blob: 8c9f1a25a8a3470d3dcecdfd88f811f3696b4459 [file] [log] [blame]
/*=========================================================================
Copyright (c) 2007, Los Alamos National Security, LLC
All rights reserved.
Copyright 2007. Los Alamos National Security, LLC.
This software was produced under U.S. Government contract DE-AC52-06NA25396
for Los Alamos National Laboratory (LANL), which is operated by
Los Alamos National Security, LLC for the U.S. Department of Energy.
The U.S. Government has rights to use, reproduce, and distribute this software.
NEITHER THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES ANY WARRANTY,
EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE.
If software is modified to produce derivative works, such modified software
should be clearly marked, so as not to confuse it with the version available
from LANL.
Additionally, redistribution and use in source and binary forms, with or
without modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
- Neither the name of Los Alamos National Security, LLC, Los Alamos National
Laboratory, LANL, the U.S. Government, nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY LOS ALAMOS NATIONAL SECURITY, LLC AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL LOS ALAMOS NATIONAL SECURITY, LLC OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
=========================================================================*/
#ifndef BasicDefinition_h
#define BasicDefinition_h
#ifdef USE_VTK_COSMO
#include "vtkType.h"
#else
#include <stdint.h>
#endif
///////////////////////////////////////////////////////////////////////////
//
#ifdef USE_VTK_COSMO
#ifdef ID_64
typedef vtkTypeInt64 ID_T; // Particle and halo ids
#else
typedef vtkTypeInt32 ID_T; // Particle and halo ids
#endif
#else
#ifdef ID_64
typedef int64_t ID_T; // Particle and halo ids
#else
typedef int32_t ID_T; // Particle and halo ids
#endif
#endif
#ifdef POSVEL_64
typedef double POSVEL_T; // Position,velocity
typedef double POTENTIAL_T; // Potential
#else
typedef float POSVEL_T; // Position,velocity
typedef float POTENTIAL_T; // Potential
#endif
#ifdef GRID_64
typedef double GRID_T; // Grid types
#else
typedef float GRID_T; // Grid types
#endif
#ifdef USE_VTK_COSMO
typedef vtkTypeInt32 STATUS_T; // Dead (which neighbor) or alive particles
typedef vtkTypeUInt16 MASK_T; // Other particle information
#else
typedef int32_t STATUS_T; // Dead (which neighbor) or alive particles
typedef uint16_t MASK_T; // Other particle information
#endif
///////////////////////////////////////////////////////////////////////////
const float MAX_FLOAT = 1.0e15;
const float MIN_FLOAT = -1.0e15;
const int RECORD = 0; // Input data is by particle record
const int BLOCK = 1; // Input data is blocked by variable
const int DIMENSION = 3;
const int BUF_SZ = 512; // Character buffer
// Constants for Spherical Over Dense calculation
const double CHAIN_SIZE = 2.0; // Size for bucket mesh
const double RHO_C = 2.77536627e11; // Critical density
// in (M_sun/h) / (Mpc/h)^3
const double RHO_RATIO = 200.0; // density/critical density
const double SOD_MASS = 1.0e14; // for initial SOD radius
// in (M_sun/h)
const double MIN_RADIUS_FACTOR = 0.5; // Factor of initial SOD radius
const double MAX_RADIUS_FACTOR = 2.0; // Factor of initial SOD radius
const int MIN_SOD_SIZE = 1000; // Min FOF halo for SOD
const float MIN_SOD_MASS = 5.0e12; // Min FOF mass for SOD
const int NUM_SOD_BINS = 20; // Log bins for SOD halo
// Constants for subhalo finding
const int NUM_CHILDREN = 8; // Barnes Hut octree
const double GRAVITY_C = 43.015e-10;
// Gravitional constant for potential energy
const double ALPHA_SUBHALO = 1.0;
// Controls cut/grow of subhalo
// 1.0 / alphaFactor is the number of times
// larger a candidate must be in order for the
// smaller to be cut rather than allowed to grow
// Set to 1.0 means always cut as in SUBFIND
// Set to 0.2 main halo always wins cut/grow
// Set to 0.01 small structures grow
const double BETA_SUBHALO = 0.0;
// Controls the Poisson noise significance test
// If average density of particles in a group
// is greater than (1 + beta) * density of
// saddlepoint particle, group is considered
// significant and stands on its own
// Set to 0.0 means always significant
// Set to 0.25 helps small scale connectivity
const int NUM_SPH_DENSITY = 64;
// Number of neigbor particles used in
// calculating SPH smoothing length and density
const int NUM_SUBHALO_NEIGHBOR = 20;
// Number of closest neighbors looked at
// in placing particle in a subgroup
const int MIN_SUBHALO_SIZE = 20;
// Smallest allowed subhalo
const int MIN_FOF_SUBHALO = 2000;
// Smallest FOF halo which will have
// subhalo finding run on it
// Constants for speeding up unbind calculation on very large subhalos
const int MAX_UNBIND_1 = 100;
// When unbinding reaches less than this
// number of particles in subgroup remove
// only one particle before running unbind again
const int MAX_UNBIND_2 = 2000;
// When unbinding reaches less than this
// number of particles in subgroup remove
// remove (1 / FACTOR_UNBIND_1) total positive
// energy particles before running unbind again
const int MAX_UNBIND_3 = 40000;
// When unbinding reaches less than this
// number of particles in subgroup remove
// remove (1 / FACTOR_UNBIND_2) total positive
// energy particles before running unbind again
// Also maximum subhalo candidate for unbinding
// Used for development because that stage
// takes so long and normally this is only
// the main subhalo and all particles unbound
// would go to fuzz
const int FACTOR_UNBIND_1 = 4;
// Between MAX_UNBIND_1 and MAX_UNBIND_2
// remove 25% of the positive total energy
// particles
const int FACTOR_UNBIND_2 = 2;
// Betweend MAX_UNBIND_2 and MAX_UNBIND_3
// remove 50% of the positive total energy
// particles
const int MAX_UNBIND_DELETE = 20;
// To speed up unbinding when large candidate
// reaches this number of particles with
// positive total energy just quit
// Cosmology record data in .cosmo format
const int COSMO_FLOAT = 7; // x,y,z location and velocity plus mass
const int COSMO_INT = 1; // Particle id
const int RECORD_SIZE = sizeof(POSVEL_T) * COSMO_FLOAT +
sizeof(ID_T) * COSMO_INT;
const bool ENFORCE_MAX_READ = false;
const int MAX_READ = 8000000;
// Maximum number of particles to read at a time
// Multipled by COSMO_FLOAT floats
// makes the largest MPI allowed buffer
const float DEAD_FACTOR = 1.20f; // Number of dead allocated is % more than max
const int ALIVE = -1; // Particle belongs to this processor
const int MIXED = ALIVE - 1;
// For a trick to quickly know what
// particles should be output
const int UNMARKED = -1; // Mixed halo needs MASTER to arbitrate
const int INVALID = 0; // Mixed halo is not recorded on processor
const int VALID = 1; // Mixed halo is recorded on processor
const int MASTER = 0; // Processor to do merge step
const int MERGE_COUNT = 20; // Number of tags to merge on in mixed
// Parameters for center finding
const int MBP_THRESHOLD = 5000; // Threshold between n^2 and AStar methods
const int MCP_THRESHOLD = 8000;// Threshold between n^2 and Chain methods
const int MCP_CHAIN_FACTOR = 5; // Subdivide bb for building chaining mesh
//
// Neighbors are enumerated so that particles can be attached to the correct
// neighbor, but these pairs must be preserved for the ParticleExchange.
// Every processor should be able to send and receive on every iteration of
// the exchange, so if everyone sends RIGHT and receives LEFT it works
//
// Do not change this pairing order.
//
enum NEIGHBOR
{
X0, // Left face
X1, // Right face
Y0, // Bottom face
Y1, // Top face
Z0, // Front face
Z1, // Back face
X0_Y0, // Left bottom edge
X1_Y1, // Right top edge
X0_Y1, // Left top edge
X1_Y0, // Right bottom edge
Y0_Z0, // Bottom front edge
Y1_Z1, // Top back edge
Y0_Z1, // Bottom back edge
Y1_Z0, // Top front edge
Z0_X0, // Front left edge
Z1_X1, // Back right edge
Z0_X1, // Front right edge
Z1_X0, // Back left edge
X0_Y0_Z0, // Left bottom front corner
X1_Y1_Z1, // Right top back corner
X0_Y0_Z1, // Left bottom back corner
X1_Y1_Z0, // Right top front corner
X0_Y1_Z0, // Left top front corner
X1_Y0_Z1, // Right bottom back corner
X0_Y1_Z1, // Left top back corner
X1_Y0_Z0 // Right bottom front corner
};
const int NUM_OF_NEIGHBORS = 26;
// Header for Gadget input files
const int GADGET_GAS = 0;
const int GADGET_HALO = 1;
const int GADGET_DISK = 2;
const int GADGET_BULGE = 3;
const int GADGET_STARS = 4;
const int GADGET_BOUND = 5;
const int NUM_GADGET_TYPES = 6; // Types of gadget particles
const int GADGET_HEADER_SIZE = 256; // Size when the endian matches
const int GADGET_HEADER_SIZE_SWP= 65536;// Size when the endian doesn't match
const int GADGET_FILL = 60; // Current fill to HEADER SIZE
const int GADGET_SKIP = 4; // Bytes the indicate block size
const int GADGET_2_SKIP = 16; // Extra bytes in gadget-2
const int GADGET_1 = 1;
const int GADGET_2 = 2;
struct GadgetHeader {
int npart[NUM_GADGET_TYPES];
double mass[NUM_GADGET_TYPES];
double time;
double redshift;
int flag_sfr;
int flag_feedback;
int npartTotal[NUM_GADGET_TYPES];
int flag_cooling;
int num_files;
double BoxSize;
double Omega0;
double OmegaLambda;
double HubbleParam;
int flag_stellarage;
int flag_metals;
int HighWord[NUM_GADGET_TYPES];
int flag_entropy;
char fill[GADGET_FILL];
};
#endif