| /* |
| * Copyright (c) 2014 The University of Wisconsin |
| * |
| * Copyright (c) 2006 INRIA (Institut National de Recherche en |
| * Informatique et en Automatique / French National Research Institute |
| * for Computer Science and Applied Mathematics) |
| * |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are |
| * met: redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer; |
| * redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution; |
| * neither the name of the copyright holders nor the names of its |
| * contributors may be used to endorse or promote products derived from |
| * this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| /* @file |
| * Implementation of a TAGE branch predictor |
| */ |
| |
| #include "cpu/pred/tage_base.hh" |
| |
| #include "base/intmath.hh" |
| #include "base/logging.hh" |
| #include "debug/Fetch.hh" |
| #include "debug/Tage.hh" |
| |
| TAGEBase::TAGEBase(const TAGEBaseParams *p) |
| : SimObject(p), |
| logRatioBiModalHystEntries(p->logRatioBiModalHystEntries), |
| nHistoryTables(p->nHistoryTables), |
| tagTableCounterBits(p->tagTableCounterBits), |
| tagTableUBits(p->tagTableUBits), |
| histBufferSize(p->histBufferSize), |
| minHist(p->minHist), |
| maxHist(p->maxHist), |
| pathHistBits(p->pathHistBits), |
| tagTableTagWidths(p->tagTableTagWidths), |
| logTagTableSizes(p->logTagTableSizes), |
| threadHistory(p->numThreads), |
| logUResetPeriod(p->logUResetPeriod), |
| initialTCounterValue(p->initialTCounterValue), |
| numUseAltOnNa(p->numUseAltOnNa), |
| useAltOnNaBits(p->useAltOnNaBits), |
| maxNumAlloc(p->maxNumAlloc), |
| noSkip(p->noSkip), |
| speculativeHistUpdate(p->speculativeHistUpdate), |
| instShiftAmt(p->instShiftAmt), |
| initialized(false), |
| stats(this, nHistoryTables) |
| { |
| if (noSkip.empty()) { |
| // Set all the table to enabled by default |
| noSkip.resize(nHistoryTables + 1, true); |
| } |
| } |
| |
| TAGEBase::BranchInfo* |
| TAGEBase::makeBranchInfo() { |
| return new BranchInfo(*this); |
| } |
| |
| void |
| TAGEBase::init() |
| { |
| if (initialized) { |
| return; |
| } |
| |
| // Current method for periodically resetting the u counter bits only |
| // works for 1 or 2 bits |
| // Also make sure that it is not 0 |
| assert(tagTableUBits <= 2 && (tagTableUBits > 0)); |
| |
| // we use int type for the path history, so it cannot be more than |
| // its size |
| assert(pathHistBits <= (sizeof(int)*8)); |
| |
| // initialize the counter to half of the period |
| assert(logUResetPeriod != 0); |
| tCounter = initialTCounterValue; |
| |
| assert(histBufferSize > maxHist * 2); |
| |
| useAltPredForNewlyAllocated.resize(numUseAltOnNa, 0); |
| |
| for (auto& history : threadHistory) { |
| history.pathHist = 0; |
| history.globalHistory = new uint8_t[histBufferSize]; |
| history.gHist = history.globalHistory; |
| memset(history.gHist, 0, histBufferSize); |
| history.ptGhist = 0; |
| } |
| |
| histLengths = new int [nHistoryTables+1]; |
| |
| calculateParameters(); |
| |
| assert(tagTableTagWidths.size() == (nHistoryTables+1)); |
| assert(logTagTableSizes.size() == (nHistoryTables+1)); |
| |
| // First entry is for the Bimodal table and it is untagged in this |
| // implementation |
| assert(tagTableTagWidths[0] == 0); |
| |
| for (auto& history : threadHistory) { |
| history.computeIndices = new FoldedHistory[nHistoryTables+1]; |
| history.computeTags[0] = new FoldedHistory[nHistoryTables+1]; |
| history.computeTags[1] = new FoldedHistory[nHistoryTables+1]; |
| |
| initFoldedHistories(history); |
| } |
| |
| const uint64_t bimodalTableSize = ULL(1) << logTagTableSizes[0]; |
| btablePrediction.resize(bimodalTableSize, false); |
| btableHysteresis.resize(bimodalTableSize >> logRatioBiModalHystEntries, |
| true); |
| |
| gtable = new TageEntry*[nHistoryTables + 1]; |
| buildTageTables(); |
| |
| tableIndices = new int [nHistoryTables+1]; |
| tableTags = new int [nHistoryTables+1]; |
| initialized = true; |
| } |
| |
| void |
| TAGEBase::initFoldedHistories(ThreadHistory & history) |
| { |
| for (int i = 1; i <= nHistoryTables; i++) { |
| history.computeIndices[i].init( |
| histLengths[i], (logTagTableSizes[i])); |
| history.computeTags[0][i].init( |
| history.computeIndices[i].origLength, tagTableTagWidths[i]); |
| history.computeTags[1][i].init( |
| history.computeIndices[i].origLength, tagTableTagWidths[i]-1); |
| DPRINTF(Tage, "HistLength:%d, TTSize:%d, TTTWidth:%d\n", |
| histLengths[i], logTagTableSizes[i], tagTableTagWidths[i]); |
| } |
| } |
| |
| void |
| TAGEBase::buildTageTables() |
| { |
| for (int i = 1; i <= nHistoryTables; i++) { |
| gtable[i] = new TageEntry[1<<(logTagTableSizes[i])]; |
| } |
| } |
| |
| void |
| TAGEBase::calculateParameters() |
| { |
| histLengths[1] = minHist; |
| histLengths[nHistoryTables] = maxHist; |
| |
| for (int i = 2; i <= nHistoryTables; i++) { |
| histLengths[i] = (int) (((double) minHist * |
| pow ((double) (maxHist) / (double) minHist, |
| (double) (i - 1) / (double) ((nHistoryTables- 1)))) |
| + 0.5); |
| } |
| } |
| |
| void |
| TAGEBase::btbUpdate(ThreadID tid, Addr branch_pc, BranchInfo* &bi) |
| { |
| if (speculativeHistUpdate) { |
| ThreadHistory& tHist = threadHistory[tid]; |
| DPRINTF(Tage, "BTB miss resets prediction: %lx\n", branch_pc); |
| assert(tHist.gHist == &tHist.globalHistory[tHist.ptGhist]); |
| tHist.gHist[0] = 0; |
| for (int i = 1; i <= nHistoryTables; i++) { |
| tHist.computeIndices[i].comp = bi->ci[i]; |
| tHist.computeTags[0][i].comp = bi->ct0[i]; |
| tHist.computeTags[1][i].comp = bi->ct1[i]; |
| tHist.computeIndices[i].update(tHist.gHist); |
| tHist.computeTags[0][i].update(tHist.gHist); |
| tHist.computeTags[1][i].update(tHist.gHist); |
| } |
| } |
| } |
| |
| int |
| TAGEBase::bindex(Addr pc_in) const |
| { |
| return ((pc_in >> instShiftAmt) & ((ULL(1) << (logTagTableSizes[0])) - 1)); |
| } |
| |
| int |
| TAGEBase::F(int A, int size, int bank) const |
| { |
| int A1, A2; |
| |
| A = A & ((ULL(1) << size) - 1); |
| A1 = (A & ((ULL(1) << logTagTableSizes[bank]) - 1)); |
| A2 = (A >> logTagTableSizes[bank]); |
| A2 = ((A2 << bank) & ((ULL(1) << logTagTableSizes[bank]) - 1)) |
| + (A2 >> (logTagTableSizes[bank] - bank)); |
| A = A1 ^ A2; |
| A = ((A << bank) & ((ULL(1) << logTagTableSizes[bank]) - 1)) |
| + (A >> (logTagTableSizes[bank] - bank)); |
| return (A); |
| } |
| |
| // gindex computes a full hash of pc, ghist and pathHist |
| int |
| TAGEBase::gindex(ThreadID tid, Addr pc, int bank) const |
| { |
| int index; |
| int hlen = (histLengths[bank] > pathHistBits) ? pathHistBits : |
| histLengths[bank]; |
| const unsigned int shiftedPc = pc >> instShiftAmt; |
| index = |
| shiftedPc ^ |
| (shiftedPc >> ((int) abs(logTagTableSizes[bank] - bank) + 1)) ^ |
| threadHistory[tid].computeIndices[bank].comp ^ |
| F(threadHistory[tid].pathHist, hlen, bank); |
| |
| return (index & ((ULL(1) << (logTagTableSizes[bank])) - 1)); |
| } |
| |
| |
| // Tag computation |
| uint16_t |
| TAGEBase::gtag(ThreadID tid, Addr pc, int bank) const |
| { |
| int tag = (pc >> instShiftAmt) ^ |
| threadHistory[tid].computeTags[0][bank].comp ^ |
| (threadHistory[tid].computeTags[1][bank].comp << 1); |
| |
| return (tag & ((ULL(1) << tagTableTagWidths[bank]) - 1)); |
| } |
| |
| |
| // Up-down saturating counter |
| template<typename T> |
| void |
| TAGEBase::ctrUpdate(T & ctr, bool taken, int nbits) |
| { |
| assert(nbits <= sizeof(T) << 3); |
| if (taken) { |
| if (ctr < ((1 << (nbits - 1)) - 1)) |
| ctr++; |
| } else { |
| if (ctr > -(1 << (nbits - 1))) |
| ctr--; |
| } |
| } |
| |
| // int8_t and int versions of this function may be needed |
| template void TAGEBase::ctrUpdate(int8_t & ctr, bool taken, int nbits); |
| template void TAGEBase::ctrUpdate(int & ctr, bool taken, int nbits); |
| |
| // Up-down unsigned saturating counter |
| void |
| TAGEBase::unsignedCtrUpdate(uint8_t & ctr, bool up, unsigned nbits) |
| { |
| assert(nbits <= sizeof(uint8_t) << 3); |
| if (up) { |
| if (ctr < ((1 << nbits) - 1)) |
| ctr++; |
| } else { |
| if (ctr) |
| ctr--; |
| } |
| } |
| |
| // Bimodal prediction |
| bool |
| TAGEBase::getBimodePred(Addr pc, BranchInfo* bi) const |
| { |
| return btablePrediction[bi->bimodalIndex]; |
| } |
| |
| |
| // Update the bimodal predictor: a hysteresis bit is shared among N prediction |
| // bits (N = 2 ^ logRatioBiModalHystEntries) |
| void |
| TAGEBase::baseUpdate(Addr pc, bool taken, BranchInfo* bi) |
| { |
| int inter = (btablePrediction[bi->bimodalIndex] << 1) |
| + btableHysteresis[bi->bimodalIndex >> logRatioBiModalHystEntries]; |
| if (taken) { |
| if (inter < 3) |
| inter++; |
| } else if (inter > 0) { |
| inter--; |
| } |
| const bool pred = inter >> 1; |
| const bool hyst = inter & 1; |
| btablePrediction[bi->bimodalIndex] = pred; |
| btableHysteresis[bi->bimodalIndex >> logRatioBiModalHystEntries] = hyst; |
| DPRINTF(Tage, "Updating branch %lx, pred:%d, hyst:%d\n", pc, pred, hyst); |
| } |
| |
| // shifting the global history: we manage the history in a big table in order |
| // to reduce simulation time |
| void |
| TAGEBase::updateGHist(uint8_t * &h, bool dir, uint8_t * tab, int &pt) |
| { |
| if (pt == 0) { |
| DPRINTF(Tage, "Rolling over the histories\n"); |
| // Copy beginning of globalHistoryBuffer to end, such that |
| // the last maxHist outcomes are still reachable |
| // through pt[0 .. maxHist - 1]. |
| for (int i = 0; i < maxHist; i++) |
| tab[histBufferSize - maxHist + i] = tab[i]; |
| pt = histBufferSize - maxHist; |
| h = &tab[pt]; |
| } |
| pt--; |
| h--; |
| h[0] = (dir) ? 1 : 0; |
| } |
| |
| void |
| TAGEBase::calculateIndicesAndTags(ThreadID tid, Addr branch_pc, |
| BranchInfo* bi) |
| { |
| // computes the table addresses and the partial tags |
| for (int i = 1; i <= nHistoryTables; i++) { |
| tableIndices[i] = gindex(tid, branch_pc, i); |
| bi->tableIndices[i] = tableIndices[i]; |
| tableTags[i] = gtag(tid, branch_pc, i); |
| bi->tableTags[i] = tableTags[i]; |
| } |
| } |
| |
| unsigned |
| TAGEBase::getUseAltIdx(BranchInfo* bi, Addr branch_pc) |
| { |
| // There is only 1 counter on the base TAGE implementation |
| return 0; |
| } |
| |
| bool |
| TAGEBase::tagePredict(ThreadID tid, Addr branch_pc, |
| bool cond_branch, BranchInfo* bi) |
| { |
| Addr pc = branch_pc; |
| bool pred_taken = true; |
| |
| if (cond_branch) { |
| // TAGE prediction |
| |
| calculateIndicesAndTags(tid, pc, bi); |
| |
| bi->bimodalIndex = bindex(pc); |
| |
| bi->hitBank = 0; |
| bi->altBank = 0; |
| //Look for the bank with longest matching history |
| for (int i = nHistoryTables; i > 0; i--) { |
| if (noSkip[i] && |
| gtable[i][tableIndices[i]].tag == tableTags[i]) { |
| bi->hitBank = i; |
| bi->hitBankIndex = tableIndices[bi->hitBank]; |
| break; |
| } |
| } |
| //Look for the alternate bank |
| for (int i = bi->hitBank - 1; i > 0; i--) { |
| if (noSkip[i] && |
| gtable[i][tableIndices[i]].tag == tableTags[i]) { |
| bi->altBank = i; |
| bi->altBankIndex = tableIndices[bi->altBank]; |
| break; |
| } |
| } |
| //computes the prediction and the alternate prediction |
| if (bi->hitBank > 0) { |
| if (bi->altBank > 0) { |
| bi->altTaken = |
| gtable[bi->altBank][tableIndices[bi->altBank]].ctr >= 0; |
| extraAltCalc(bi); |
| }else { |
| bi->altTaken = getBimodePred(pc, bi); |
| } |
| |
| bi->longestMatchPred = |
| gtable[bi->hitBank][tableIndices[bi->hitBank]].ctr >= 0; |
| bi->pseudoNewAlloc = |
| abs(2 * gtable[bi->hitBank][bi->hitBankIndex].ctr + 1) <= 1; |
| |
| //if the entry is recognized as a newly allocated entry and |
| //useAltPredForNewlyAllocated is positive use the alternate |
| //prediction |
| if ((useAltPredForNewlyAllocated[getUseAltIdx(bi, branch_pc)] < 0) |
| || ! bi->pseudoNewAlloc) { |
| bi->tagePred = bi->longestMatchPred; |
| bi->provider = TAGE_LONGEST_MATCH; |
| } else { |
| bi->tagePred = bi->altTaken; |
| bi->provider = bi->altBank ? TAGE_ALT_MATCH |
| : BIMODAL_ALT_MATCH; |
| } |
| } else { |
| bi->altTaken = getBimodePred(pc, bi); |
| bi->tagePred = bi->altTaken; |
| bi->longestMatchPred = bi->altTaken; |
| bi->provider = BIMODAL_ONLY; |
| } |
| //end TAGE prediction |
| |
| pred_taken = (bi->tagePred); |
| DPRINTF(Tage, "Predict for %lx: taken?:%d, tagePred:%d, altPred:%d\n", |
| branch_pc, pred_taken, bi->tagePred, bi->altTaken); |
| } |
| bi->branchPC = branch_pc; |
| bi->condBranch = cond_branch; |
| return pred_taken; |
| } |
| |
| void |
| TAGEBase::adjustAlloc(bool & alloc, bool taken, bool pred_taken) |
| { |
| // Nothing for this base class implementation |
| } |
| |
| void |
| TAGEBase::handleAllocAndUReset(bool alloc, bool taken, BranchInfo* bi, |
| int nrand) |
| { |
| if (alloc) { |
| // is there some "unuseful" entry to allocate |
| uint8_t min = 1; |
| for (int i = nHistoryTables; i > bi->hitBank; i--) { |
| if (gtable[i][bi->tableIndices[i]].u < min) { |
| min = gtable[i][bi->tableIndices[i]].u; |
| } |
| } |
| |
| // we allocate an entry with a longer history |
| // to avoid ping-pong, we do not choose systematically the next |
| // entry, but among the 3 next entries |
| int Y = nrand & |
| ((ULL(1) << (nHistoryTables - bi->hitBank - 1)) - 1); |
| int X = bi->hitBank + 1; |
| if (Y & 1) { |
| X++; |
| if (Y & 2) |
| X++; |
| } |
| // No entry available, forces one to be available |
| if (min > 0) { |
| gtable[X][bi->tableIndices[X]].u = 0; |
| } |
| |
| |
| //Allocate entries |
| unsigned numAllocated = 0; |
| for (int i = X; i <= nHistoryTables; i++) { |
| if ((gtable[i][bi->tableIndices[i]].u == 0)) { |
| gtable[i][bi->tableIndices[i]].tag = bi->tableTags[i]; |
| gtable[i][bi->tableIndices[i]].ctr = (taken) ? 0 : -1; |
| ++numAllocated; |
| if (numAllocated == maxNumAlloc) { |
| break; |
| } |
| } |
| } |
| } |
| |
| tCounter++; |
| |
| handleUReset(); |
| } |
| |
| void |
| TAGEBase::handleUReset() |
| { |
| //periodic reset of u: reset is not complete but bit by bit |
| if ((tCounter & ((ULL(1) << logUResetPeriod) - 1)) == 0) { |
| // reset least significant bit |
| // most significant bit becomes least significant bit |
| for (int i = 1; i <= nHistoryTables; i++) { |
| for (int j = 0; j < (ULL(1) << logTagTableSizes[i]); j++) { |
| resetUctr(gtable[i][j].u); |
| } |
| } |
| } |
| } |
| |
| void |
| TAGEBase::resetUctr(uint8_t & u) |
| { |
| u >>= 1; |
| } |
| |
| void |
| TAGEBase::condBranchUpdate(ThreadID tid, Addr branch_pc, bool taken, |
| BranchInfo* bi, int nrand, Addr corrTarget, bool pred, bool preAdjustAlloc) |
| { |
| // TAGE UPDATE |
| // try to allocate a new entries only if prediction was wrong |
| bool alloc = (bi->tagePred != taken) && (bi->hitBank < nHistoryTables); |
| |
| if (preAdjustAlloc) { |
| adjustAlloc(alloc, taken, pred); |
| } |
| |
| if (bi->hitBank > 0) { |
| // Manage the selection between longest matching and alternate |
| // matching for "pseudo"-newly allocated longest matching entry |
| bool PseudoNewAlloc = bi->pseudoNewAlloc; |
| // an entry is considered as newly allocated if its prediction |
| // counter is weak |
| if (PseudoNewAlloc) { |
| if (bi->longestMatchPred == taken) { |
| alloc = false; |
| } |
| // if it was delivering the correct prediction, no need to |
| // allocate new entry even if the overall prediction was false |
| if (bi->longestMatchPred != bi->altTaken) { |
| ctrUpdate( |
| useAltPredForNewlyAllocated[getUseAltIdx(bi, branch_pc)], |
| bi->altTaken == taken, useAltOnNaBits); |
| } |
| } |
| } |
| |
| if (!preAdjustAlloc) { |
| adjustAlloc(alloc, taken, pred); |
| } |
| |
| handleAllocAndUReset(alloc, taken, bi, nrand); |
| |
| handleTAGEUpdate(branch_pc, taken, bi); |
| } |
| |
| void |
| TAGEBase::handleTAGEUpdate(Addr branch_pc, bool taken, BranchInfo* bi) |
| { |
| if (bi->hitBank > 0) { |
| DPRINTF(Tage, "Updating tag table entry (%d,%d) for branch %lx\n", |
| bi->hitBank, bi->hitBankIndex, branch_pc); |
| ctrUpdate(gtable[bi->hitBank][bi->hitBankIndex].ctr, taken, |
| tagTableCounterBits); |
| // if the provider entry is not certified to be useful also update |
| // the alternate prediction |
| if (gtable[bi->hitBank][bi->hitBankIndex].u == 0) { |
| if (bi->altBank > 0) { |
| ctrUpdate(gtable[bi->altBank][bi->altBankIndex].ctr, taken, |
| tagTableCounterBits); |
| DPRINTF(Tage, "Updating tag table entry (%d,%d) for" |
| " branch %lx\n", bi->hitBank, bi->hitBankIndex, |
| branch_pc); |
| } |
| if (bi->altBank == 0) { |
| baseUpdate(branch_pc, taken, bi); |
| } |
| } |
| |
| // update the u counter |
| if (bi->tagePred != bi->altTaken) { |
| unsignedCtrUpdate(gtable[bi->hitBank][bi->hitBankIndex].u, |
| bi->tagePred == taken, tagTableUBits); |
| } |
| } else { |
| baseUpdate(branch_pc, taken, bi); |
| } |
| } |
| |
| void |
| TAGEBase::updateHistories(ThreadID tid, Addr branch_pc, bool taken, |
| BranchInfo* bi, bool speculative, |
| const StaticInstPtr &inst, Addr target) |
| { |
| if (speculative != speculativeHistUpdate) { |
| return; |
| } |
| ThreadHistory& tHist = threadHistory[tid]; |
| // UPDATE HISTORIES |
| bool pathbit = ((branch_pc >> instShiftAmt) & 1); |
| //on a squash, return pointers to this and recompute indices. |
| //update user history |
| updateGHist(tHist.gHist, taken, tHist.globalHistory, tHist.ptGhist); |
| tHist.pathHist = (tHist.pathHist << 1) + pathbit; |
| tHist.pathHist = (tHist.pathHist & ((ULL(1) << pathHistBits) - 1)); |
| |
| if (speculative) { |
| bi->ptGhist = tHist.ptGhist; |
| bi->pathHist = tHist.pathHist; |
| } |
| |
| //prepare next index and tag computations for user branchs |
| for (int i = 1; i <= nHistoryTables; i++) |
| { |
| if (speculative) { |
| bi->ci[i] = tHist.computeIndices[i].comp; |
| bi->ct0[i] = tHist.computeTags[0][i].comp; |
| bi->ct1[i] = tHist.computeTags[1][i].comp; |
| } |
| tHist.computeIndices[i].update(tHist.gHist); |
| tHist.computeTags[0][i].update(tHist.gHist); |
| tHist.computeTags[1][i].update(tHist.gHist); |
| } |
| DPRINTF(Tage, "Updating global histories with branch:%lx; taken?:%d, " |
| "path Hist: %x; pointer:%d\n", branch_pc, taken, tHist.pathHist, |
| tHist.ptGhist); |
| assert(threadHistory[tid].gHist == |
| &threadHistory[tid].globalHistory[threadHistory[tid].ptGhist]); |
| } |
| |
| void |
| TAGEBase::squash(ThreadID tid, bool taken, TAGEBase::BranchInfo *bi, |
| Addr target) |
| { |
| if (!speculativeHistUpdate) { |
| /* If there are no speculative updates, no actions are needed */ |
| return; |
| } |
| |
| ThreadHistory& tHist = threadHistory[tid]; |
| DPRINTF(Tage, "Restoring branch info: %lx; taken? %d; PathHistory:%x, " |
| "pointer:%d\n", bi->branchPC,taken, bi->pathHist, bi->ptGhist); |
| tHist.pathHist = bi->pathHist; |
| tHist.ptGhist = bi->ptGhist; |
| tHist.gHist = &(tHist.globalHistory[tHist.ptGhist]); |
| tHist.gHist[0] = (taken ? 1 : 0); |
| for (int i = 1; i <= nHistoryTables; i++) { |
| tHist.computeIndices[i].comp = bi->ci[i]; |
| tHist.computeTags[0][i].comp = bi->ct0[i]; |
| tHist.computeTags[1][i].comp = bi->ct1[i]; |
| tHist.computeIndices[i].update(tHist.gHist); |
| tHist.computeTags[0][i].update(tHist.gHist); |
| tHist.computeTags[1][i].update(tHist.gHist); |
| } |
| } |
| |
| void |
| TAGEBase::extraAltCalc(BranchInfo* bi) |
| { |
| // do nothing. This is only used in some derived classes |
| return; |
| } |
| |
| void |
| TAGEBase::updateStats(bool taken, BranchInfo* bi) |
| { |
| if (taken == bi->tagePred) { |
| // correct prediction |
| switch (bi->provider) { |
| case BIMODAL_ONLY: stats.bimodalProviderCorrect++; break; |
| case TAGE_LONGEST_MATCH: stats.longestMatchProviderCorrect++; break; |
| case BIMODAL_ALT_MATCH: |
| stats.bimodalAltMatchProviderCorrect++; |
| break; |
| case TAGE_ALT_MATCH: stats.altMatchProviderCorrect++; break; |
| } |
| } else { |
| // wrong prediction |
| switch (bi->provider) { |
| case BIMODAL_ONLY: stats.bimodalProviderWrong++; break; |
| case TAGE_LONGEST_MATCH: |
| stats.longestMatchProviderWrong++; |
| if (bi->altTaken == taken) { |
| stats.altMatchProviderWouldHaveHit++; |
| } |
| break; |
| case BIMODAL_ALT_MATCH: |
| stats.bimodalAltMatchProviderWrong++; |
| break; |
| case TAGE_ALT_MATCH: |
| stats.altMatchProviderWrong++; |
| break; |
| } |
| |
| switch (bi->provider) { |
| case BIMODAL_ALT_MATCH: |
| case TAGE_ALT_MATCH: |
| if (bi->longestMatchPred == taken) { |
| stats.longestMatchProviderWouldHaveHit++; |
| } |
| } |
| } |
| |
| switch (bi->provider) { |
| case TAGE_LONGEST_MATCH: |
| case TAGE_ALT_MATCH: |
| stats.longestMatchProvider[bi->hitBank]++; |
| stats.altMatchProvider[bi->altBank]++; |
| break; |
| } |
| } |
| |
| unsigned |
| TAGEBase::getGHR(ThreadID tid, BranchInfo *bi) const |
| { |
| unsigned val = 0; |
| for (unsigned i = 0; i < 32; i++) { |
| // Make sure we don't go out of bounds |
| int gh_offset = bi->ptGhist + i; |
| assert(&(threadHistory[tid].globalHistory[gh_offset]) < |
| threadHistory[tid].globalHistory + histBufferSize); |
| val |= ((threadHistory[tid].globalHistory[gh_offset] & 0x1) << i); |
| } |
| |
| return val; |
| } |
| |
| TAGEBase::TAGEBaseStats::TAGEBaseStats( |
| Stats::Group *parent, unsigned nHistoryTables) |
| : Stats::Group(parent), |
| ADD_STAT(longestMatchProviderCorrect, "Number of times TAGE Longest" |
| " Match is the provider and the prediction is correct"), |
| ADD_STAT(altMatchProviderCorrect, "Number of times TAGE Alt Match" |
| " is the provider and the prediction is correct"), |
| ADD_STAT(bimodalAltMatchProviderCorrect, "Number of times TAGE Alt" |
| " Match is the bimodal and it is the provider and the prediction" |
| " is correct"), |
| ADD_STAT(bimodalProviderCorrect, "Number of times there are no" |
| " hits on the TAGE tables and the bimodal prediction is correct"), |
| ADD_STAT(longestMatchProviderWrong, "Number of times TAGE Longest" |
| " Match is the provider and the prediction is wrong"), |
| ADD_STAT(altMatchProviderWrong, "Number of times TAGE Alt Match is" |
| " the provider and the prediction is wrong"), |
| ADD_STAT(bimodalAltMatchProviderWrong, "Number of times TAGE Alt Match" |
| " is the bimodal and it is the provider and the prediction is" |
| " wrong"), |
| ADD_STAT(bimodalProviderWrong, "Number of times there are no hits" |
| " on the TAGE tables and the bimodal prediction is wrong"), |
| ADD_STAT(altMatchProviderWouldHaveHit, "Number of times TAGE" |
| " Longest Match is the provider, the prediction is wrong and" |
| " Alt Match prediction was correct"), |
| ADD_STAT(longestMatchProviderWouldHaveHit, "Number of times" |
| " TAGE Alt Match is the provider, the prediction is wrong and" |
| " Longest Match prediction was correct"), |
| ADD_STAT(longestMatchProvider, "TAGE provider for longest match"), |
| ADD_STAT(altMatchProvider, "TAGE provider for alt match") |
| { |
| longestMatchProvider.init(nHistoryTables + 1); |
| altMatchProvider.init(nHistoryTables + 1); |
| } |
| |
| int8_t |
| TAGEBase::getCtr(int hitBank, int hitBankIndex) const |
| { |
| return gtable[hitBank][hitBankIndex].ctr; |
| } |
| |
| unsigned |
| TAGEBase::getTageCtrBits() const |
| { |
| return tagTableCounterBits; |
| } |
| |
| int |
| TAGEBase::getPathHist(ThreadID tid) const |
| { |
| return threadHistory[tid].pathHist; |
| } |
| |
| bool |
| TAGEBase::isSpeculativeUpdateEnabled() const |
| { |
| return speculativeHistUpdate; |
| } |
| |
| size_t |
| TAGEBase::getSizeInBits() const { |
| size_t bits = 0; |
| for (int i = 1; i <= nHistoryTables; i++) { |
| bits += (1 << logTagTableSizes[i]) * |
| (tagTableCounterBits + tagTableUBits + tagTableTagWidths[i]); |
| } |
| uint64_t bimodalTableSize = ULL(1) << logTagTableSizes[0]; |
| bits += numUseAltOnNa * useAltOnNaBits; |
| bits += bimodalTableSize; |
| bits += (bimodalTableSize >> logRatioBiModalHystEntries); |
| bits += histLengths[nHistoryTables]; |
| bits += pathHistBits; |
| bits += logUResetPeriod; |
| return bits; |
| } |
| |
| TAGEBase* |
| TAGEBaseParams::create() |
| { |
| return new TAGEBase(this); |
| } |