
u8 result = 0x00;
/* 1 Tx IQK */
/* path-A IQK setting */
phy_set_bb_reg(adapt, rTx_IQK_Tone_A, bMaskDWord, 0x10008c1c);
phy_set_bb_reg(adapt, rRx_IQK_Tone_A, bMaskDWord, 0x30008c1c);
phy_set_bb_reg(adapt, rTx_IQK_PI_A, bMaskDWord, 0x8214032a);
phy_set_bb_reg(adapt, rRx_IQK_PI_A, bMaskDWord, 0x28160000);
/* LO calibration setting */
phy_set_bb_reg(adapt, rIQK_AGC_Rsp, bMaskDWord, 0x00462911);
/* One shot, path A LOK & IQK */
phy_set_bb_reg(adapt, rIQK_AGC_Pts, bMaskDWord, 0xf9000000);
phy_set_bb_reg(adapt, rIQK_AGC_Pts, bMaskDWord, 0xf8000000);
mdelay(IQK_DELAY_TIME_88E);
reg_eac = phy_query_bb_reg(adapt, rRx_Power_After_IQK_A_2, bMaskDWord);
reg_e94 = phy_query_bb_reg(adapt, rTx_Power_Before_IQK_A, bMaskDWord);
reg_e9c = phy_query_bb_reg(adapt, rTx_Power_After_IQK_A, bMaskDWord);
if (!(reg_eac & BIT28) &&
(((reg_e94 & 0x03FF0000)>>16) != 0x142) &&
(((reg_e9c & 0x03FF0000)>>16) != 0x42))
result |= 0x01;
return result;
}
static u8 phy_path_a_rx_iqk(struct adapter *adapt, bool configPathB)
{
u32 reg_eac, reg_e94, reg_e9c, reg_ea4, u4tmp;
u8 result = 0x00;
struct hal_data_8188e *hal_data = GET_HAL_DATA(adapt);
struct odm_dm_struct *dm_odm = &hal_data->odmpriv;
/* 1 Get TXIMR setting */
/* modify RXIQK mode table */
phy_set_bb_reg(adapt, rFPGA0_IQK, bMaskDWord, 0x00000000);
phy_set_rf_reg(adapt, RF_PATH_A, RF_WE_LUT, bRFRegOffsetMask, 0x800a0);
phy_set_rf_reg(adapt, RF_PATH_A, RF_RCK_OS, bRFRegOffsetMask, 0x30000);
phy_set_rf_reg(adapt, RF_PATH_A, RF_TXPA_G1, bRFRegOffsetMask, 0x0000f);
phy_set_rf_reg(adapt, RF_PATH_A, RF_TXPA_G2, bRFRegOffsetMask, 0xf117B);
/* PA,PAD off */
phy_set_rf_reg(adapt, RF_PATH_A, 0xdf, bRFRegOffsetMask, 0x980);
phy_set_rf_reg(adapt, RF_PATH_A, 0x56, bRFRegOffsetMask, 0x51000);
phy_set_bb_reg(adapt, rFPGA0_IQK, bMaskDWord, 0x80800000);
/* IQK setting */
phy_set_bb_reg(adapt, rTx_IQK, bMaskDWord, 0x01007c00);
phy_set_bb_reg(adapt, rRx_IQK, bMaskDWord, 0x81004800);
/* path-A IQK setting */
phy_set_bb_reg(adapt, rTx_IQK_Tone_A, bMaskDWord, 0x10008c1c);
phy_set_bb_reg(adapt, rRx_IQK_Tone_A, bMaskDWord, 0x30008c1c);
phy_set_bb_reg(adapt, rTx_IQK_PI_A, bMaskDWord, 0x82160c1f);
phy_set_bb_reg(adapt, rRx_IQK_PI_A, bMaskDWord, 0x28160000);
/* LO calibration setting */
phy_set_bb_reg(adapt, rIQK_AGC_Rsp, bMaskDWord, 0x0046a911);
/* One shot, path A LOK & IQK */
phy_set_bb_reg(adapt, rIQK_AGC_Pts, bMaskDWord, 0xf9000000);
phy_set_bb_reg(adapt, rIQK_AGC_Pts, bMaskDWord, 0xf8000000);
/* delay x ms */
mdelay(IQK_DELAY_TIME_88E);
/* Check failed */
reg_eac = phy_query_bb_reg(adapt, rRx_Power_After_IQK_A_2, bMaskDWord);
reg_e94 = phy_query_bb_reg(adapt, rTx_Power_Before_IQK_A, bMaskDWord);
reg_e9c = phy_query_bb_reg(adapt, rTx_Power_After_IQK_A, bMaskDWord);
if (!(reg_eac & BIT28) &&
(((reg_e94 & 0x03FF0000)>>16) != 0x142) &&
(((reg_e9c & 0x03FF0000)>>16) != 0x42))
result |= 0x01;
else /* if Tx not OK, ignore Rx */
return result;
u4tmp = 0x80007C00 | (reg_e94&0x3FF0000) | ((reg_e9c&0x3FF0000) >> 16);
phy_set_bb_reg(adapt, rTx_IQK, bMaskDWord, u4tmp);
/* 1 RX IQK */
/* modify RXIQK mode table */
ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD,
("Path-A Rx IQK modify RXIQK mode table 2!\n"));
phy_set_bb_reg(adapt, rFPGA0_IQK, bMaskDWord, 0x00000000);
phy_set_rf_reg(adapt, RF_PATH_A, RF_WE_LUT, bRFRegOffsetMask, 0x800a0);
phy_set_rf_reg(adapt, RF_PATH_A, RF_RCK_OS, bRFRegOffsetMask, 0x30000);
phy_set_rf_reg(adapt, RF_PATH_A, RF_TXPA_G1, bRFRegOffsetMask, 0x0000f);
phy_set_rf_reg(adapt, RF_PATH_A, RF_TXPA_G2, bRFRegOffsetMask, 0xf7ffa);
phy_set_bb_reg(adapt, rFPGA0_IQK, bMaskDWord, 0x80800000);
/* IQK setting */
phy_set_bb_reg(adapt, rRx_IQK, bMaskDWord, 0x01004800);
/* path-A IQK setting */
phy_set_bb_reg(adapt, rTx_IQK_Tone_A, bMaskDWord, 0x38008c1c);
phy_set_bb_reg(adapt, rRx_IQK_Tone_A, bMaskDWord, 0x18008c1c);
phy_set_bb_reg(adapt, rTx_IQK_PI_A, bMaskDWord, 0x82160c05);
phy_set_bb_reg(adapt, rRx_IQK_PI_A, bMaskDWord, 0x28160c1f);
/* LO calibration setting */
phy_set_bb_reg(adapt, rIQK_AGC_Rsp, bMaskDWord, 0x0046a911);
phy_set_bb_reg(adapt, rIQK_AGC_Pts, bMaskDWord, 0xf9000000);
phy_set_bb_reg(adapt, rIQK_AGC_Pts, bMaskDWord, 0xf8000000);
mdelay(IQK_DELAY_TIME_88E);
/* Check failed */
reg_eac = phy_query_bb_reg(adapt, rRx_Power_After_IQK_A_2, bMaskDWord);
reg_e94 = phy_query_bb_reg(adapt, rTx_Power_Before_IQK_A, bMaskDWord);
reg_e9c = phy_query_bb_reg(adapt, rTx_Power_After_IQK_A, bMaskDWord);
reg_ea4 = phy_query_bb_reg(adapt, rRx_Power_Before_IQK_A_2, bMaskDWord);
/* reload RF 0xdf */
phy_set_bb_reg(adapt, rFPGA0_IQK, bMaskDWord, 0x00000000);
phy_set_rf_reg(adapt, RF_PATH_A, 0xdf, bRFRegOffsetMask, 0x180);
if (!(reg_eac & BIT27) && /* if Tx is OK, check whether Rx is OK */
(((reg_ea4 & 0x03FF0000)>>16) != 0x132) &&
(((reg_eac & 0x03FF0000)>>16) != 0x36))
result |= 0x02;
else
ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD,
("Path A Rx IQK fail!!\n"));
return result;
}
static u8 phy_path_b_iqk(struct adapter *adapt)
{
u32 regeac, regeb4, regebc, regec4, regecc;
u8 result = 0x00;
struct hal_data_8188e *hal_data = GET_HAL_DATA(adapt);
struct odm_dm_struct *dm_odm = &hal_data->odmpriv;
/* One shot, path B LOK & IQK */
phy_set_bb_reg(adapt, rIQK_AGC_Cont, bMaskDWord, 0x00000002);
phy_set_bb_reg(adapt, rIQK_AGC_Cont, bMaskDWord, 0x00000000);
mdelay(IQK_DELAY_TIME_88E);
regeac = phy_query_bb_reg(adapt, rRx_Power_After_IQK_A_2, bMaskDWord);
regeb4 = phy_query_bb_reg(adapt, rTx_Power_Before_IQK_B, bMaskDWord);
regebc = phy_query_bb_reg(adapt, rTx_Power_After_IQK_B, bMaskDWord);
regec4 = phy_query_bb_reg(adapt, rRx_Power_Before_IQK_B_2, bMaskDWord);
regecc = phy_query_bb_reg(adapt, rRx_Power_After_IQK_B_2, bMaskDWord);
if (!(regeac & BIT31) &&
(((regeb4 & 0x03FF0000)>>16) != 0x142) &&
(((regebc & 0x03FF0000)>>16) != 0x42))
result |= 0x01;
else
return result;
if (!(regeac & BIT30) &&
(((regec4 & 0x03FF0000)>>16) != 0x132) &&
(((regecc & 0x03FF0000)>>16) != 0x36))
result |= 0x02;
else
ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION,
ODM_DBG_LOUD, ("Path B Rx IQK fail!!\n"));
return result;
}
static void patha_fill_iqk(struct adapter *adapt, bool iqkok, s32 result[][8],
u8 final_candidate, bool txonly)
{
u32 oldval_0, x, tx0_a, reg;
s32 y, tx0_c;
if (final_candidate == 0xFF) {
return;
} else if (iqkok) {
oldval_0 = (phy_query_bb_reg(adapt, rOFDM0_XATxIQImbalance, bMaskDWord) >> 22) & 0x3FF;
x = result[final_candidate][0];
if ((x & 0x00000200) != 0)
x = x | 0xFFFFFC00;
tx0_a = (x * oldval_0) >> 8;
phy_set_bb_reg(adapt, rOFDM0_XATxIQImbalance, 0x3FF, tx0_a);
phy_set_bb_reg(adapt, rOFDM0_ECCAThreshold, BIT(31),
((x * oldval_0>>7) & 0x1));
y = result[final_candidate][1];
if ((y & 0x00000200) != 0)
y = y | 0xFFFFFC00;
tx0_c = (y * oldval_0) >> 8;
phy_set_bb_reg(adapt, rOFDM0_XCTxAFE, 0xF0000000,
((tx0_c&0x3C0)>>6));
phy_set_bb_reg(adapt, rOFDM0_XATxIQImbalance, 0x003F0000,
(tx0_c&0x3F));
phy_set_bb_reg(adapt, rOFDM0_ECCAThreshold, BIT(29),
((y * oldval_0>>7) & 0x1));
if (txonly)
return;
reg = result[final_candidate][2];
phy_set_bb_reg(adapt, rOFDM0_XARxIQImbalance, 0x3FF, reg);
reg = result[final_candidate][3] & 0x3F;
phy_set_bb_reg(adapt, rOFDM0_XARxIQImbalance, 0xFC00, reg);
reg = (result[final_candidate][3] >> 6) & 0xF;
phy_set_bb_reg(adapt, rOFDM0_RxIQExtAnta, 0xF0000000, reg);
}
}
static void pathb_fill_iqk(struct adapter *adapt, bool iqkok, s32 result[][8],
u8 final_candidate, bool txonly)
{
u32 oldval_1, x, tx1_a, reg;
s32 y, tx1_c;
if (final_candidate == 0xFF) {
return;
} else if (iqkok) {
oldval_1 = (phy_query_bb_reg(adapt, rOFDM0_XBTxIQImbalance, bMaskDWord) >> 22) & 0x3FF;
x = result[final_candidate][4];
if ((x & 0x00000200) != 0)
x = x | 0xFFFFFC00;
tx1_a = (x * oldval_1) >> 8;
phy_set_bb_reg(adapt, rOFDM0_XBTxIQImbalance, 0x3FF, tx1_a);
phy_set_bb_reg(adapt, rOFDM0_ECCAThreshold, BIT(27),
((x * oldval_1>>7) & 0x1));
y = result[final_candidate][5];
if ((y & 0x00000200) != 0)
y = y | 0xFFFFFC00;
tx1_c = (y * oldval_1) >> 8;
phy_set_bb_reg(adapt, rOFDM0_XDTxAFE, 0xF0000000,
((tx1_c&0x3C0)>>6));
phy_set_bb_reg(adapt, rOFDM0_XBTxIQImbalance, 0x003F0000,
(tx1_c&0x3F));
phy_set_bb_reg(adapt, rOFDM0_ECCAThreshold, BIT(25),
((y * oldval_1>>7) & 0x1));
if (txonly)
return;
reg = result[final_candidate][6];
phy_set_bb_reg(adapt, rOFDM0_XBRxIQImbalance, 0x3FF, reg);
reg = result[final_candidate][7] & 0x3F;
phy_set_bb_reg(adapt, rOFDM0_XBRxIQImbalance, 0xFC00, reg);
reg = (result[final_candidate][7] >> 6) & 0xF;
phy_set_bb_reg(adapt, rOFDM0_AGCRSSITable, 0x0000F000, reg);
}
}
static void save_adda_registers(struct adapter *adapt, u32 *addareg,
u32 *backup, u32 register_num)
{
u32 i;
for (i = 0; i < register_num; i++) {
backup[i] = phy_query_bb_reg(adapt, addareg[i], bMaskDWord);
}
}
static void save_mac_registers(struct adapter *adapt, u32 *mac_reg,
u32 *backup)
{
u32 i;
for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++) {
backup[i] = usb_read8(adapt, mac_reg[i]);
}
backup[i] = usb_read32(adapt, mac_reg[i]);
}
static void reload_adda_reg(struct adapter *adapt, u32 *adda_reg,
u32 *backup, u32 regiester_num)
{
u32 i;
for (i = 0; i < regiester_num; i++)
phy_set_bb_reg(adapt, adda_reg[i], bMaskDWord, backup[i]);
}
static void reload_mac_registers(struct adapter *adapt,
u32 *mac_reg, u32 *backup)
{
u32 i;
for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++) {
usb_write8(adapt, mac_reg[i], (u8)backup[i]);
}
usb_write32(adapt, mac_reg[i], backup[i]);
}
static void path_adda_on(struct adapter *adapt, u32 *adda_reg,
bool is_path_a_on, bool is2t)
{
u32 path_on;
u32 i;
if (!is2t) {
path_on = 0x0bdb25a0;
phy_set_bb_reg(adapt, adda_reg[0], bMaskDWord, 0x0b1b25a0);
} else {
path_on = is_path_a_on ? 0x04db25a4 : 0x0b1b25a4;
phy_set_bb_reg(adapt, adda_reg[0], bMaskDWord, path_on);
}
for (i = 1; i < IQK_ADDA_REG_NUM; i++)
phy_set_bb_reg(adapt, adda_reg[i], bMaskDWord, path_on);
}
static void mac_setting_calibration(struct adapter *adapt, u32 *mac_reg, u32 *backup)
{
u32 i = 0;
usb_write8(adapt, mac_reg[i], 0x3F);
for (i = 1; i < (IQK_MAC_REG_NUM - 1); i++) {
usb_write8(adapt, mac_reg[i], (u8)(backup[i]&(~BIT3)));
}
usb_write8(adapt, mac_reg[i], (u8)(backup[i]&(~BIT5)));
}
static void path_a_standby(struct adapter *adapt)
{
phy_set_bb_reg(adapt, rFPGA0_IQK, bMaskDWord, 0x0);
phy_set_bb_reg(adapt, 0x840, bMaskDWord, 0x00010000);
phy_set_bb_reg(adapt, rFPGA0_IQK, bMaskDWord, 0x80800000);
}
static void pi_mode_switch(struct adapter *adapt, bool pi_mode)
{
u32 mode;
mode = pi_mode ? 0x01000100 : 0x01000000;
phy_set_bb_reg(adapt, rFPGA0_XA_HSSIParameter1, bMaskDWord, mode);
phy_set_bb_reg(adapt, rFPGA0_XB_HSSIParameter1, bMaskDWord, mode);
}
static bool simularity_compare(struct adapter *adapt, s32 resulta[][8],
u8 c1, u8 c2)
{
u32 i, j, diff, sim_bitmap = 0, bound;
struct hal_data_8188e *hal_data = GET_HAL_DATA(adapt);
struct odm_dm_struct *dm_odm = &hal_data->odmpriv;
u8 final_candidate[2] = {0xFF, 0xFF}; /* for path A and path B */
bool result = true;
s32 tmp1 = 0, tmp2 = 0;
if ((dm_odm->RFType == ODM_2T2R) || (dm_odm->RFType == ODM_2T3R) ||
(dm_odm->RFType == ODM_2T4R))
bound = 8;
else
bound = 4;
for (i = 0; i < bound; i++) {
if ((i == 1) || (i == 3) || (i == 5) || (i == 7)) {
if ((resulta[c1][i] & 0x00000200) != 0)
tmp1 = resulta[c1][i] | 0xFFFFFC00;
else
tmp1 = resulta[c1][i];
if ((resulta[c2][i] & 0x00000200) != 0)
tmp2 = resulta[c2][i] | 0xFFFFFC00;
else
tmp2 = resulta[c2][i];
} else {
tmp1 = resulta[c1][i];
tmp2 = resulta[c2][i];
}
diff = (tmp1 > tmp2) ? (tmp1 - tmp2) : (tmp2 - tmp1);
if (diff > MAX_TOLERANCE) {
if ((i == 2 || i == 6) && !sim_bitmap) {
if (resulta[c1][i] + resulta[c1][i+1] == 0)
final_candidate[(i/4)] = c2;
else if (resulta[c2][i] + resulta[c2][i+1] == 0)
final_candidate[(i/4)] = c1;
else
sim_bitmap = sim_bitmap | (1<<i);
} else {
sim_bitmap = sim_bitmap | (1<<i);
}
}
}
if (sim_bitmap == 0) {
for (i = 0; i < (bound/4); i++) {
if (final_candidate[i] != 0xFF) {
for (j = i*4; j < (i+1)*4-2; j++)
resulta[3][j] = resulta[final_candidate[i]][j];
result = false;
}
}
return result;
} else {
if (!(sim_bitmap & 0x03)) { /* path A TX OK */
for (i = 0; i < 2; i++)
resulta[3][i] = resulta[c1][i];
}
if (!(sim_bitmap & 0x0c)) { /* path A RX OK */
for (i = 2; i < 4; i++)
resulta[3][i] = resulta[c1][i];
}
if (!(sim_bitmap & 0x30)) { /* path B TX OK */
for (i = 4; i < 6; i++)
resulta[3][i] = resulta[c1][i];
}
if (!(sim_bitmap & 0xc0)) { /* path B RX OK */
for (i = 6; i < 8; i++)
resulta[3][i] = resulta[c1][i];
}
return false;
}
}
static void phy_iq_calibrate(struct adapter *adapt, s32 result[][8],
u8 t, bool is2t)
{
struct hal_data_8188e *hal_data = GET_HAL_DATA(adapt);
struct odm_dm_struct *dm_odm = &hal_data->odmpriv;
u32 i;
u8 path_a_ok, path_b_ok;
u32 adda_reg[IQK_ADDA_REG_NUM] = {
rFPGA0_XCD_SwitchControl, rBlue_Tooth,
rRx_Wait_CCA, rTx_CCK_RFON,
rTx_CCK_BBON, rTx_OFDM_RFON,
rTx_OFDM_BBON, rTx_To_Rx,
rTx_To_Tx, rRx_CCK,
rRx_OFDM, rRx_Wait_RIFS,
rRx_TO_Rx, rStandby,
rSleep, rPMPD_ANAEN};
u32 iqk_mac_reg[IQK_MAC_REG_NUM] = {
REG_TXPAUSE, REG_BCN_CTRL,
REG_BCN_CTRL_1, REG_GPIO_MUXCFG};
/* since 92C & 92D have the different define in IQK_BB_REG */
u32 iqk_bb_reg_92c[IQK_BB_REG_NUM] = {
rOFDM0_TRxPathEnable, rOFDM0_TRMuxPar,
rFPGA0_XCD_RFInterfaceSW, rConfig_AntA, rConfig_AntB,
rFPGA0_XAB_RFInterfaceSW, rFPGA0_XA_RFInterfaceOE,
rFPGA0_XB_RFInterfaceOE, rFPGA0_RFMOD};
u32 retry_count = 9;
if (*(dm_odm->mp_mode) == 1)
retry_count = 9;
else
retry_count = 2;
if (t == 0) {
/* Save ADDA parameters, turn Path A ADDA on */
save_adda_registers(adapt, adda_reg, dm_odm->RFCalibrateInfo.ADDA_backup,
IQK_ADDA_REG_NUM);
save_mac_registers(adapt, iqk_mac_reg,
dm_odm->RFCalibrateInfo.IQK_MAC_backup);
save_adda_registers(adapt, iqk_bb_reg_92c,
dm_odm->RFCalibrateInfo.IQK_BB_backup, IQK_BB_REG_NUM);
}
path_adda_on(adapt, adda_reg, true, is2t);
if (t == 0)
dm_odm->RFCalibrateInfo.bRfPiEnable = (u8)phy_query_bb_reg(adapt, rFPGA0_XA_HSSIParameter1,
BIT(8));
if (!dm_odm->RFCalibrateInfo.bRfPiEnable) {
/* Switch BB to PI mode to do IQ Calibration. */
pi_mode_switch(adapt, true);
}
/* BB setting */
phy_set_bb_reg(adapt, rFPGA0_RFMOD, BIT24, 0x00);
phy_set_bb_reg(adapt, rOFDM0_TRxPathEnable, bMaskDWord, 0x03a05600);
phy_set_bb_reg(adapt, rOFDM0_TRMuxPar, bMaskDWord, 0x000800e4);
phy_set_bb_reg(adapt, rFPGA0_XCD_RFInterfaceSW, bMaskDWord, 0x22204000);
phy_set_bb_reg(adapt, rFPGA0_XAB_RFInterfaceSW, BIT10, 0x01);
phy_set_bb_reg(adapt, rFPGA0_XAB_RFInterfaceSW, BIT26, 0x01);
phy_set_bb_reg(adapt, rFPGA0_XA_RFInterfaceOE, BIT10, 0x00);
phy_set_bb_reg(adapt, rFPGA0_XB_RFInterfaceOE, BIT10, 0x00);
if (is2t) {
phy_set_bb_reg(adapt, rFPGA0_XA_LSSIParameter, bMaskDWord,
0x00010000);
phy_set_bb_reg(adapt, rFPGA0_XB_LSSIParameter, bMaskDWord,
0x00010000);
}
/* MAC settings */
mac_setting_calibration(adapt, iqk_mac_reg,
dm_odm->RFCalibrateInfo.IQK_MAC_backup);
/* Page B init */
/* AP or IQK */
phy_set_bb_reg(adapt, rConfig_AntA, bMaskDWord, 0x0f600000);
if (is2t)
phy_set_bb_reg(adapt, rConfig_AntB, bMaskDWord, 0x0f600000);
/* IQ calibration setting */
phy_set_bb_reg(adapt, rFPGA0_IQK, bMaskDWord, 0x80800000);
phy_set_bb_reg(adapt, rTx_IQK, bMaskDWord, 0x01007c00);
phy_set_bb_reg(adapt, rRx_IQK, bMaskDWord, 0x81004800);
for (i = 0; i < retry_count; i++) {
path_a_ok = phy_path_a_iqk(adapt, is2t);
if (path_a_ok == 0x01) {
result[t][0] = (phy_query_bb_reg(adapt, rTx_Power_Before_IQK_A,
bMaskDWord)&0x3FF0000)>>16;
result[t][1] = (phy_query_bb_reg(adapt, rTx_Power_After_IQK_A,
bMaskDWord)&0x3FF0000)>>16;
break;
}
}
for (i = 0; i < retry_count; i++) {
path_a_ok = phy_path_a_rx_iqk(adapt, is2t);
if (path_a_ok == 0x03) {
result[t][2] = (phy_query_bb_reg(adapt, rRx_Power_Before_IQK_A_2,
bMaskDWord)&0x3FF0000)>>16;
result[t][3] = (phy_query_bb_reg(adapt, rRx_Power_After_IQK_A_2,
bMaskDWord)&0x3FF0000)>>16;
break;
} else {
ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD,
("Path A Rx IQK Fail!!\n"));
}
}
if (0x00 == path_a_ok) {
ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD,
("Path A IQK failed!!\n"));
}
if (is2t) {
path_a_standby(adapt);
/* Turn Path B ADDA on */
path_adda_on(adapt, adda_reg, false, is2t);
for (i = 0; i < retry_count; i++) {
path_b_ok = phy_path_b_iqk(adapt);
if (path_b_ok == 0x03) {
result[t][4] = (phy_query_bb_reg(adapt, rTx_Power_Before_IQK_B,
bMaskDWord)&0x3FF0000)>>16;
result[t][5] = (phy_query_bb_reg(adapt, rTx_Power_After_IQK_B,
bMaskDWord)&0x3FF0000)>>16;
result[t][6] = (phy_query_bb_reg(adapt, rRx_Power_Before_IQK_B_2,
bMaskDWord)&0x3FF0000)>>16;
result[t][7] = (phy_query_bb_reg(adapt, rRx_Power_After_IQK_B_2,
bMaskDWord)&0x3FF0000)>>16;
break;
} else if (i == (retry_count - 1) && path_b_ok == 0x01) { /* Tx IQK OK */
result[t][4] = (phy_query_bb_reg(adapt, rTx_Power_Before_IQK_B,
bMaskDWord)&0x3FF0000)>>16;
result[t][5] = (phy_query_bb_reg(adapt, rTx_Power_After_IQK_B,
bMaskDWord)&0x3FF0000)>>16;
}
}
if (0x00 == path_b_ok) {
ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD,
("Path B IQK failed!!\n"));
}
}
/* Back to BB mode, load original value */
phy_set_bb_reg(adapt, rFPGA0_IQK, bMaskDWord, 0);
if (t != 0) {
if (!dm_odm->RFCalibrateInfo.bRfPiEnable) {
/* Switch back BB to SI mode after
* finish IQ Calibration.
*/
pi_mode_switch(adapt, false);
}
/* Reload ADDA power saving parameters */
reload_adda_reg(adapt, adda_reg, dm_odm->RFCalibrateInfo.ADDA_backup,
IQK_ADDA_REG_NUM);
/* Reload MAC parameters */
reload_mac_registers(adapt, iqk_mac_reg,
dm_odm->RFCalibrateInfo.IQK_MAC_backup);
reload_adda_reg(adapt, iqk_bb_reg_92c, dm_odm->RFCalibrateInfo.IQK_BB_backup,
IQK_BB_REG_NUM);
/* Restore RX initial gain */
phy_set_bb_reg(adapt, rFPGA0_XA_LSSIParameter,
bMaskDWord, 0x00032ed3);
if (is2t)
phy_set_bb_reg(adapt, rFPGA0_XB_LSSIParameter,
bMaskDWord, 0x00032ed3);
/* load 0xe30 IQC default value */
phy_set_bb_reg(adapt, rTx_IQK_Tone_A, bMaskDWord, 0x01008c00);
phy_set_bb_reg(adapt, rRx_IQK_Tone_A, bMaskDWord, 0x01008c00);
}
}
static void phy_lc_calibrate(struct adapter *adapt, bool is2t)
{
u8 tmpreg;
u32 rf_a_mode = 0, rf_b_mode = 0, lc_cal;
/* Check continuous TX and Packet TX */
tmpreg = usb_read8(adapt, 0xd03);
if ((tmpreg&0x70) != 0)
usb_write8(adapt, 0xd03, tmpreg&0x8F);
else
usb_write8(adapt, REG_TXPAUSE, 0xFF);
if ((tmpreg&0x70) != 0) {
/* 1. Read original RF mode */
/* Path-A */
rf_a_mode = phy_query_rf_reg(adapt, RF_PATH_A, RF_AC,
bMask12Bits);
/* Path-B */
if (is2t)
rf_b_mode = phy_query_rf_reg(adapt, RF_PATH_B, RF_AC,
bMask12Bits);
/* 2. Set RF mode = standby mode */
/* Path-A */
phy_set_rf_reg(adapt, RF_PATH_A, RF_AC, bMask12Bits,
(rf_a_mode&0x8FFFF)|0x10000);
/* Path-B */
if (is2t)
phy_set_rf_reg(adapt, RF_PATH_B, RF_AC, bMask12Bits,
(rf_b_mode&0x8FFFF)|0x10000);
}
/* 3. Read RF reg18 */
lc_cal = phy_query_rf_reg(adapt, RF_PATH_A, RF_CHNLBW, bMask12Bits);
/* 4. Set LC calibration begin bit15 */
phy_set_rf_reg(adapt, RF_PATH_A, RF_CHNLBW, bMask12Bits,
lc_cal|0x08000);
msleep(100);
/* Restore original situation */
if ((tmpreg&0x70) != 0) {
/* Deal with continuous TX case */
/* Path-A */
usb_write8(adapt, 0xd03, tmpreg);
phy_set_rf_reg(adapt, RF_PATH_A, RF_AC, bMask12Bits, rf_a_mode);
/* Path-B */
if (is2t)
phy_set_rf_reg(adapt, RF_PATH_B, RF_AC, bMask12Bits,
rf_b_mode);
} else {
/* Deal with Packet TX case */
usb_write8(adapt, REG_TXPAUSE, 0x00);
}
}
void rtl88eu_phy_iq_calibrate(struct adapter *adapt, bool recovery)
{
struct hal_data_8188e *hal_data = GET_HAL_DATA(adapt);
struct odm_dm_struct *dm_odm = &hal_data->odmpriv;
s32 result[4][8];
u8 i, final, chn_index;
bool pathaok, pathbok;
s32 reg_e94, reg_e9c, reg_ea4, reg_eb4, reg_ebc, reg_ec4;
bool is12simular, is13simular, is23simular;
bool singletone = false, carrier_sup = false;
u32 iqk_bb_reg_92c[IQK_BB_REG_NUM] = {
rOFDM0_XARxIQImbalance, rOFDM0_XBRxIQImbalance,
rOFDM0_ECCAThreshold, rOFDM0_AGCRSSITable,
rOFDM0_XATxIQImbalance, rOFDM0_XBTxIQImbalance,
rOFDM0_XCTxAFE, rOFDM0_XDTxAFE,
rOFDM0_RxIQExtAnta};
bool is2t;
is2t = (dm_odm->RFType == ODM_2T2R) ? true : false;
if (!(dm_odm->SupportAbility & ODM_RF_CALIBRATION))
return;
if (singletone || carrier_sup)
return;
if (recovery) {
ODM_RT_TRACE(dm_odm, ODM_COMP_INIT, ODM_DBG_LOUD,
("phy_iq_calibrate: Return due to recovery!\n"));
reload_adda_reg(adapt, iqk_bb_reg_92c,
dm_odm->RFCalibrateInfo.IQK_BB_backup_recover, 9);
return;
}
for (i = 0; i < 8; i++) {
result[0][i] = 0;
result[1][i] = 0;
result[2][i] = 0;
if ((i == 0) || (i == 2) || (i == 4) || (i == 6))
result[3][i] = 0x100;
else
result[3][i] = 0;
}
final = 0xff;
pathaok = false;
pathbok = false;
is12simular = false;
is23simular = false;
is13simular = false;
for (i = 0; i < 3; i++) {
phy_iq_calibrate(adapt, result, i, is2t);
if (i == 1) {
is12simular = simularity_compare(adapt, result, 0, 1);
if (is12simular) {
final = 0;
break;
}
}
if (i == 2) {
is13simular = simularity_compare(adapt, result, 0, 2);
if (is13simular) {
final = 0;
break;
}
is23simular = simularity_compare(adapt, result, 1, 2);
if (is23simular)
final = 1;
else
final = 3;
}
}
for (i = 0; i < 4; i++) {
reg_e94 = result[i][0];
reg_e9c = result[i][1];
reg_ea4 = result[i][2];
reg_eb4 = result[i][4];
reg_ebc = result[i][5];
reg_ec4 = result[i][6];
}
if (final != 0xff) {
reg_e94 = result[final][0];
reg_e9c = result[final][1];
reg_ea4 = result[final][2];
reg_eb4 = result[final][4];
reg_ebc = result[final][5];
dm_odm->RFCalibrateInfo.RegE94 = reg_e94;
dm_odm->RFCalibrateInfo.RegE9C = reg_e9c;
dm_odm->RFCalibrateInfo.RegEB4 = reg_eb4;
dm_odm->RFCalibrateInfo.RegEBC = reg_ebc;
reg_ec4 = result[final][6];
pathaok = true;
pathbok = true;
} else {
ODM_RT_TRACE(dm_odm, ODM_COMP_CALIBRATION, ODM_DBG_LOUD,
("IQK: FAIL use default value\n"));
dm_odm->RFCalibrateInfo.RegE94 = 0x100;
dm_odm->RFCalibrateInfo.RegEB4 = 0x100;
dm_odm->RFCalibrateInfo.RegE9C = 0x0;
dm_odm->RFCalibrateInfo.RegEBC = 0x0;
}
if (reg_e94 != 0)
patha_fill_iqk(adapt, pathaok, result, final,
(reg_ea4 == 0));
if (is2t) {
if (reg_eb4 != 0)
pathb_fill_iqk(adapt, pathbok, result, final,
(reg_ec4 == 0));
}
chn_index = get_right_chnl_for_iqk(hal_data->CurrentChannel);
if (final < 4) {
for (i = 0; i < IQK_Matrix_REG_NUM; i++)
dm_odm->RFCalibrateInfo.IQKMatrixRegSetting[chn_index].Value[0][i] = result[final][i];
dm_odm->RFCalibrateInfo.IQKMatrixRegSetting[chn_index].bIQKDone = true;
}
save_adda_registers(adapt, iqk_bb_reg_92c,
dm_odm->RFCalibrateInfo.IQK_BB_backup_recover, 9);
}
void rtl88eu_phy_lc_calibrate(struct adapter *adapt)
{
bool singletone = false, carrier_sup = false;
u32 timeout = 2000, timecount = 0;
struct hal_data_8188e *hal_data = GET_HAL_DATA(adapt);
struct odm_dm_struct *dm_odm = &hal_data->odmpriv;
if (!(dm_odm->SupportAbility & ODM_RF_CALIBRATION))
return;
if (singletone || carrier_sup)
return;
while (*(dm_odm->pbScanInProcess) && timecount < timeout) {
mdelay(50);
timecount += 50;
}
dm_odm->RFCalibrateInfo.bLCKInProgress = true;
if (dm_odm->RFType == ODM_2T2R) {
phy_lc_calibrate(adapt, true);
} else {
/* For 88C 1T1R */
phy_lc_calibrate(adapt, false);
}
dm_odm->RFCalibrateInfo.bLCKInProgress = false;
}