blob: fa56d239369b5c9ee322b579333f19951d684f99 [file] [log] [blame]
/* Function dispatch tables for arithmetic.
*
* J. Cupitt, 8/4/93.
*/
/*
This file is part of VIPS.
VIPS is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
These files are distributed with VIPS - http://www.vips.ecs.soton.ac.uk
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif /*HAVE_CONFIG_H*/
#include <vips/intl.h>
#include <stdio.h>
#include <vips/vips.h>
#ifdef WITH_DMALLOC
#include <dmalloc.h>
#endif /*WITH_DMALLOC*/
/**
* SECTION: arithmetic
* @short_description: operations which perform pixel arithmetic, trig, log, statistics
* @see_also: <link linkend="libvips-boolean">boolean</link>
* @stability: Stable
* @include: vips/vips.h
*
* These operations perform pixel arithmetic, that is, they perform an
* arithmetic operation, such as addition, on every pixel in an image or a
* pair of images. All (except in a few cases noted below) will work with
* images of any type or any mixture of types, of any size and of any number
* of bands.
*
* For binary operations, if the number of bands differs, one of the images
* must have one band. In this case, an n-band image is formed from the
* one-band image by joining n copies of the one-band image together, and then
* the two n-band images are operated upon.
*
* In the same way, for operations that take an array constant, such as
* im_remainder_vec(), you can mix single-element arrays or single-band
* images freely.
*
* Arithmetic operations try to preserve precision by increasing the number of
* bits in the output image when necessary. Generally, this follows the ANSI C
* conventions for type promotion, so multiplying two
* %IM_BANDFMT_UCHAR images together, for example, produces a
* %IM_BANDFMT_USHORT image, and taking the im_costra() of a
* %IM_BANDFMT_USHORT image produces %IM_BANDFMT_FLOAT image.
*
* For binary arithmetic operations, type promotion occurs in two stages.
* First, the two input images are cast up to the smallest common format,
* that is, the type with the smallest range that can represent the full
* range of both inputs. This conversion can be represented as a table:
*
* <table>
* <title>Smallest common format</title>
* <tgroup cols='10' align='left' colsep='1' rowsep='1'>
* <thead>
* <row>
* <entry>@in2/@in1</entry>
* <entry>uchar</entry>
* <entry>char</entry>
* <entry>ushort</entry>
* <entry>short</entry>
* <entry>uint</entry>
* <entry>int</entry>
* <entry>float</entry>
* <entry>double</entry>
* <entry>complex</entry>
* <entry>double complex</entry>
* </row>
* </thead>
* <tbody>
* <row>
* <entry>uchar</entry>
* <entry>ushort</entry>
* <entry>short</entry>
* <entry>ushort</entry>
* <entry>short</entry>
* <entry>uint</entry>
* <entry>int</entry>
* <entry>float</entry>
* <entry>double</entry>
* <entry>complex</entry>
* <entry>double complex</entry>
* </row>
* <row>
* <entry>char</entry>
* <entry>short</entry>
* <entry>short</entry>
* <entry>short</entry>
* <entry>short</entry>
* <entry>int</entry>
* <entry>int</entry>
* <entry>float</entry>
* <entry>double</entry>
* <entry>complex</entry>
* <entry>double complex</entry>
* </row>
* <row>
* <entry>ushort</entry>
* <entry>ushort</entry>
* <entry>short</entry>
* <entry>ushort</entry>
* <entry>short</entry>
* <entry>uint</entry>
* <entry>int</entry>
* <entry>float</entry>
* <entry>double</entry>
* <entry>complex</entry>
* <entry>double complex</entry>
* </row>
* <row>
* <entry>short</entry>
* <entry>short</entry>
* <entry>short</entry>
* <entry>short</entry>
* <entry>short</entry>
* <entry>int</entry>
* <entry>int</entry>
* <entry>float</entry>
* <entry>double</entry>
* <entry>complex</entry>
* <entry>double complex</entry>
* </row>
* <row>
* <entry>uint</entry>
* <entry>uint</entry>
* <entry>int</entry>
* <entry>uint</entry>
* <entry>int</entry>
* <entry>uint</entry>
* <entry>int</entry>
* <entry>float</entry>
* <entry>double</entry>
* <entry>complex</entry>
* <entry>double complex</entry>
* </row>
* <row>
* <entry>int</entry>
* <entry>int</entry>
* <entry>int</entry>
* <entry>int</entry>
* <entry>int</entry>
* <entry>int</entry>
* <entry>int</entry>
* <entry>float</entry>
* <entry>double</entry>
* <entry>complex</entry>
* <entry>double complex</entry>
* </row>
* <row>
* <entry>float</entry>
* <entry>float</entry>
* <entry>float</entry>
* <entry>float</entry>
* <entry>float</entry>
* <entry>float</entry>
* <entry>float</entry>
* <entry>float</entry>
* <entry>double</entry>
* <entry>complex</entry>
* <entry>double complex</entry>
* </row>
* <row>
* <entry>double</entry>
* <entry>double</entry>
* <entry>double</entry>
* <entry>double</entry>
* <entry>double</entry>
* <entry>double</entry>
* <entry>double</entry>
* <entry>double</entry>
* <entry>double</entry>
* <entry>double complex</entry>
* <entry>double complex</entry>
* </row>
* <row>
* <entry>complex</entry>
* <entry>complex</entry>
* <entry>complex</entry>
* <entry>complex</entry>
* <entry>complex</entry>
* <entry>complex</entry>
* <entry>complex</entry>
* <entry>complex</entry>
* <entry>double complex</entry>
* <entry>complex</entry>
* <entry>double complex</entry>
* </row>
* <row>
* <entry>double complex</entry>
* <entry>double complex</entry>
* <entry>double complex</entry>
* <entry>double complex</entry>
* <entry>double complex</entry>
* <entry>double complex</entry>
* <entry>double complex</entry>
* <entry>double complex</entry>
* <entry>double complex</entry>
* <entry>double complex</entry>
* <entry>double complex</entry>
* </row>
* </tbody>
* </tgroup>
* </table>
*
* In the second stage, the operation is performed between the two identical
* types to form the output. The details vary between operations, but
* generally the principle is that the output type should be large enough to
* represent the whole rage of possible values, except that int never becomes
* float.
*/
/* One image in, one out.
*/
static im_arg_desc one_in_one_out[] = {
IM_INPUT_IMAGE( "in" ),
IM_OUTPUT_IMAGE( "out" )
};
/* Two images in, one out.
*/
static im_arg_desc two_in_one_out[] = {
IM_INPUT_IMAGE( "in1" ),
IM_INPUT_IMAGE( "in2" ),
IM_OUTPUT_IMAGE( "out" )
};
/* Image in, number out.
*/
static im_arg_desc image_in_num_out[] = {
IM_INPUT_IMAGE( "in" ),
IM_OUTPUT_DOUBLE( "value" )
};
/* Args for im_recomb.
*/
static im_arg_desc recomb_args[] = {
IM_INPUT_IMAGE( "in" ),
IM_OUTPUT_IMAGE( "out" ),
IM_INPUT_DMASK( "matrix" )
};
/* Call im_recomb via arg vector.
*/
static int
recomb_vec( im_object *argv )
{
im_mask_object *mo = argv[2];
return( im_recomb( argv[0], argv[1], mo->mask ) );
}
/* Description of im_recomb.
*/
static im_function recomb_desc = {
"im_recomb", /* Name */
"linear recombination with mask",
IM_FN_PIO, /* Flags */
recomb_vec, /* Dispatch function */
IM_NUMBER( recomb_args ), /* Size of arg list */
recomb_args /* Arg list */
};
/* Call im_abs via arg vector.
*/
static int
abs_vec( im_object *argv )
{
return( im_abs( argv[0], argv[1] ) );
}
/* Description of im_abs.
*/
static im_function abs_desc = {
"im_abs", /* Name */
N_( "absolute value" ), /* Description */
IM_FN_PIO | IM_FN_PTOP, /* Flags */
abs_vec, /* Dispatch function */
IM_NUMBER( one_in_one_out ), /* Size of arg list */
one_in_one_out /* Arg list */
};
/* Call im_add via arg vector.
*/
static int
add_vec( im_object *argv )
{
return( im_add( argv[0], argv[1], argv[2] ) );
}
/* Description of im_add.
*/
static im_function add_desc = {
"im_add", /* Name */
N_( "add two images" ), /* Description */
IM_FN_PIO | IM_FN_PTOP, /* Flags */
add_vec, /* Dispatch function */
IM_NUMBER( two_in_one_out ), /* Size of arg list */
two_in_one_out /* Arg list */
};
/* Call im_avg via arg vector.
*/
static int
avg_vec( im_object *argv )
{
double f;
if( im_avg( argv[0], &f ) )
return( -1 );
*((double *) argv[1]) = f;
return( 0 );
}
/* Description of im_avg.
*/
static im_function avg_desc = {
"im_avg", /* Name */
N_( "average value of image" ), /* Description */
IM_FN_PIO, /* Flags */
avg_vec, /* Dispatch function */
IM_NUMBER( image_in_num_out ), /* Size of arg list */
image_in_num_out /* Arg list */
};
/* Args to im_point.
*/
static im_arg_desc point_args[] = {
IM_INPUT_IMAGE( "in" ),
IM_INPUT_INTERPOLATE( "interpolate" ),
IM_INPUT_DOUBLE( "x" ),
IM_INPUT_DOUBLE( "y" ),
IM_INPUT_INT( "band" ),
IM_OUTPUT_DOUBLE( "out" )
};
/* Call im_point via arg vector.
*/
static int
point_vec( im_object *argv )
{
VipsInterpolate *interpolate = VIPS_INTERPOLATE( argv[1] );
double x = *((double *) argv[2]);
double y = *((double *) argv[3]);
int band = *((double *) argv[4]);
return( im_point( argv[0], interpolate, x, y, band, argv[5] ) );
}
/* Description of im_point.
*/
static im_function point_desc = {
"im_point",
"interpolate value at single point",
IM_FN_PIO,
point_vec,
IM_NUMBER( point_args ),
point_args
};
/* Args to im_point_bilinear.
*/
static im_arg_desc point_bilinear_args[] = {
IM_INPUT_IMAGE ("in"),
IM_INPUT_DOUBLE("x"),
IM_INPUT_DOUBLE("y"),
IM_INPUT_INT("band"),
IM_OUTPUT_DOUBLE("val")
};
/* Call im_point_bilinear via arg vector.
*/
static int
point_bilinear_vec( im_object *argv )
{
return im_point_bilinear( argv[0], *(double*)argv[1], *(double*)argv[2], *(int*)argv[3], argv[4] );
}
/* Description of im_point_bilinear.
*/
static im_function point_bilinear_desc = {
"im_point_bilinear",
"interpolate value at single point, linearly",
IM_FN_PIO,
point_bilinear_vec,
IM_NUMBER( point_bilinear_args ),
point_bilinear_args
};
/* Call im_deviate via arg vector.
*/
static int
deviate_vec( im_object *argv )
{
double f;
if( im_deviate( argv[0], &f ) )
return( -1 );
*((double *) argv[1]) = f;
return( 0 );
}
/* Description of im_deviate.
*/
static im_function deviate_desc = {
"im_deviate", /* Name */
N_( "standard deviation of image" ), /* Description */
IM_FN_PIO, /* Flags */
deviate_vec, /* Dispatch function */
IM_NUMBER( image_in_num_out ), /* Size of arg list */
image_in_num_out /* Arg list */
};
/* Call im_exp10tra via arg vector.
*/
static int
exp10tra_vec( im_object *argv )
{
return( im_exp10tra( argv[0], argv[1] ) );
}
/* Description of im_exp10tra.
*/
static im_function exp10tra_desc = {
"im_exp10tra", /* Name */
N_( "10^pel of image" ), /* Description */
IM_FN_PIO | IM_FN_PTOP, /* Flags */
exp10tra_vec, /* Dispatch function */
IM_NUMBER( one_in_one_out ), /* Size of arg list */
one_in_one_out /* Arg list */
};
/* Call im_exptra via arg vector.
*/
static int
exptra_vec( im_object *argv )
{
return( im_exptra( argv[0], argv[1] ) );
}
/* Description of im_exptra.
*/
static im_function exptra_desc = {
"im_exptra", /* Name */
N_( "e^pel of image" ), /* Description */
IM_FN_PIO | IM_FN_PTOP, /* Flags */
exptra_vec, /* Dispatch function */
IM_NUMBER( one_in_one_out ), /* Size of arg list */
one_in_one_out /* Arg list */
};
/* Args for im_powtra().
*/
static im_arg_desc powtra_args[] = {
IM_INPUT_IMAGE( "in" ),
IM_OUTPUT_IMAGE( "out" ),
IM_INPUT_DOUBLE( "x" )
};
/* Call im_expntra via arg vector.
*/
static int
expntra_vec( im_object *argv )
{
double a = *((double *) argv[2]);
return( im_expntra( argv[0], argv[1], a ) );
}
/* Description of im_expntra.
*/
static im_function expntra_desc = {
"im_expntra", /* Name */
N_( "x^pel of image" ), /* Description */
IM_FN_PIO | IM_FN_PTOP, /* Flags */
expntra_vec, /* Dispatch function */
IM_NUMBER( powtra_args ), /* Size of arg list */
powtra_args /* Arg list */
};
/* Args for im_expntra_vec().
*/
static im_arg_desc expntra_vec_args[] = {
IM_INPUT_IMAGE( "in" ),
IM_OUTPUT_IMAGE( "out" ),
IM_INPUT_DOUBLEVEC( "v" )
};
/* Call im_expntra_vec() via arg vector.
*/
static int
expntra_vec_vec( im_object *argv )
{
im_doublevec_object *rv = (im_doublevec_object *) argv[2];
return( im_expntra_vec( argv[0], argv[1], rv->n, rv->vec ) );
}
/* Description of im_expntra_vec.
*/
static im_function expntra_vec_desc = {
"im_expntra_vec", /* Name */
N_( "[x,y,z]^pel of image" ), /* Description */
IM_FN_PIO | IM_FN_PTOP, /* Flags */
expntra_vec_vec, /* Dispatch function */
IM_NUMBER( expntra_vec_args ), /* Size of arg list */
expntra_vec_args /* Arg list */
};
/* Call im_divide via arg vector.
*/
static int
divide_vec( im_object *argv )
{
return( im_divide( argv[0], argv[1], argv[2] ) );
}
/* Description of im_divide.
*/
static im_function divide_desc = {
"im_divide", /* Name */
N_( "divide two images" ),
IM_FN_PIO, /* Flags */
divide_vec, /* Dispatch function */
IM_NUMBER( two_in_one_out ), /* Size of arg list */
two_in_one_out /* Arg list */
};
/* Call im_invert via arg vector.
*/
static int
invert_vec( im_object *argv )
{
return( im_invert( argv[0], argv[1] ) );
}
/* Description of im_invert.
*/
static im_function invert_desc = {
"im_invert", /* Name */
N_( "photographic negative" ), /* Description */
IM_FN_PIO | IM_FN_PTOP, /* Flags */
invert_vec, /* Dispatch function */
IM_NUMBER( one_in_one_out ), /* Size of arg list */
one_in_one_out /* Arg list */
};
/* Args for im_lintra().
*/
static im_arg_desc lintra_args[] = {
IM_INPUT_DOUBLE( "a" ),
IM_INPUT_IMAGE( "in" ),
IM_INPUT_DOUBLE( "b" ),
IM_OUTPUT_IMAGE( "out" )
};
/* Call im_lintra() via arg vector.
*/
static int
lintra_vec( im_object *argv )
{
double a = *((double *) argv[0]);
double b = *((double *) argv[2]);
return( im_lintra( a, argv[1], b, argv[3] ) );
}
/* Description of im_lintra().
*/
static im_function lintra_desc = {
"im_lintra", /* Name */
N_( "calculate a*in + b = outfile" ),
IM_FN_PIO | IM_FN_PTOP, /* Flags */
lintra_vec, /* Dispatch function */
IM_NUMBER( lintra_args ), /* Size of arg list */
lintra_args /* Arg list */
};
/* Args for im_lintra_vec().
*/
static im_arg_desc lintra_vec_args[] = {
IM_INPUT_DOUBLEVEC( "a" ),
IM_INPUT_IMAGE( "in" ),
IM_INPUT_DOUBLEVEC( "b" ),
IM_OUTPUT_IMAGE( "out" )
};
/* Call im_lintra_vec() via arg vector.
*/
static int
lintra_vec_vec( im_object *argv )
{
im_doublevec_object *dva = (im_doublevec_object *) argv[0];
im_doublevec_object *dvb = (im_doublevec_object *) argv[2];
if( dva->n != dvb->n ) {
im_error( "im_lintra_vec",
"%s", _( "vectors not equal length" ) );
return( -1 );
}
return( im_lintra_vec( dva->n, dva->vec, argv[1], dvb->vec, argv[3] ) );
}
/* Description of im_lintra_vec().
*/
static im_function lintra_vec_desc = {
"im_lintra_vec", /* Name */
N_( "calculate a*in + b -> out, a and b vectors" ),
IM_FN_PIO | IM_FN_PTOP, /* Flags */
lintra_vec_vec, /* Dispatch function */
IM_NUMBER( lintra_vec_args ), /* Size of arg list */
lintra_vec_args /* Arg list */
};
/* Call im_log10tra via arg vector.
*/
static int
log10tra_vec( im_object *argv )
{
return( im_log10tra( argv[0], argv[1] ) );
}
/* Description of im_log10tra.
*/
static im_function log10tra_desc = {
"im_log10tra", /* Name */
N_( "log10 of image" ), /* Description */
IM_FN_PIO | IM_FN_PTOP, /* Flags */
log10tra_vec, /* Dispatch function */
IM_NUMBER( one_in_one_out ), /* Size of arg list */
one_in_one_out /* Arg list */
};
/* Call im_logtra via arg vector.
*/
static int
logtra_vec( im_object *argv )
{
return( im_logtra( argv[0], argv[1] ) );
}
/* Description of im_logtra.
*/
static im_function logtra_desc = {
"im_logtra", /* Name */
N_( "ln of image" ), /* Description */
IM_FN_PIO | IM_FN_PTOP, /* Flags */
logtra_vec, /* Dispatch function */
IM_NUMBER( one_in_one_out ), /* Size of arg list */
one_in_one_out /* Arg list */
};
/* Call im_tantra via arg vector.
*/
static int
tantra_vec( im_object *argv )
{
return( im_tantra( argv[0], argv[1] ) );
}
/* Description of im_tantra.
*/
static im_function tantra_desc = {
"im_tantra", /* Name */
N_( "tan of image (angles in degrees)" ),
IM_FN_PIO | IM_FN_PTOP, /* Flags */
tantra_vec, /* Dispatch function */
IM_NUMBER( one_in_one_out ), /* Size of arg list */
one_in_one_out /* Arg list */
};
/* Call im_atantra via arg vector.
*/
static int
atantra_vec( im_object *argv )
{
return( im_atantra( argv[0], argv[1] ) );
}
/* Description of im_atantra.
*/
static im_function atantra_desc = {
"im_atantra", /* Name */
N_( "atan of image (result in degrees)" ),
IM_FN_PIO | IM_FN_PTOP, /* Flags */
atantra_vec, /* Dispatch function */
IM_NUMBER( one_in_one_out ), /* Size of arg list */
one_in_one_out /* Arg list */
};
/* Call im_costra via arg vector.
*/
static int
costra_vec( im_object *argv )
{
return( im_costra( argv[0], argv[1] ) );
}
/* Description of im_costra.
*/
static im_function costra_desc = {
"im_costra", /* Name */
N_( "cos of image (angles in degrees)" ),
IM_FN_PIO | IM_FN_PTOP, /* Flags */
costra_vec, /* Dispatch function */
IM_NUMBER( one_in_one_out ), /* Size of arg list */
one_in_one_out /* Arg list */
};
/* Call im_acostra via arg vector.
*/
static int
acostra_vec( im_object *argv )
{
return( im_acostra( argv[0], argv[1] ) );
}
/* Description of im_acostra.
*/
static im_function acostra_desc = {
"im_acostra", /* Name */
N_( "acos of image (result in degrees)" ),
IM_FN_PIO | IM_FN_PTOP, /* Flags */
acostra_vec, /* Dispatch function */
IM_NUMBER( one_in_one_out ), /* Size of arg list */
one_in_one_out /* Arg list */
};
/* Call im_ceil via arg vector.
*/
static int
ceil_vec( im_object *argv )
{
return( im_ceil( argv[0], argv[1] ) );
}
/* Description of im_ceil.
*/
static im_function ceil_desc = {
"im_ceil", /* Name */
N_( "round to smallest integer value not less than" ),
IM_FN_PIO | IM_FN_PTOP, /* Flags */
ceil_vec, /* Dispatch function */
IM_NUMBER( one_in_one_out ), /* Size of arg list */
one_in_one_out /* Arg list */
};
/* Call im_floor via arg vector.
*/
static int
floor_vec( im_object *argv )
{
return( im_floor( argv[0], argv[1] ) );
}
/* Description of im_floor.
*/
static im_function floor_desc = {
"im_floor", /* Name */
N_( "round to largest integer value not greater than" ),
IM_FN_PIO | IM_FN_PTOP, /* Flags */
floor_vec, /* Dispatch function */
IM_NUMBER( one_in_one_out ), /* Size of arg list */
one_in_one_out /* Arg list */
};
/* Call im_rint via arg vector.
*/
static int
rint_vec( im_object *argv )
{
return( im_rint( argv[0], argv[1] ) );
}
/* Description of im_rint.
*/
static im_function rint_desc = {
"im_rint", /* Name */
N_( "round to nearest integer value" ),
IM_FN_PIO | IM_FN_PTOP, /* Flags */
rint_vec, /* Dispatch function */
IM_NUMBER( one_in_one_out ), /* Size of arg list */
one_in_one_out /* Arg list */
};
/* Call im_sintra via arg vector.
*/
static int
sintra_vec( im_object *argv )
{
return( im_sintra( argv[0], argv[1] ) );
}
/* Description of im_sintra.
*/
static im_function sintra_desc = {
"im_sintra", /* Name */
N_( "sin of image (angles in degrees)" ),
IM_FN_PIO | IM_FN_PTOP, /* Flags */
sintra_vec, /* Dispatch function */
IM_NUMBER( one_in_one_out ), /* Size of arg list */
one_in_one_out /* Arg list */
};
/* Call im_bandmean via arg vector.
*/
static int
bandmean_vec( im_object *argv )
{
return( im_bandmean( argv[0], argv[1] ) );
}
/* Description of im_bandmean.
*/
static im_function bandmean_desc = {
"im_bandmean", /* Name */
N_( "average image bands" ),
IM_FN_PIO, /* Flags */
bandmean_vec, /* Dispatch function */
IM_NUMBER( one_in_one_out ), /* Size of arg list */
one_in_one_out /* Arg list */
};
/* Call im_sign via arg vector.
*/
static int
sign_vec( im_object *argv )
{
return( im_sign( argv[0], argv[1] ) );
}
/* Description of im_sign.
*/
static im_function sign_desc = {
"im_sign", /* Name */
N_( "unit vector in direction of value" ),
IM_FN_PIO | IM_FN_PTOP, /* Flags */
sign_vec, /* Dispatch function */
IM_NUMBER( one_in_one_out ), /* Size of arg list */
one_in_one_out /* Arg list */
};
/* Call im_asintra via arg vector.
*/
static int
asintra_vec( im_object *argv )
{
return( im_asintra( argv[0], argv[1] ) );
}
/* Description of im_asintra.
*/
static im_function asintra_desc = {
"im_asintra", /* Name */
N_( "asin of image (result in degrees)" ),
IM_FN_PIO | IM_FN_PTOP, /* Flags */
asintra_vec, /* Dispatch function */
IM_NUMBER( one_in_one_out ), /* Size of arg list */
one_in_one_out /* Arg list */
};
/* Call im_max via arg vector.
*/
static int
max_vec( im_object *argv )
{
double f;
if( im_max( argv[0], &f ) )
return( -1 );
*((double *) argv[1]) = f;
return( 0 );
}
/* Description of im_max.
*/
static im_function max_desc = {
"im_max", /* Name */
N_( "maximum value of image" ), /* Description */
IM_FN_PIO, /* Flags */
max_vec, /* Dispatch function */
IM_NUMBER( image_in_num_out ), /* Size of arg list */
image_in_num_out /* Arg list */
};
/* Args for maxpos (and minpos).
*/
static im_arg_desc maxpos_args[] = {
IM_INPUT_IMAGE( "in" ),
IM_OUTPUT_COMPLEX( "position" )
};
/* Call im_maxpos via arg vector.
*/
static int
maxpos_vec( im_object *argv )
{
double f;
int x, y;
if( im_maxpos( argv[0], &x, &y, &f ) )
return( -1 );
((double *) argv[1])[0] = x;
((double *) argv[1])[1] = y;
return( 0 );
}
/* Description of im_maxpos.
*/
static im_function maxpos_desc = {
"im_maxpos", /* Name */
N_( "position of maximum value of image" ),
0, /* Flags */
maxpos_vec, /* Dispatch function */
IM_NUMBER( maxpos_args ), /* Size of arg list */
maxpos_args /* Arg list */
};
/* Args to im_maxpos_avg.
*/
static im_arg_desc maxpos_avg_args[] = {
IM_INPUT_IMAGE ("in"),
IM_OUTPUT_DOUBLE("x"),
IM_OUTPUT_DOUBLE("y"),
IM_OUTPUT_DOUBLE("out")
};
/* Call im_maxpos_avg via arg vector.
*/
static int
maxpos_avg_vec( im_object *argv )
{
return im_maxpos_avg( argv[0], argv[1], argv[2], argv[3] );
}
/* Description of im_maxpos_avg.
*/
static im_function maxpos_avg_desc = {
"im_maxpos_avg",
N_( "position of maximum value of image, averaging in case of draw" ),
IM_FN_PIO,
maxpos_avg_vec,
IM_NUMBER( maxpos_avg_args ),
maxpos_avg_args
};
/* Args to im_min/maxpos_vec.
*/
static im_arg_desc maxpos_vec_args[] = {
IM_INPUT_IMAGE ("in"),
IM_INPUT_INT ("n"),
IM_OUTPUT_INTVEC("xes"),
IM_OUTPUT_INTVEC("yes"),
IM_OUTPUT_DOUBLEVEC("maxima")
};
/* Call im_maxpos_vec via arg vector.
*/
static int
maxpos_vec_vec( im_object *argv )
{
int n = *((int *) argv[1]);
im_intvec_object *xes = argv[2];
im_intvec_object *yes = argv[3];
im_doublevec_object *maxima = argv[4];
xes->vec = IM_ARRAY( NULL, n, int );
xes->n = n;
yes->vec = IM_ARRAY( NULL, n, int );
yes->n = n;
maxima->vec = IM_ARRAY( NULL, n, double );
maxima->n = n;
if( !xes->vec || !yes->vec || !maxima->vec ||
im_maxpos_vec( argv[0], xes->vec, yes->vec, maxima->vec, n ) )
return -1;
return 0;
}
/* Description of im_maxpos_vec.
*/
static im_function maxpos_vec_desc = {
"im_maxpos_vec",
N_( "position and value of n maxima of image" ),
IM_FN_PIO,
maxpos_vec_vec,
IM_NUMBER( maxpos_vec_args ),
maxpos_vec_args
};
/* Call im_minpos_vec via arg vector.
*/
static int
minpos_vec_vec( im_object *argv )
{
int n = *((int *) argv[1]);
im_intvec_object *xes = argv[2];
im_intvec_object *yes = argv[3];
im_doublevec_object *minima = argv[4];
xes->vec = IM_ARRAY( NULL, n, int );
xes->n = n;
yes->vec = IM_ARRAY( NULL, n, int );
yes->n = n;
minima->vec = IM_ARRAY( NULL, n, double );
minima->n = n;
if( !xes->vec || !yes->vec || !minima->vec ||
im_minpos_vec( argv[0], xes->vec, yes->vec, minima->vec, n ) )
return -1;
return 0;
}
/* Description of im_minpos_vec.
*/
static im_function minpos_vec_desc = {
"im_minpos_vec",
N_( "position and value of n minima of image" ),
IM_FN_PIO,
minpos_vec_vec,
IM_NUMBER( maxpos_vec_args ),
maxpos_vec_args
};
/* Args for measure.
*/
static im_arg_desc measure_args[] = {
IM_INPUT_IMAGE( "in" ),
IM_OUTPUT_DMASK( "mask" ),
IM_INPUT_INT( "x" ),
IM_INPUT_INT( "y" ),
IM_INPUT_INT( "w" ),
IM_INPUT_INT( "h" ),
IM_INPUT_INT( "h_patches" ),
IM_INPUT_INT( "v_patches" )
};
/* Call im_measure via arg vector.
*/
static int
measure_vec( im_object *argv )
{
im_mask_object *mo = argv[1];
int x = *((int *) argv[2]);
int y = *((int *) argv[3]);
int w = *((int *) argv[4]);
int h = *((int *) argv[5]);
int u = *((int *) argv[6]);
int v = *((int *) argv[7]);
if( !(mo->mask =
im_measure_area( argv[0],
x, y, w, h, u, v, NULL, 0, mo->name )) ) {
return( -1 );
}
return( 0 );
}
/* Description of im_measure.
*/
static im_function measure_desc = {
"im_measure", /* Name */
N_( "measure averages of a grid of patches" ),
IM_FN_PIO, /* Flags */
measure_vec, /* Dispatch function */
IM_NUMBER( measure_args ), /* Size of arg list */
measure_args /* Arg list */
};
/* Call im_min via arg vector.
*/
static int
min_vec( im_object *argv )
{
double f;
if( im_min( argv[0], &f ) )
return( -1 );
*((double *) argv[1]) = f;
return( 0 );
}
/* Description of im_min.
*/
static im_function min_desc = {
"im_min", /* Name */
N_( "minimum value of image" ), /* Description */
IM_FN_PIO, /* Flags */
min_vec, /* Dispatch function */
IM_NUMBER( image_in_num_out ), /* Size of arg list */
image_in_num_out /* Arg list */
};
/* Call im_minpos via arg vector.
*/
static int
minpos_vec( im_object *argv )
{
double f;
int x, y;
if( im_minpos( argv[0], &x, &y, &f ) )
return( -1 );
((double *) argv[1])[0] = x;
((double *) argv[1])[1] = y;
return( 0 );
}
/* Description of im_minpos.
*/
static im_function minpos_desc = {
"im_minpos", /* Name */
N_( "position of minimum value of image" ),
0, /* Flags */
minpos_vec, /* Dispatch function */
IM_NUMBER( maxpos_args ), /* Size of arg list */
maxpos_args /* Arg list */
};
/* Call im_remainder via arg vector.
*/
static int
remainder_vec( im_object *argv )
{
return( im_remainder( argv[0], argv[1], argv[2] ) );
}
/* Description of im_remainder.
*/
static im_function remainder_desc = {
"im_remainder", /* Name */
N_( "remainder after integer division" ), /* Description */
IM_FN_PIO | IM_FN_PTOP, /* Flags */
remainder_vec, /* Dispatch function */
IM_NUMBER( two_in_one_out ), /* Size of arg list */
two_in_one_out /* Arg list */
};
/* Call im_remainderconst via arg vector.
*/
static int
remainderconst_vec( im_object *argv )
{
double c = *((double *) argv[2]);
return( im_remainderconst( argv[0], argv[1], c ) );
}
/* Args for im_remainderconst().
*/
static im_arg_desc remainderconst_args[] = {
IM_INPUT_IMAGE( "in" ),
IM_OUTPUT_IMAGE( "out" ),
IM_INPUT_DOUBLE( "x" )
};
/* Description of im_remainderconst.
*/
static im_function remainderconst_desc = {
"im_remainderconst", /* Name */
N_( "remainder after integer division by a constant" ),/* Description */
IM_FN_PIO | IM_FN_PTOP, /* Flags */
remainderconst_vec, /* Dispatch function */
IM_NUMBER( remainderconst_args ),/* Size of arg list */
remainderconst_args /* Arg list */
};
/* Call im_remainder_vec via arg vector.
*/
static int
remainder_vec_vec( im_object *argv )
{
im_doublevec_object *dv = (im_doublevec_object *) argv[2];
return( im_remainder_vec( argv[0], argv[1], dv->n, dv->vec ) );
}
/* Args for im_remainder_vec().
*/
static im_arg_desc remainder_vec_args[] = {
IM_INPUT_IMAGE( "in" ),
IM_OUTPUT_IMAGE( "out" ),
IM_INPUT_DOUBLEVEC( "x" )
};
/* Description of im_remainder_vec.
*/
static im_function remainder_vec_desc = {
"im_remainder_vec", /* Name */
N_( "remainder after integer division by a vector of constants" ),
/* Description */
IM_FN_PIO | IM_FN_PTOP, /* Flags */
remainder_vec_vec, /* Dispatch function */
IM_NUMBER( remainder_vec_args ),/* Size of arg list */
remainder_vec_args /* Arg list */
};
/* Call im_multiply via arg vector.
*/
static int
multiply_vec( im_object *argv )
{
return( im_multiply( argv[0], argv[1], argv[2] ) );
}
/* Description of im_multiply.
*/
static im_function multiply_desc = {
"im_multiply", /* Name */
N_( "multiply two images" ), /* Description */
IM_FN_PIO | IM_FN_PTOP, /* Flags */
multiply_vec, /* Dispatch function */
IM_NUMBER( two_in_one_out ), /* Size of arg list */
two_in_one_out /* Arg list */
};
/* Call im_powtra() via arg vector.
*/
static int
powtra_vec( im_object *argv )
{
double a = *((double *) argv[2]);
return( im_powtra( argv[0], argv[1], a ) );
}
/* Description of im_powtra().
*/
static im_function powtra_desc = {
"im_powtra", /* Name */
N_( "pel^x of image" ),
IM_FN_PIO | IM_FN_PTOP, /* Flags */
powtra_vec, /* Dispatch function */
IM_NUMBER( powtra_args ), /* Size of arg list */
powtra_args /* Arg list */
};
/* Call im_powtra_vec() via arg vector.
*/
static int
powtra_vec_vec( im_object *argv )
{
im_doublevec_object *rv = (im_doublevec_object *) argv[2];
return( im_powtra_vec( argv[0], argv[1], rv->n, rv->vec ) );
}
/* Description of im_powtra_vec().
*/
static im_function powtra_vec_desc = {
"im_powtra_vec", /* Name */
N_( "pel^[x,y,z] of image" ),
IM_FN_PIO | IM_FN_PTOP, /* Flags */
powtra_vec_vec, /* Dispatch function */
IM_NUMBER( expntra_vec_args ), /* Size of arg list */
expntra_vec_args /* Arg list */
};
/* Args for im_stats.
*/
static im_arg_desc stats_args[] = {
IM_INPUT_IMAGE( "in" ),
IM_OUTPUT_DMASK_STATS( "statistics" )
};
/* Call im_stats() via arg vector.
*/
static int
stats_vec( im_object *argv )
{
im_mask_object *mo = argv[1];
if( !(mo->mask = im_stats( argv[0] )) )
return( -1 );
return( 0 );
}
/* Description of im_stats().
*/
static im_function stats_desc = {
"im_stats", /* Name */
N_( "many image statistics in one pass" ),
IM_FN_PIO, /* Flags */
stats_vec, /* Dispatch function */
IM_NUMBER( stats_args ), /* Size of arg list */
stats_args /* Arg list */
};
/* Call im_subtract via arg vector.
*/
static int
subtract_vec( im_object *argv )
{
return( im_subtract( argv[0], argv[1], argv[2] ) );
}
/* Description of im_subtract.
*/
static im_function subtract_desc = {
"im_subtract", /* Name */
N_( "subtract two images" ), /* Description */
IM_FN_PIO, /* Flags */
subtract_vec, /* Dispatch function */
IM_NUMBER( two_in_one_out ), /* Size of arg list */
two_in_one_out /* Arg list */
};
/* Args for im_linreg.
*/
static im_arg_desc linreg_args[] = {
IM_INPUT_IMAGEVEC( "ins" ),
IM_OUTPUT_IMAGE( "out" ),
IM_INPUT_DOUBLEVEC( "xs" )
};
/* Call im_linreg() via arg vector.
*/
static int
linreg_vec( im_object *argv )
{
#define FUNCTION_NAME "im_linreg_vec"
im_imagevec_object *ins_vec= (im_imagevec_object*) argv[0];
im_doublevec_object *xs_vec= (im_doublevec_object*) argv[2];
IMAGE *out= (IMAGE*) argv[1];
IMAGE **ins= IM_ARRAY( out, ins_vec-> n + 1, IMAGE* );
int i;
if( ! ins )
return -1;
for( i= 0; i < ins_vec-> n; ++i )
ins[ i ]= ins_vec-> vec[ i ];
ins[ ins_vec-> n ]= NULL;
if( xs_vec-> n != ins_vec-> n ){
im_error( FUNCTION_NAME, "image vector and x vector differ in length" );
return -1;
}
return im_linreg( ins, out, xs_vec-> vec );
#undef FUNCTION_NAME
}
/* Description of im_linreg().
*/
static im_function linreg_desc = {
"im_linreg", /* Name */
N_( "pixelwise linear regression" ),
IM_FN_PIO | IM_FN_PTOP, /* Flags */
linreg_vec, /* Dispatch function */
IM_NUMBER( linreg_args ), /* Size of arg list */
linreg_args /* Arg list */
};
/* Call im_cross_phase via arg vector.
*/
static int
cross_phase_vec( im_object *argv )
{
return( im_cross_phase( argv[0], argv[1], argv[2] ) );
}
/* Description of im_cross_phase.
*/
static im_function cross_phase_desc = {
"im_cross_phase", /* Name */
N_( "phase of cross power spectrum of two complex images" ), /* Description */
IM_FN_PIO | IM_FN_PTOP, /* Flags */
cross_phase_vec, /* Dispatch function */
IM_NUMBER( two_in_one_out ), /* Size of arg list */
two_in_one_out /* Arg list */
};
/* Package up all these functions.
*/
static im_function *arith_list[] = {
&abs_desc,
&acostra_desc,
&add_desc,
&asintra_desc,
&atantra_desc,
&avg_desc,
&point_desc,
&point_bilinear_desc,
&bandmean_desc,
&ceil_desc,
&costra_desc,
&cross_phase_desc,
&deviate_desc,
&divide_desc,
&exp10tra_desc,
&expntra_desc,
&expntra_vec_desc,
&exptra_desc,
&floor_desc,
&invert_desc,
&lintra_desc,
&linreg_desc,
&lintra_vec_desc,
&log10tra_desc,
&logtra_desc,
&max_desc,
&maxpos_desc,
&maxpos_avg_desc,
&maxpos_vec_desc,
&measure_desc,
&min_desc,
&minpos_desc,
&minpos_vec_desc,
&multiply_desc,
&powtra_desc,
&powtra_vec_desc,
&recomb_desc,
&remainder_desc,
&remainderconst_desc,
&remainder_vec_desc,
&rint_desc,
&sign_desc,
&sintra_desc,
&stats_desc,
&subtract_desc,
&tantra_desc
};
/* Package of functions.
*/
im_package im__arithmetic = {
"arithmetic",
IM_NUMBER( arith_list ),
arith_list
};