blob: 50a028bec4f2bbe254f65e804559671b8f13f2d5 [file] [log] [blame]
c---------------------------------------------------------------------
c---------------------------------------------------------------------
subroutine y_solve
c---------------------------------------------------------------------
c---------------------------------------------------------------------
c---------------------------------------------------------------------
c Performs line solves in Y direction by first factoring
c the block-tridiagonal matrix into an upper triangular matrix,
c and then performing back substitution to solve for the unknow
c vectors of each line.
c
c Make sure we treat elements zero to cell_size in the direction
c of the sweep.
c---------------------------------------------------------------------
include 'header.h'
include 'mpinpb.h'
integer
> c, jstart, stage,
> first, last, recv_id, error, r_status(MPI_STATUS_SIZE),
> isize,jsize,ksize,send_id
jstart = 0
if (timeron) call timer_start(t_ysolve)
c---------------------------------------------------------------------
c in our terminology stage is the number of the cell in the y-direction
c i.e. stage = 1 means the start of the line stage=ncells means end
c---------------------------------------------------------------------
do stage = 1,ncells
c = slice(2,stage)
isize = cell_size(1,c) - 1
jsize = cell_size(2,c) - 1
ksize = cell_size(3,c) - 1
c---------------------------------------------------------------------
c set last-cell flag
c---------------------------------------------------------------------
if (stage .eq. ncells) then
last = 1
else
last = 0
endif
if (stage .eq. 1) then
c---------------------------------------------------------------------
c This is the first cell, so solve without receiving data
c---------------------------------------------------------------------
first = 1
c call lhsy(c)
call y_solve_cell(first,last,c)
else
c---------------------------------------------------------------------
c Not the first cell of this line, so receive info from
c processor working on preceeding cell
c---------------------------------------------------------------------
first = 0
if (timeron) call timer_start(t_ycomm)
call y_receive_solve_info(recv_id,c)
c---------------------------------------------------------------------
c overlap computations and communications
c---------------------------------------------------------------------
c call lhsy(c)
c---------------------------------------------------------------------
c wait for completion
c---------------------------------------------------------------------
call mpi_wait(send_id,r_status,error)
call mpi_wait(recv_id,r_status,error)
if (timeron) call timer_stop(t_ycomm)
c---------------------------------------------------------------------
c install C'(jstart+1) and rhs'(jstart+1) to be used in this cell
c---------------------------------------------------------------------
call y_unpack_solve_info(c)
call y_solve_cell(first,last,c)
endif
if (last .eq. 0) call y_send_solve_info(send_id,c)
enddo
c---------------------------------------------------------------------
c now perform backsubstitution in reverse direction
c---------------------------------------------------------------------
do stage = ncells, 1, -1
c = slice(2,stage)
first = 0
last = 0
if (stage .eq. 1) first = 1
if (stage .eq. ncells) then
last = 1
c---------------------------------------------------------------------
c last cell, so perform back substitute without waiting
c---------------------------------------------------------------------
call y_backsubstitute(first, last,c)
else
if (timeron) call timer_start(t_ycomm)
call y_receive_backsub_info(recv_id,c)
call mpi_wait(send_id,r_status,error)
call mpi_wait(recv_id,r_status,error)
if (timeron) call timer_stop(t_ycomm)
call y_unpack_backsub_info(c)
call y_backsubstitute(first,last,c)
endif
if (first .eq. 0) call y_send_backsub_info(send_id,c)
enddo
if (timeron) call timer_stop(t_ysolve)
return
end
c---------------------------------------------------------------------
c---------------------------------------------------------------------
subroutine y_unpack_solve_info(c)
c---------------------------------------------------------------------
c---------------------------------------------------------------------
c---------------------------------------------------------------------
c unpack C'(-1) and rhs'(-1) for
c all i and k
c---------------------------------------------------------------------
include 'header.h'
integer i,k,m,n,ptr,c,jstart
jstart = 0
ptr = 0
do k=0,KMAX-1
do i=0,IMAX-1
do m=1,BLOCK_SIZE
do n=1,BLOCK_SIZE
lhsc(m,n,i,jstart-1,k,c) = out_buffer(ptr+n)
enddo
ptr = ptr+BLOCK_SIZE
enddo
do n=1,BLOCK_SIZE
rhs(n,i,jstart-1,k,c) = out_buffer(ptr+n)
enddo
ptr = ptr+BLOCK_SIZE
enddo
enddo
return
end
c---------------------------------------------------------------------
c---------------------------------------------------------------------
subroutine y_send_solve_info(send_id,c)
c---------------------------------------------------------------------
c---------------------------------------------------------------------
c---------------------------------------------------------------------
c pack up and send C'(jend) and rhs'(jend) for
c all i and k
c---------------------------------------------------------------------
include 'header.h'
include 'mpinpb.h'
integer i,k,m,n,jsize,ptr,c,ip,kp
integer error,send_id,buffer_size
jsize = cell_size(2,c)-1
ip = cell_coord(1,c) - 1
kp = cell_coord(3,c) - 1
buffer_size=MAX_CELL_DIM*MAX_CELL_DIM*
> (BLOCK_SIZE*BLOCK_SIZE + BLOCK_SIZE)
c---------------------------------------------------------------------
c pack up buffer
c---------------------------------------------------------------------
ptr = 0
do k=0,KMAX-1
do i=0,IMAX-1
do m=1,BLOCK_SIZE
do n=1,BLOCK_SIZE
in_buffer(ptr+n) = lhsc(m,n,i,jsize,k,c)
enddo
ptr = ptr+BLOCK_SIZE
enddo
do n=1,BLOCK_SIZE
in_buffer(ptr+n) = rhs(n,i,jsize,k,c)
enddo
ptr = ptr+BLOCK_SIZE
enddo
enddo
c---------------------------------------------------------------------
c send buffer
c---------------------------------------------------------------------
if (timeron) call timer_start(t_ycomm)
call mpi_isend(in_buffer, buffer_size,
> dp_type, successor(2),
> SOUTH+ip+kp*NCELLS, comm_solve,
> send_id,error)
if (timeron) call timer_stop(t_ycomm)
return
end
c---------------------------------------------------------------------
c---------------------------------------------------------------------
subroutine y_send_backsub_info(send_id,c)
c---------------------------------------------------------------------
c---------------------------------------------------------------------
c---------------------------------------------------------------------
c pack up and send U(jstart) for all i and k
c---------------------------------------------------------------------
include 'header.h'
include 'mpinpb.h'
integer i,k,n,ptr,c,jstart,ip,kp
integer error,send_id,buffer_size
c---------------------------------------------------------------------
c Send element 0 to previous processor
c---------------------------------------------------------------------
jstart = 0
ip = cell_coord(1,c)-1
kp = cell_coord(3,c)-1
buffer_size=MAX_CELL_DIM*MAX_CELL_DIM*BLOCK_SIZE
ptr = 0
do k=0,KMAX-1
do i=0,IMAX-1
do n=1,BLOCK_SIZE
in_buffer(ptr+n) = rhs(n,i,jstart,k,c)
enddo
ptr = ptr+BLOCK_SIZE
enddo
enddo
if (timeron) call timer_start(t_ycomm)
call mpi_isend(in_buffer, buffer_size,
> dp_type, predecessor(2),
> NORTH+ip+kp*NCELLS, comm_solve,
> send_id,error)
if (timeron) call timer_stop(t_ycomm)
return
end
c---------------------------------------------------------------------
c---------------------------------------------------------------------
subroutine y_unpack_backsub_info(c)
c---------------------------------------------------------------------
c---------------------------------------------------------------------
c---------------------------------------------------------------------
c unpack U(jsize) for all i and k
c---------------------------------------------------------------------
include 'header.h'
integer i,k,n,ptr,c
ptr = 0
do k=0,KMAX-1
do i=0,IMAX-1
do n=1,BLOCK_SIZE
backsub_info(n,i,k,c) = out_buffer(ptr+n)
enddo
ptr = ptr+BLOCK_SIZE
enddo
enddo
return
end
c---------------------------------------------------------------------
c---------------------------------------------------------------------
subroutine y_receive_backsub_info(recv_id,c)
c---------------------------------------------------------------------
c---------------------------------------------------------------------
c---------------------------------------------------------------------
c post mpi receives
c---------------------------------------------------------------------
include 'header.h'
include 'mpinpb.h'
integer error,recv_id,ip,kp,c,buffer_size
ip = cell_coord(1,c) - 1
kp = cell_coord(3,c) - 1
buffer_size=MAX_CELL_DIM*MAX_CELL_DIM*BLOCK_SIZE
call mpi_irecv(out_buffer, buffer_size,
> dp_type, successor(2),
> NORTH+ip+kp*NCELLS, comm_solve,
> recv_id, error)
return
end
c---------------------------------------------------------------------
c---------------------------------------------------------------------
subroutine y_receive_solve_info(recv_id,c)
c---------------------------------------------------------------------
c---------------------------------------------------------------------
c---------------------------------------------------------------------
c post mpi receives
c---------------------------------------------------------------------
include 'header.h'
include 'mpinpb.h'
integer ip,kp,recv_id,error,c,buffer_size
ip = cell_coord(1,c) - 1
kp = cell_coord(3,c) - 1
buffer_size=MAX_CELL_DIM*MAX_CELL_DIM*
> (BLOCK_SIZE*BLOCK_SIZE + BLOCK_SIZE)
call mpi_irecv(out_buffer, buffer_size,
> dp_type, predecessor(2),
> SOUTH+ip+kp*NCELLS, comm_solve,
> recv_id, error)
return
end
c---------------------------------------------------------------------
c---------------------------------------------------------------------
subroutine y_backsubstitute(first, last, c)
c---------------------------------------------------------------------
c---------------------------------------------------------------------
c---------------------------------------------------------------------
c back solve: if last cell, then generate U(jsize)=rhs(jsize)
c else assume U(jsize) is loaded in un pack backsub_info
c so just use it
c after call u(jstart) will be sent to next cell
c---------------------------------------------------------------------
include 'header.h'
integer first, last, c, i, k
integer m,n,j,jsize,isize,ksize,jstart
jstart = 0
isize = cell_size(1,c)-end(1,c)-1
jsize = cell_size(2,c)-1
ksize = cell_size(3,c)-end(3,c)-1
if (last .eq. 0) then
do k=start(3,c),ksize
do i=start(1,c),isize
c---------------------------------------------------------------------
c U(jsize) uses info from previous cell if not last cell
c---------------------------------------------------------------------
do m=1,BLOCK_SIZE
do n=1,BLOCK_SIZE
rhs(m,i,jsize,k,c) = rhs(m,i,jsize,k,c)
> - lhsc(m,n,i,jsize,k,c)*
> backsub_info(n,i,k,c)
enddo
enddo
enddo
enddo
endif
do k=start(3,c),ksize
do j=jsize-1,jstart,-1
do i=start(1,c),isize
do m=1,BLOCK_SIZE
do n=1,BLOCK_SIZE
rhs(m,i,j,k,c) = rhs(m,i,j,k,c)
> - lhsc(m,n,i,j,k,c)*rhs(n,i,j+1,k,c)
enddo
enddo
enddo
enddo
enddo
return
end
c---------------------------------------------------------------------
c---------------------------------------------------------------------
subroutine y_solve_cell(first,last,c)
c---------------------------------------------------------------------
c---------------------------------------------------------------------
c---------------------------------------------------------------------
c performs guaussian elimination on this cell.
c
c assumes that unpacking routines for non-first cells
c preload C' and rhs' from previous cell.
c
c assumed send happens outside this routine, but that
c c'(JMAX) and rhs'(JMAX) will be sent to next cell
c---------------------------------------------------------------------
include 'header.h'
include 'work_lhs.h'
integer first,last,c
integer i,j,k,isize,ksize,jsize,jstart
double precision utmp(6,-2:JMAX+1)
jstart = 0
isize = cell_size(1,c)-end(1,c)-1
jsize = cell_size(2,c)-1
ksize = cell_size(3,c)-end(3,c)-1
call lhsabinit(lhsa, lhsb, jsize)
do k=start(3,c),ksize
do i=start(1,c),isize
c---------------------------------------------------------------------
c This function computes the left hand side for the three y-factors
c---------------------------------------------------------------------
c---------------------------------------------------------------------
c Compute the indices for storing the tri-diagonal matrix;
c determine a (labeled f) and n jacobians for cell c
c---------------------------------------------------------------------
do j = start(2,c)-1, cell_size(2,c)-end(2,c)
utmp(1,j) = 1.0d0 / u(1,i,j,k,c)
utmp(2,j) = u(2,i,j,k,c)
utmp(3,j) = u(3,i,j,k,c)
utmp(4,j) = u(4,i,j,k,c)
utmp(5,j) = u(5,i,j,k,c)
utmp(6,j) = qs(i,j,k,c)
end do
do j = start(2,c)-1, cell_size(2,c)-end(2,c)
tmp1 = utmp(1,j)
tmp2 = tmp1 * tmp1
tmp3 = tmp1 * tmp2
fjac(1,1,j) = 0.0d+00
fjac(1,2,j) = 0.0d+00
fjac(1,3,j) = 1.0d+00
fjac(1,4,j) = 0.0d+00
fjac(1,5,j) = 0.0d+00
fjac(2,1,j) = - ( utmp(2,j)*utmp(3,j) )
> * tmp2
fjac(2,2,j) = utmp(3,j) * tmp1
fjac(2,3,j) = utmp(2,j) * tmp1
fjac(2,4,j) = 0.0d+00
fjac(2,5,j) = 0.0d+00
fjac(3,1,j) = - ( utmp(3,j)*utmp(3,j)*tmp2)
> + c2 * utmp(6,j)
fjac(3,2,j) = - c2 * utmp(2,j) * tmp1
fjac(3,3,j) = ( 2.0d+00 - c2 )
> * utmp(3,j) * tmp1
fjac(3,4,j) = - c2 * utmp(4,j) * tmp1
fjac(3,5,j) = c2
fjac(4,1,j) = - ( utmp(3,j)*utmp(4,j) )
> * tmp2
fjac(4,2,j) = 0.0d+00
fjac(4,3,j) = utmp(4,j) * tmp1
fjac(4,4,j) = utmp(3,j) * tmp1
fjac(4,5,j) = 0.0d+00
fjac(5,1,j) = ( c2 * 2.0d0 * utmp(6,j)
> - c1 * utmp(5,j) * tmp1 )
> * utmp(3,j) * tmp1
fjac(5,2,j) = - c2 * utmp(2,j)*utmp(3,j)
> * tmp2
fjac(5,3,j) = c1 * utmp(5,j) * tmp1
> - c2 * ( utmp(6,j)
> + utmp(3,j)*utmp(3,j) * tmp2 )
fjac(5,4,j) = - c2 * ( utmp(3,j)*utmp(4,j) )
> * tmp2
fjac(5,5,j) = c1 * utmp(3,j) * tmp1
njac(1,1,j) = 0.0d+00
njac(1,2,j) = 0.0d+00
njac(1,3,j) = 0.0d+00
njac(1,4,j) = 0.0d+00
njac(1,5,j) = 0.0d+00
njac(2,1,j) = - c3c4 * tmp2 * utmp(2,j)
njac(2,2,j) = c3c4 * tmp1
njac(2,3,j) = 0.0d+00
njac(2,4,j) = 0.0d+00
njac(2,5,j) = 0.0d+00
njac(3,1,j) = - con43 * c3c4 * tmp2 * utmp(3,j)
njac(3,2,j) = 0.0d+00
njac(3,3,j) = con43 * c3c4 * tmp1
njac(3,4,j) = 0.0d+00
njac(3,5,j) = 0.0d+00
njac(4,1,j) = - c3c4 * tmp2 * utmp(4,j)
njac(4,2,j) = 0.0d+00
njac(4,3,j) = 0.0d+00
njac(4,4,j) = c3c4 * tmp1
njac(4,5,j) = 0.0d+00
njac(5,1,j) = - ( c3c4
> - c1345 ) * tmp3 * (utmp(2,j)**2)
> - ( con43 * c3c4
> - c1345 ) * tmp3 * (utmp(3,j)**2)
> - ( c3c4 - c1345 ) * tmp3 * (utmp(4,j)**2)
> - c1345 * tmp2 * utmp(5,j)
njac(5,2,j) = ( c3c4 - c1345 ) * tmp2 * utmp(2,j)
njac(5,3,j) = ( con43 * c3c4
> - c1345 ) * tmp2 * utmp(3,j)
njac(5,4,j) = ( c3c4 - c1345 ) * tmp2 * utmp(4,j)
njac(5,5,j) = ( c1345 ) * tmp1
enddo
c---------------------------------------------------------------------
c now joacobians set, so form left hand side in y direction
c---------------------------------------------------------------------
do j = start(2,c), jsize-end(2,c)
tmp1 = dt * ty1
tmp2 = dt * ty2
lhsa(1,1,j) = - tmp2 * fjac(1,1,j-1)
> - tmp1 * njac(1,1,j-1)
> - tmp1 * dy1
lhsa(1,2,j) = - tmp2 * fjac(1,2,j-1)
> - tmp1 * njac(1,2,j-1)
lhsa(1,3,j) = - tmp2 * fjac(1,3,j-1)
> - tmp1 * njac(1,3,j-1)
lhsa(1,4,j) = - tmp2 * fjac(1,4,j-1)
> - tmp1 * njac(1,4,j-1)
lhsa(1,5,j) = - tmp2 * fjac(1,5,j-1)
> - tmp1 * njac(1,5,j-1)
lhsa(2,1,j) = - tmp2 * fjac(2,1,j-1)
> - tmp1 * njac(2,1,j-1)
lhsa(2,2,j) = - tmp2 * fjac(2,2,j-1)
> - tmp1 * njac(2,2,j-1)
> - tmp1 * dy2
lhsa(2,3,j) = - tmp2 * fjac(2,3,j-1)
> - tmp1 * njac(2,3,j-1)
lhsa(2,4,j) = - tmp2 * fjac(2,4,j-1)
> - tmp1 * njac(2,4,j-1)
lhsa(2,5,j) = - tmp2 * fjac(2,5,j-1)
> - tmp1 * njac(2,5,j-1)
lhsa(3,1,j) = - tmp2 * fjac(3,1,j-1)
> - tmp1 * njac(3,1,j-1)
lhsa(3,2,j) = - tmp2 * fjac(3,2,j-1)
> - tmp1 * njac(3,2,j-1)
lhsa(3,3,j) = - tmp2 * fjac(3,3,j-1)
> - tmp1 * njac(3,3,j-1)
> - tmp1 * dy3
lhsa(3,4,j) = - tmp2 * fjac(3,4,j-1)
> - tmp1 * njac(3,4,j-1)
lhsa(3,5,j) = - tmp2 * fjac(3,5,j-1)
> - tmp1 * njac(3,5,j-1)
lhsa(4,1,j) = - tmp2 * fjac(4,1,j-1)
> - tmp1 * njac(4,1,j-1)
lhsa(4,2,j) = - tmp2 * fjac(4,2,j-1)
> - tmp1 * njac(4,2,j-1)
lhsa(4,3,j) = - tmp2 * fjac(4,3,j-1)
> - tmp1 * njac(4,3,j-1)
lhsa(4,4,j) = - tmp2 * fjac(4,4,j-1)
> - tmp1 * njac(4,4,j-1)
> - tmp1 * dy4
lhsa(4,5,j) = - tmp2 * fjac(4,5,j-1)
> - tmp1 * njac(4,5,j-1)
lhsa(5,1,j) = - tmp2 * fjac(5,1,j-1)
> - tmp1 * njac(5,1,j-1)
lhsa(5,2,j) = - tmp2 * fjac(5,2,j-1)
> - tmp1 * njac(5,2,j-1)
lhsa(5,3,j) = - tmp2 * fjac(5,3,j-1)
> - tmp1 * njac(5,3,j-1)
lhsa(5,4,j) = - tmp2 * fjac(5,4,j-1)
> - tmp1 * njac(5,4,j-1)
lhsa(5,5,j) = - tmp2 * fjac(5,5,j-1)
> - tmp1 * njac(5,5,j-1)
> - tmp1 * dy5
lhsb(1,1,j) = 1.0d+00
> + tmp1 * 2.0d+00 * njac(1,1,j)
> + tmp1 * 2.0d+00 * dy1
lhsb(1,2,j) = tmp1 * 2.0d+00 * njac(1,2,j)
lhsb(1,3,j) = tmp1 * 2.0d+00 * njac(1,3,j)
lhsb(1,4,j) = tmp1 * 2.0d+00 * njac(1,4,j)
lhsb(1,5,j) = tmp1 * 2.0d+00 * njac(1,5,j)
lhsb(2,1,j) = tmp1 * 2.0d+00 * njac(2,1,j)
lhsb(2,2,j) = 1.0d+00
> + tmp1 * 2.0d+00 * njac(2,2,j)
> + tmp1 * 2.0d+00 * dy2
lhsb(2,3,j) = tmp1 * 2.0d+00 * njac(2,3,j)
lhsb(2,4,j) = tmp1 * 2.0d+00 * njac(2,4,j)
lhsb(2,5,j) = tmp1 * 2.0d+00 * njac(2,5,j)
lhsb(3,1,j) = tmp1 * 2.0d+00 * njac(3,1,j)
lhsb(3,2,j) = tmp1 * 2.0d+00 * njac(3,2,j)
lhsb(3,3,j) = 1.0d+00
> + tmp1 * 2.0d+00 * njac(3,3,j)
> + tmp1 * 2.0d+00 * dy3
lhsb(3,4,j) = tmp1 * 2.0d+00 * njac(3,4,j)
lhsb(3,5,j) = tmp1 * 2.0d+00 * njac(3,5,j)
lhsb(4,1,j) = tmp1 * 2.0d+00 * njac(4,1,j)
lhsb(4,2,j) = tmp1 * 2.0d+00 * njac(4,2,j)
lhsb(4,3,j) = tmp1 * 2.0d+00 * njac(4,3,j)
lhsb(4,4,j) = 1.0d+00
> + tmp1 * 2.0d+00 * njac(4,4,j)
> + tmp1 * 2.0d+00 * dy4
lhsb(4,5,j) = tmp1 * 2.0d+00 * njac(4,5,j)
lhsb(5,1,j) = tmp1 * 2.0d+00 * njac(5,1,j)
lhsb(5,2,j) = tmp1 * 2.0d+00 * njac(5,2,j)
lhsb(5,3,j) = tmp1 * 2.0d+00 * njac(5,3,j)
lhsb(5,4,j) = tmp1 * 2.0d+00 * njac(5,4,j)
lhsb(5,5,j) = 1.0d+00
> + tmp1 * 2.0d+00 * njac(5,5,j)
> + tmp1 * 2.0d+00 * dy5
lhsc(1,1,i,j,k,c) = tmp2 * fjac(1,1,j+1)
> - tmp1 * njac(1,1,j+1)
> - tmp1 * dy1
lhsc(1,2,i,j,k,c) = tmp2 * fjac(1,2,j+1)
> - tmp1 * njac(1,2,j+1)
lhsc(1,3,i,j,k,c) = tmp2 * fjac(1,3,j+1)
> - tmp1 * njac(1,3,j+1)
lhsc(1,4,i,j,k,c) = tmp2 * fjac(1,4,j+1)
> - tmp1 * njac(1,4,j+1)
lhsc(1,5,i,j,k,c) = tmp2 * fjac(1,5,j+1)
> - tmp1 * njac(1,5,j+1)
lhsc(2,1,i,j,k,c) = tmp2 * fjac(2,1,j+1)
> - tmp1 * njac(2,1,j+1)
lhsc(2,2,i,j,k,c) = tmp2 * fjac(2,2,j+1)
> - tmp1 * njac(2,2,j+1)
> - tmp1 * dy2
lhsc(2,3,i,j,k,c) = tmp2 * fjac(2,3,j+1)
> - tmp1 * njac(2,3,j+1)
lhsc(2,4,i,j,k,c) = tmp2 * fjac(2,4,j+1)
> - tmp1 * njac(2,4,j+1)
lhsc(2,5,i,j,k,c) = tmp2 * fjac(2,5,j+1)
> - tmp1 * njac(2,5,j+1)
lhsc(3,1,i,j,k,c) = tmp2 * fjac(3,1,j+1)
> - tmp1 * njac(3,1,j+1)
lhsc(3,2,i,j,k,c) = tmp2 * fjac(3,2,j+1)
> - tmp1 * njac(3,2,j+1)
lhsc(3,3,i,j,k,c) = tmp2 * fjac(3,3,j+1)
> - tmp1 * njac(3,3,j+1)
> - tmp1 * dy3
lhsc(3,4,i,j,k,c) = tmp2 * fjac(3,4,j+1)
> - tmp1 * njac(3,4,j+1)
lhsc(3,5,i,j,k,c) = tmp2 * fjac(3,5,j+1)
> - tmp1 * njac(3,5,j+1)
lhsc(4,1,i,j,k,c) = tmp2 * fjac(4,1,j+1)
> - tmp1 * njac(4,1,j+1)
lhsc(4,2,i,j,k,c) = tmp2 * fjac(4,2,j+1)
> - tmp1 * njac(4,2,j+1)
lhsc(4,3,i,j,k,c) = tmp2 * fjac(4,3,j+1)
> - tmp1 * njac(4,3,j+1)
lhsc(4,4,i,j,k,c) = tmp2 * fjac(4,4,j+1)
> - tmp1 * njac(4,4,j+1)
> - tmp1 * dy4
lhsc(4,5,i,j,k,c) = tmp2 * fjac(4,5,j+1)
> - tmp1 * njac(4,5,j+1)
lhsc(5,1,i,j,k,c) = tmp2 * fjac(5,1,j+1)
> - tmp1 * njac(5,1,j+1)
lhsc(5,2,i,j,k,c) = tmp2 * fjac(5,2,j+1)
> - tmp1 * njac(5,2,j+1)
lhsc(5,3,i,j,k,c) = tmp2 * fjac(5,3,j+1)
> - tmp1 * njac(5,3,j+1)
lhsc(5,4,i,j,k,c) = tmp2 * fjac(5,4,j+1)
> - tmp1 * njac(5,4,j+1)
lhsc(5,5,i,j,k,c) = tmp2 * fjac(5,5,j+1)
> - tmp1 * njac(5,5,j+1)
> - tmp1 * dy5
enddo
c---------------------------------------------------------------------
c outer most do loops - sweeping in i direction
c---------------------------------------------------------------------
if (first .eq. 1) then
c---------------------------------------------------------------------
c multiply c(i,jstart,k) by b_inverse and copy back to c
c multiply rhs(jstart) by b_inverse(jstart) and copy to rhs
c---------------------------------------------------------------------
call binvcrhs( lhsb(1,1,jstart),
> lhsc(1,1,i,jstart,k,c),
> rhs(1,i,jstart,k,c) )
endif
c---------------------------------------------------------------------
c begin inner most do loop
c do all the elements of the cell unless last
c---------------------------------------------------------------------
do j=jstart+first,jsize-last
c---------------------------------------------------------------------
c subtract A*lhs_vector(j-1) from lhs_vector(j)
c
c rhs(j) = rhs(j) - A*rhs(j-1)
c---------------------------------------------------------------------
call matvec_sub(lhsa(1,1,j),
> rhs(1,i,j-1,k,c),rhs(1,i,j,k,c))
c---------------------------------------------------------------------
c B(j) = B(j) - C(j-1)*A(j)
c---------------------------------------------------------------------
call matmul_sub(lhsa(1,1,j),
> lhsc(1,1,i,j-1,k,c),
> lhsb(1,1,j))
c---------------------------------------------------------------------
c multiply c(i,j,k) by b_inverse and copy back to c
c multiply rhs(i,1,k) by b_inverse(i,1,k) and copy to rhs
c---------------------------------------------------------------------
call binvcrhs( lhsb(1,1,j),
> lhsc(1,1,i,j,k,c),
> rhs(1,i,j,k,c) )
enddo
c---------------------------------------------------------------------
c Now finish up special cases for last cell
c---------------------------------------------------------------------
if (last .eq. 1) then
c---------------------------------------------------------------------
c rhs(jsize) = rhs(jsize) - A*rhs(jsize-1)
c---------------------------------------------------------------------
call matvec_sub(lhsa(1,1,jsize),
> rhs(1,i,jsize-1,k,c),rhs(1,i,jsize,k,c))
c---------------------------------------------------------------------
c B(jsize) = B(jsize) - C(jsize-1)*A(jsize)
c call matmul_sub(aa,i,jsize,k,c,
c $ cc,i,jsize-1,k,c,bb,i,jsize,k,c)
c---------------------------------------------------------------------
call matmul_sub(lhsa(1,1,jsize),
> lhsc(1,1,i,jsize-1,k,c),
> lhsb(1,1,jsize))
c---------------------------------------------------------------------
c multiply rhs(jsize) by b_inverse(jsize) and copy to rhs
c---------------------------------------------------------------------
call binvrhs( lhsb(1,1,jsize),
> rhs(1,i,jsize,k,c) )
endif
enddo
enddo
return
end