blob: 2a98eea87d96593c142de76f83a82359b965671b [file] [log] [blame]
/*
* Copyright (c) 2009-2014, 2016-2020 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "arch/arm/utility.hh"
#include <memory>
#include "arch/arm/faults.hh"
#include "arch/arm/interrupts.hh"
#include "arch/arm/mmu.hh"
#include "arch/arm/page_size.hh"
#include "arch/arm/regs/cc.hh"
#include "arch/arm/regs/int.hh"
#include "arch/arm/regs/vec.hh"
#include "arch/arm/system.hh"
#include "base/compiler.hh"
#include "cpu/base.hh"
#include "cpu/checker/cpu.hh"
#include "cpu/thread_context.hh"
#include "mem/port_proxy.hh"
#include "sim/full_system.hh"
namespace gem5
{
namespace ArmISA
{
void
sendEvent(ThreadContext *tc)
{
if (tc->readMiscReg(MISCREG_SEV_MAILBOX) == 0) {
// Post Interrupt and wake cpu if needed
tc->getCpuPtr()->postInterrupt(tc->threadId(), INT_SEV, 0);
}
}
bool
isSecure(ThreadContext *tc)
{
CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
if (ArmSystem::haveEL(tc, EL3) && !cpsr.width && currEL(tc) == EL3)
return true;
if (ArmSystem::haveEL(tc, EL3) && cpsr.width && cpsr.mode == MODE_MON)
return true;
else
return isSecureBelowEL3(tc);
}
bool
isSecureBelowEL3(ThreadContext *tc)
{
SCR scr = tc->readMiscReg(MISCREG_SCR_EL3);
return ArmSystem::haveEL(tc, EL3) && scr.ns == 0;
}
ExceptionLevel
debugTargetFrom(ThreadContext *tc, bool secure)
{
bool route_to_el2;
if (ArmSystem::haveEL(tc, EL2) && (!secure || HaveSecureEL2Ext(tc))) {
if (ELIs32(tc, EL2)) {
const HCR hcr = tc->readMiscReg(MISCREG_HCR);
const HDCR hdcr = tc->readMiscRegNoEffect(MISCREG_HDCR);
route_to_el2 = (hdcr.tde == 1 || hcr.tge == 1);
} else {
const HCR hcr = tc->readMiscReg(MISCREG_HCR_EL2);
const HDCR mdcr = tc->readMiscRegNoEffect(MISCREG_MDCR_EL2);
route_to_el2 = (mdcr.tde == 1 || hcr.tge == 1);
}
}else{
route_to_el2 = false;
}
ExceptionLevel target;
if (route_to_el2) {
target = EL2;
} else if (ArmSystem::haveEL(tc, EL3) && !ArmSystem::highestELIs64(tc)
&& secure) {
target = EL3;
} else {
target = EL1;
}
return target;
}
bool
inAArch64(ThreadContext *tc)
{
CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
return opModeIs64((OperatingMode) (uint8_t) cpsr.mode);
}
ExceptionLevel
currEL(const ThreadContext *tc)
{
return static_cast<ArmISA::ISA *>(
const_cast<ThreadContext *>(tc)->getIsaPtr())->currEL();
}
bool
longDescFormatInUse(ThreadContext *tc)
{
TTBCR ttbcr = tc->readMiscReg(MISCREG_TTBCR);
return ArmSystem::has(ArmExtension::LPAE, tc) && ttbcr.eae;
}
RegVal
readMPIDR(ArmSystem *arm_sys, ThreadContext *tc)
{
const ExceptionLevel current_el = currEL(tc);
const bool is_secure = isSecureBelowEL3(tc);
switch (current_el) {
case EL0:
// Note: in MsrMrs instruction we read the register value before
// checking access permissions. This means that EL0 entry must
// be part of the table even if MPIDR is not accessible in user
// mode.
warn_once("Trying to read MPIDR at EL0\n");
[[fallthrough]];
case EL1:
if (ArmSystem::haveEL(tc, EL2) && !is_secure)
return tc->readMiscReg(MISCREG_VMPIDR_EL2);
else
return getMPIDR(arm_sys, tc);
case EL2:
case EL3:
return getMPIDR(arm_sys, tc);
default:
panic("Invalid EL for reading MPIDR register\n");
}
}
RegVal
getMPIDR(ArmSystem *arm_sys, ThreadContext *tc)
{
// Multiprocessor Affinity Register MPIDR from Cortex(tm)-A15 Technical
// Reference Manual
//
// bit 31 - Multi-processor extensions available
// bit 30 - Uni-processor system
// bit 24 - Multi-threaded cores
// bit 11-8 - Cluster ID
// bit 1-0 - CPU ID
//
// We deliberately extend both the Cluster ID and CPU ID fields to allow
// for simulation of larger systems
assert((0 <= tc->cpuId()) && (tc->cpuId() < 256));
assert(tc->socketId() < 65536);
RegVal mpidr = 0x80000000;
if (!arm_sys->multiProc)
replaceBits(mpidr, 30, 1);
if (arm_sys->multiThread)
replaceBits(mpidr, 24, 1);
// Get Affinity numbers
mpidr |= getAffinity(arm_sys, tc);
return mpidr;
}
static RegVal
getAff2(ArmSystem *arm_sys, ThreadContext *tc)
{
return arm_sys->multiThread ? tc->socketId() << 16 : 0;
}
static RegVal
getAff1(ArmSystem *arm_sys, ThreadContext *tc)
{
return arm_sys->multiThread ? tc->cpuId() << 8 : tc->socketId() << 8;
}
static RegVal
getAff0(ArmSystem *arm_sys, ThreadContext *tc)
{
return arm_sys->multiThread ? tc->threadId() : tc->cpuId();
}
RegVal
getAffinity(ArmSystem *arm_sys, ThreadContext *tc)
{
return getAff2(arm_sys, tc) | getAff1(arm_sys, tc) | getAff0(arm_sys, tc);
}
bool
HavePACExt(ThreadContext *tc)
{
AA64ISAR1 id_aa64isar1 = tc->readMiscReg(MISCREG_ID_AA64ISAR1_EL1);
return id_aa64isar1.api | id_aa64isar1.apa |
id_aa64isar1.gpi | id_aa64isar1.gpa;
}
bool
HaveVirtHostExt(ThreadContext *tc)
{
AA64MMFR1 id_aa64mmfr1 = tc->readMiscReg(MISCREG_ID_AA64MMFR1_EL1);
return id_aa64mmfr1.vh;
}
bool
HaveLVA(ThreadContext *tc)
{
const AA64MMFR2 mm_fr2 = tc->readMiscReg(MISCREG_ID_AA64MMFR2_EL1);
return (bool)mm_fr2.varange;
}
ExceptionLevel
s1TranslationRegime(ThreadContext* tc, ExceptionLevel el)
{
SCR scr = tc->readMiscReg(MISCREG_SCR);
if (el != EL0)
return el;
else if (ArmSystem::haveEL(tc, EL3) && ELIs32(tc, EL3) && scr.ns == 0)
return EL3;
else if (HaveVirtHostExt(tc) && ELIsInHost(tc, el))
return EL2;
else
return EL1;
}
bool
HaveSecureEL2Ext(ThreadContext *tc)
{
AA64PFR0 id_aa64pfr0 = tc->readMiscReg(MISCREG_ID_AA64PFR0_EL1);
return id_aa64pfr0.sel2;
}
bool
IsSecureEL2Enabled(ThreadContext *tc)
{
SCR scr = tc->readMiscReg(MISCREG_SCR_EL3);
if (ArmSystem::haveEL(tc, EL2) && HaveSecureEL2Ext(tc) &&
!ELIs32(tc, EL2)) {
if (ArmSystem::haveEL(tc, EL3))
return !ELIs32(tc, EL3) && scr.eel2;
else
return isSecure(tc);
}
return false;
}
bool
EL2Enabled(ThreadContext *tc)
{
SCR scr = tc->readMiscReg(MISCREG_SCR_EL3);
return ArmSystem::haveEL(tc, EL2) &&
(!ArmSystem::haveEL(tc, EL3) || scr.ns || IsSecureEL2Enabled(tc));
}
bool
ELIs64(ThreadContext *tc, ExceptionLevel el)
{
return !ELIs32(tc, el);
}
bool
ELIs32(ThreadContext *tc, ExceptionLevel el)
{
auto [known, aarch32] = ELUsingAArch32K(tc, el);
panic_if(!known, "EL state is UNKNOWN");
return aarch32;
}
bool
ELIsInHost(ThreadContext *tc, ExceptionLevel el)
{
const HCR hcr = tc->readMiscReg(MISCREG_HCR_EL2);
return (ArmSystem::haveEL(tc, EL2) &&
(IsSecureEL2Enabled(tc) || !isSecureBelowEL3(tc)) &&
HaveVirtHostExt(tc) && !ELIs32(tc, EL2) && hcr.e2h == 1 &&
(el == EL2 || (el == EL0 && hcr.tge == 1)));
}
std::pair<bool, bool>
ELUsingAArch32K(ThreadContext *tc, ExceptionLevel el)
{
bool secure = isSecureBelowEL3(tc);
return ELStateUsingAArch32K(tc, el, secure);
}
bool
haveAArch32EL(ThreadContext *tc, ExceptionLevel el)
{
if (!ArmSystem::haveEL(tc, el))
return false;
else if (!ArmSystem::highestELIs64(tc))
return true;
else if (ArmSystem::highestEL(tc) == el)
return false;
else if (el == EL0)
return true;
return true;
}
std::pair<bool, bool>
ELStateUsingAArch32K(ThreadContext *tc, ExceptionLevel el, bool secure)
{
// Return true if the specified EL is in aarch32 state.
const bool have_el3 = ArmSystem::haveEL(tc, EL3);
const bool have_el2 = ArmSystem::haveEL(tc, EL2);
panic_if(el == EL2 && !have_el2, "Asking for EL2 when it doesn't exist");
panic_if(el == EL3 && !have_el3, "Asking for EL3 when it doesn't exist");
bool known, aarch32;
known = aarch32 = false;
if (!haveAArch32EL(tc, el)) {
// Target EL is the highest one in a system where
// the highest is using AArch64.
known = true; aarch32 = false;
} else if (secure && el == EL2) {
known = true; aarch32 = false;
} else if (!ArmSystem::highestELIs64(tc)) {
// All ELs are using AArch32:
known = true; aarch32 = true;
} else if (ArmSystem::highestEL(tc) == el) {
known = true; aarch32 = false;
} else {
SCR scr = tc->readMiscReg(MISCREG_SCR_EL3);
bool aarch32_below_el3 = have_el3 && scr.rw == 0 &&
(!secure || !HaveSecureEL2Ext(tc) || !scr.eel2);
HCR hcr = tc->readMiscReg(MISCREG_HCR_EL2);
bool sec_el2 = HaveSecureEL2Ext(tc) && scr.eel2;
bool aarch32_at_el1 = (aarch32_below_el3 ||
(have_el2 && (sec_el2 || !secure) &&
hcr.rw == 0 && !(hcr.e2h && hcr.tge &&
HaveVirtHostExt(tc))));
// Only know if EL0 using AArch32 from PSTATE
if (el == EL0 && !aarch32_at_el1) {
// EL0 controlled by PSTATE
CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
known = (currEL(tc) == EL0);
aarch32 = (cpsr.width == 1);
} else {
known = true;
aarch32 = (aarch32_below_el3 && el != EL3) ||
(aarch32_at_el1 && (el == EL0 || el == EL1) );
}
}
return std::make_pair(known, aarch32);
}
bool
ELStateUsingAArch32(ThreadContext *tc, ExceptionLevel el, bool secure)
{
auto [known, aarch32] = ELStateUsingAArch32K(tc, el, secure);
panic_if(!known, "EL state is UNKNOWN");
return aarch32;
}
bool
isBigEndian64(const ThreadContext *tc)
{
switch (currEL(tc)) {
case EL3:
return ((SCTLR) tc->readMiscRegNoEffect(MISCREG_SCTLR_EL3)).ee;
case EL2:
return ((SCTLR) tc->readMiscRegNoEffect(MISCREG_SCTLR_EL2)).ee;
case EL1:
return ((SCTLR) tc->readMiscRegNoEffect(MISCREG_SCTLR_EL1)).ee;
case EL0:
return ((SCTLR) tc->readMiscRegNoEffect(MISCREG_SCTLR_EL1)).e0e;
default:
panic("Invalid exception level");
break;
}
}
bool
badMode32(ThreadContext *tc, OperatingMode mode)
{
return unknownMode32(mode) || !ArmSystem::haveEL(tc, opModeToEL(mode));
}
bool
badMode(ThreadContext *tc, OperatingMode mode)
{
return unknownMode(mode) || !ArmSystem::haveEL(tc, opModeToEL(mode));
}
int
computeAddrTop(ThreadContext *tc, bool selbit, bool is_instr,
TCR tcr, ExceptionLevel el)
{
bool tbi = false;
bool tbid = false;
ExceptionLevel regime = s1TranslationRegime(tc, el);
if (ELIs32(tc, regime)) {
return 31;
} else {
switch (regime) {
case EL1:
{
//TCR tcr = tc->readMiscReg(MISCREG_TCR_EL1);
tbi = selbit? tcr.tbi1 : tcr.tbi0;
tbid = selbit? tcr.tbid1 : tcr.tbid0;
break;
}
case EL2:
{
TCR tcr = tc->readMiscReg(MISCREG_TCR_EL2);
if (HaveVirtHostExt(tc) && ELIsInHost(tc, el)) {
tbi = selbit? tcr.tbi1 : tcr.tbi0;
tbid = selbit? tcr.tbid1 : tcr.tbid0;
} else {
tbi = tcr.tbi;
tbid = tcr.tbid;
}
break;
}
case EL3:
{
TCR tcr = tc->readMiscReg(MISCREG_TCR_EL3);
tbi = tcr.tbi;
tbid = tcr.tbid;
break;
}
default:
break;
}
}
int res = (tbi && (!tbid || !is_instr))? 55: 63;
return res;
}
Addr
purifyTaggedAddr(Addr addr, ThreadContext *tc, ExceptionLevel el,
TCR tcr, bool is_instr)
{
bool selbit = bits(addr, 55);
int topbit = computeAddrTop(tc, selbit, is_instr, tcr, el);
if (topbit == 63) {
return addr;
} else if (selbit && (el == EL1 || el == EL0 || ELIsInHost(tc, el))) {
uint64_t mask = ((uint64_t)0x1 << topbit) -1;
addr = addr | ~mask;
} else {
addr = bits(addr, topbit, 0);
}
return addr; // Nothing to do if this is not a tagged address
}
Addr
purifyTaggedAddr(Addr addr, ThreadContext *tc, ExceptionLevel el,
bool is_instr)
{
TCR tcr = tc->readMiscReg(MISCREG_TCR_EL1);
return purifyTaggedAddr(addr, tc, el, tcr, is_instr);
}
Addr
truncPage(Addr addr)
{
return addr & ~(PageBytes - 1);
}
Addr
roundPage(Addr addr)
{
return (addr + PageBytes - 1) & ~(PageBytes - 1);
}
Fault
mcrMrc15Trap(const MiscRegIndex misc_reg, ExtMachInst mach_inst,
ThreadContext *tc, uint32_t imm)
{
ExceptionClass ec = EC_TRAPPED_CP15_MCR_MRC;
if (mcrMrc15TrapToHyp(misc_reg, tc, imm, &ec))
return std::make_shared<HypervisorTrap>(mach_inst, imm, ec);
return AArch64AArch32SystemAccessTrap(misc_reg, mach_inst, tc, imm, ec);
}
bool
mcrMrc15TrapToHyp(const MiscRegIndex misc_reg, ThreadContext *tc, uint32_t iss,
ExceptionClass *ec)
{
bool is_read;
uint32_t crm;
IntRegIndex rt;
uint32_t crn;
uint32_t opc1;
uint32_t opc2;
bool trap_to_hyp = false;
const HCR hcr = tc->readMiscReg(MISCREG_HCR);
const HDCR hdcr = tc->readMiscReg(MISCREG_HDCR);
const HSTR hstr = tc->readMiscReg(MISCREG_HSTR);
const HCPTR hcptr = tc->readMiscReg(MISCREG_HCPTR);
if (EL2Enabled(tc) && (currEL(tc) < EL2)) {
mcrMrcIssExtract(iss, is_read, crm, rt, crn, opc1, opc2);
trap_to_hyp = ((uint32_t) hstr) & (1 << crn);
trap_to_hyp |= hdcr.tpm && (crn == 9) && (crm >= 12);
trap_to_hyp |= hcr.tidcp && (
((crn == 9) && ((crm <= 2) || ((crm >= 5) && (crm <= 8)))) ||
((crn == 10) && ((crm <= 1) || (crm == 4) || (crm == 8))) ||
((crn == 11) && ((crm <= 8) || (crm == 15))));
if (!trap_to_hyp) {
switch (unflattenMiscReg(misc_reg)) {
case MISCREG_CPACR:
trap_to_hyp = hcptr.tcpac;
break;
case MISCREG_REVIDR:
case MISCREG_TCMTR:
case MISCREG_TLBTR:
case MISCREG_AIDR:
trap_to_hyp = hcr.tid1;
break;
case MISCREG_CTR:
case MISCREG_CCSIDR:
case MISCREG_CLIDR:
case MISCREG_CSSELR:
trap_to_hyp = hcr.tid2;
break;
case MISCREG_ID_PFR0:
case MISCREG_ID_PFR1:
case MISCREG_ID_DFR0:
case MISCREG_ID_AFR0:
case MISCREG_ID_MMFR0:
case MISCREG_ID_MMFR1:
case MISCREG_ID_MMFR2:
case MISCREG_ID_MMFR3:
case MISCREG_ID_MMFR4:
case MISCREG_ID_ISAR0:
case MISCREG_ID_ISAR1:
case MISCREG_ID_ISAR2:
case MISCREG_ID_ISAR3:
case MISCREG_ID_ISAR4:
case MISCREG_ID_ISAR5:
case MISCREG_ID_ISAR6:
trap_to_hyp = hcr.tid3;
break;
case MISCREG_DCISW:
case MISCREG_DCCSW:
case MISCREG_DCCISW:
trap_to_hyp = hcr.tsw;
break;
case MISCREG_DCIMVAC:
case MISCREG_DCCIMVAC:
case MISCREG_DCCMVAC:
trap_to_hyp = hcr.tpc;
break;
case MISCREG_ICIMVAU:
case MISCREG_ICIALLU:
case MISCREG_ICIALLUIS:
case MISCREG_DCCMVAU:
trap_to_hyp = hcr.tpu;
break;
case MISCREG_TLBIALLIS:
case MISCREG_TLBIMVAIS:
case MISCREG_TLBIASIDIS:
case MISCREG_TLBIMVAAIS:
case MISCREG_TLBIMVALIS:
case MISCREG_TLBIMVAALIS:
case MISCREG_DTLBIALL:
case MISCREG_ITLBIALL:
case MISCREG_DTLBIMVA:
case MISCREG_ITLBIMVA:
case MISCREG_DTLBIASID:
case MISCREG_ITLBIASID:
case MISCREG_TLBIMVAA:
case MISCREG_TLBIALL:
case MISCREG_TLBIMVA:
case MISCREG_TLBIMVAL:
case MISCREG_TLBIMVAAL:
case MISCREG_TLBIASID:
trap_to_hyp = hcr.ttlb;
break;
case MISCREG_ACTLR:
trap_to_hyp = hcr.tac;
break;
case MISCREG_SCTLR:
case MISCREG_TTBR0:
case MISCREG_TTBR1:
case MISCREG_TTBCR:
case MISCREG_DACR:
case MISCREG_DFSR:
case MISCREG_IFSR:
case MISCREG_DFAR:
case MISCREG_IFAR:
case MISCREG_ADFSR:
case MISCREG_AIFSR:
case MISCREG_PRRR:
case MISCREG_NMRR:
case MISCREG_MAIR0:
case MISCREG_MAIR1:
case MISCREG_CONTEXTIDR:
trap_to_hyp = hcr.tvm & !is_read;
break;
case MISCREG_PMCR:
trap_to_hyp = hdcr.tpmcr;
break;
// GICv3 regs
case MISCREG_ICC_SGI0R:
{
auto *isa = static_cast<ArmISA::ISA *>(tc->getIsaPtr());
if (isa->haveGICv3CpuIfc())
trap_to_hyp = hcr.fmo;
}
break;
case MISCREG_ICC_SGI1R:
case MISCREG_ICC_ASGI1R:
{
auto *isa = static_cast<ArmISA::ISA *>(tc->getIsaPtr());
if (isa->haveGICv3CpuIfc())
trap_to_hyp = hcr.imo;
}
break;
case MISCREG_CNTFRQ ... MISCREG_CNTV_TVAL:
// CNTFRQ may be trapped only on reads
// CNTPCT and CNTVCT are read-only
if (MISCREG_CNTFRQ <= misc_reg && misc_reg <= MISCREG_CNTVCT &&
!is_read)
break;
trap_to_hyp = isGenericTimerHypTrap(misc_reg, tc, ec);
break;
// No default action needed
default:
break;
}
}
}
return trap_to_hyp;
}
bool
mcrMrc14TrapToHyp(const MiscRegIndex misc_reg, ThreadContext *tc, uint32_t iss)
{
bool is_read;
uint32_t crm;
IntRegIndex rt;
uint32_t crn;
uint32_t opc1;
uint32_t opc2;
const HCR hcr = tc->readMiscReg(MISCREG_HCR);
const HDCR hdcr = tc->readMiscReg(MISCREG_HDCR);
const HSTR hstr = tc->readMiscReg(MISCREG_HSTR);
const HCPTR hcptr = tc->readMiscReg(MISCREG_HCPTR);
bool trap_to_hyp = false;
if (EL2Enabled(tc) && (currEL(tc) < EL2)) {
mcrMrcIssExtract(iss, is_read, crm, rt, crn, opc1, opc2);
inform("trap check M:%x N:%x 1:%x 2:%x hdcr %x, hcptr %x, hstr %x\n",
crm, crn, opc1, opc2, hdcr, hcptr, hstr);
trap_to_hyp = hdcr.tda && (opc1 == 0);
trap_to_hyp |= hcptr.tta && (opc1 == 1);
if (!trap_to_hyp) {
switch (unflattenMiscReg(misc_reg)) {
case MISCREG_DBGOSLSR:
case MISCREG_DBGOSLAR:
case MISCREG_DBGOSDLR:
case MISCREG_DBGPRCR:
trap_to_hyp = hdcr.tdosa;
break;
case MISCREG_DBGDRAR:
case MISCREG_DBGDSAR:
trap_to_hyp = hdcr.tdra;
break;
case MISCREG_JIDR:
trap_to_hyp = hcr.tid0;
break;
case MISCREG_JOSCR:
case MISCREG_JMCR:
trap_to_hyp = hstr.tjdbx;
break;
case MISCREG_TEECR:
case MISCREG_TEEHBR:
trap_to_hyp = hstr.ttee;
break;
// No default action needed
default:
break;
}
}
}
return trap_to_hyp;
}
Fault
mcrrMrrc15Trap(const MiscRegIndex misc_reg, ExtMachInst mach_inst,
ThreadContext *tc, uint32_t imm)
{
ExceptionClass ec = EC_TRAPPED_CP15_MCRR_MRRC;
if (mcrrMrrc15TrapToHyp(misc_reg, tc, imm, &ec))
return std::make_shared<HypervisorTrap>(mach_inst, imm, ec);
return AArch64AArch32SystemAccessTrap(misc_reg, mach_inst, tc, imm, ec);
}
bool
mcrrMrrc15TrapToHyp(const MiscRegIndex misc_reg, ThreadContext *tc,
uint32_t iss, ExceptionClass *ec)
{
uint32_t crm;
IntRegIndex rt;
uint32_t crn;
uint32_t opc1;
uint32_t opc2;
bool is_read;
bool trap_to_hyp = false;
const HCR hcr = tc->readMiscReg(MISCREG_HCR);
const HSTR hstr = tc->readMiscReg(MISCREG_HSTR);
if (EL2Enabled(tc) && (currEL(tc) < EL2)) {
// This is technically the wrong function, but we can re-use it for
// the moment because we only need one field, which overlaps with the
// mcrmrc layout
mcrMrcIssExtract(iss, is_read, crm, rt, crn, opc1, opc2);
trap_to_hyp = ((uint32_t)hstr) & (1 << crm);
if (!trap_to_hyp) {
switch (unflattenMiscReg(misc_reg)) {
case MISCREG_SCTLR:
case MISCREG_TTBR0:
case MISCREG_TTBR1:
case MISCREG_TTBCR:
case MISCREG_DACR:
case MISCREG_DFSR:
case MISCREG_IFSR:
case MISCREG_DFAR:
case MISCREG_IFAR:
case MISCREG_ADFSR:
case MISCREG_AIFSR:
case MISCREG_PRRR:
case MISCREG_NMRR:
case MISCREG_MAIR0:
case MISCREG_MAIR1:
case MISCREG_CONTEXTIDR:
trap_to_hyp = hcr.tvm & !is_read;
break;
case MISCREG_CNTFRQ ... MISCREG_CNTV_TVAL:
// CNTFRQ may be trapped only on reads
// CNTPCT and CNTVCT are read-only
if (MISCREG_CNTFRQ <= misc_reg && misc_reg <= MISCREG_CNTVCT &&
!is_read) {
break;
}
trap_to_hyp = isGenericTimerHypTrap(misc_reg, tc, ec);
break;
// No default action needed
default:
break;
}
}
}
return trap_to_hyp;
}
Fault
AArch64AArch32SystemAccessTrap(const MiscRegIndex misc_reg,
ExtMachInst mach_inst, ThreadContext *tc,
uint32_t imm, ExceptionClass ec)
{
if (currEL(tc) <= EL1 && !ELIs32(tc, EL1) &&
isAArch64AArch32SystemAccessTrapEL1(misc_reg, tc))
return std::make_shared<SupervisorTrap>(mach_inst, imm, ec);
if (currEL(tc) <= EL2 && EL2Enabled(tc) && !ELIs32(tc, EL2) &&
isAArch64AArch32SystemAccessTrapEL2(misc_reg, tc))
return std::make_shared<HypervisorTrap>(mach_inst, imm, ec);
return NoFault;
}
bool
isAArch64AArch32SystemAccessTrapEL1(const MiscRegIndex misc_reg,
ThreadContext *tc)
{
switch (misc_reg) {
case MISCREG_CNTFRQ ... MISCREG_CNTVOFF:
return currEL(tc) == EL0 &&
isGenericTimerSystemAccessTrapEL1(misc_reg, tc);
default:
break;
}
return false;
}
bool
isGenericTimerHypTrap(const MiscRegIndex misc_reg, ThreadContext *tc,
ExceptionClass *ec)
{
if (currEL(tc) <= EL2 && EL2Enabled(tc) && ELIs32(tc, EL2)) {
switch (misc_reg) {
case MISCREG_CNTFRQ ... MISCREG_CNTV_TVAL:
if (currEL(tc) == EL0 &&
isGenericTimerCommonEL0HypTrap(misc_reg, tc, ec))
return true;
switch (misc_reg) {
case MISCREG_CNTPCT:
case MISCREG_CNTP_CTL ... MISCREG_CNTP_TVAL_S:
return currEL(tc) <= EL1 &&
isGenericTimerPhysHypTrap(misc_reg, tc, ec);
default:
break;
}
break;
default:
break;
}
}
return false;
}
bool
isGenericTimerCommonEL0HypTrap(const MiscRegIndex misc_reg, ThreadContext *tc,
ExceptionClass *ec)
{
const HCR hcr = tc->readMiscReg(MISCREG_HCR_EL2);
bool trap_cond = condGenericTimerSystemAccessTrapEL1(misc_reg, tc);
if (ELIs32(tc, EL1) && trap_cond && hcr.tge) {
// As per the architecture, this hyp trap should have uncategorized
// exception class
if (ec)
*ec = EC_UNKNOWN;
return true;
}
return false;
}
bool
isGenericTimerPhysHypTrap(const MiscRegIndex misc_reg, ThreadContext *tc,
ExceptionClass *ec)
{
return condGenericTimerPhysHypTrap(misc_reg, tc);
}
bool
condGenericTimerPhysHypTrap(const MiscRegIndex misc_reg, ThreadContext *tc)
{
const CNTHCTL cnthctl = tc->readMiscReg(MISCREG_CNTHCTL_EL2);
switch (misc_reg) {
case MISCREG_CNTPCT:
return !cnthctl.el1pcten;
case MISCREG_CNTP_CTL ... MISCREG_CNTP_TVAL_S:
return !cnthctl.el1pcen;
default:
break;
}
return false;
}
bool
isGenericTimerSystemAccessTrapEL1(const MiscRegIndex misc_reg,
ThreadContext *tc)
{
switch (misc_reg) {
case MISCREG_CNTFRQ ... MISCREG_CNTV_TVAL:
case MISCREG_CNTFRQ_EL0 ... MISCREG_CNTV_TVAL_EL0:
{
const HCR hcr = tc->readMiscReg(MISCREG_HCR_EL2);
bool trap_cond = condGenericTimerSystemAccessTrapEL1(misc_reg, tc);
return !(EL2Enabled(tc) && hcr.e2h && hcr.tge) && trap_cond &&
!(EL2Enabled(tc) && !ELIs32(tc, EL2) && hcr.tge);
}
default:
break;
}
return false;
}
bool
condGenericTimerSystemAccessTrapEL1(const MiscRegIndex misc_reg,
ThreadContext *tc)
{
const CNTKCTL cntkctl = tc->readMiscReg(MISCREG_CNTKCTL_EL1);
switch (misc_reg) {
case MISCREG_CNTFRQ:
case MISCREG_CNTFRQ_EL0:
return !cntkctl.el0pcten && !cntkctl.el0vcten;
case MISCREG_CNTPCT:
case MISCREG_CNTPCT_EL0:
return !cntkctl.el0pcten;
case MISCREG_CNTVCT:
case MISCREG_CNTVCT_EL0:
return !cntkctl.el0vcten;
case MISCREG_CNTP_CTL ... MISCREG_CNTP_TVAL_S:
case MISCREG_CNTP_CTL_EL0 ... MISCREG_CNTP_TVAL_EL0:
return !cntkctl.el0pten;
case MISCREG_CNTV_CTL ... MISCREG_CNTV_TVAL:
case MISCREG_CNTV_CTL_EL0 ... MISCREG_CNTV_TVAL_EL0:
return !cntkctl.el0vten;
default:
break;
}
return false;
}
bool
isAArch64AArch32SystemAccessTrapEL2(const MiscRegIndex misc_reg,
ThreadContext *tc)
{
switch (misc_reg) {
case MISCREG_CNTFRQ ... MISCREG_CNTVOFF:
return currEL(tc) <= EL1 &&
isGenericTimerSystemAccessTrapEL2(misc_reg, tc);
default:
break;
}
return false;
}
bool
isGenericTimerSystemAccessTrapEL2(const MiscRegIndex misc_reg,
ThreadContext *tc)
{
switch (misc_reg) {
case MISCREG_CNTFRQ ... MISCREG_CNTV_TVAL:
case MISCREG_CNTFRQ_EL0 ... MISCREG_CNTV_TVAL_EL0:
if (currEL(tc) == EL0 &&
isGenericTimerCommonEL0SystemAccessTrapEL2(misc_reg, tc))
return true;
switch (misc_reg) {
case MISCREG_CNTPCT:
case MISCREG_CNTPCT_EL0:
case MISCREG_CNTP_CTL ... MISCREG_CNTP_TVAL_S:
case MISCREG_CNTP_CTL_EL0 ... MISCREG_CNTP_TVAL_EL0:
return (currEL(tc) == EL0 &&
isGenericTimerPhysEL0SystemAccessTrapEL2(misc_reg, tc)) ||
(currEL(tc) == EL1 &&
isGenericTimerPhysEL1SystemAccessTrapEL2(misc_reg, tc));
case MISCREG_CNTVCT:
case MISCREG_CNTVCT_EL0:
case MISCREG_CNTV_CTL ... MISCREG_CNTV_TVAL:
case MISCREG_CNTV_CTL_EL0 ... MISCREG_CNTV_TVAL_EL0:
return isGenericTimerVirtSystemAccessTrapEL2(misc_reg, tc);
default:
break;
}
break;
default:
break;
}
return false;
}
bool
isGenericTimerCommonEL0SystemAccessTrapEL2(const MiscRegIndex misc_reg,
ThreadContext *tc)
{
const HCR hcr = tc->readMiscReg(MISCREG_HCR_EL2);
bool trap_cond_el1 = condGenericTimerSystemAccessTrapEL1(misc_reg, tc);
bool trap_cond_el2 = condGenericTimerCommonEL0SystemAccessTrapEL2(misc_reg,
tc);
return (!ELIs32(tc, EL1) && !hcr.e2h && trap_cond_el1 && hcr.tge) ||
(ELIs32(tc, EL1) && trap_cond_el1 && hcr.tge) ||
(hcr.e2h && hcr.tge && trap_cond_el2);
}
bool
isGenericTimerPhysEL0SystemAccessTrapEL2(const MiscRegIndex misc_reg,
ThreadContext *tc)
{
const HCR hcr = tc->readMiscReg(MISCREG_HCR_EL2);
bool trap_cond_0 = condGenericTimerPhysEL1SystemAccessTrapEL2(
misc_reg, tc);
bool trap_cond_1 = condGenericTimerCommonEL1SystemAccessTrapEL2(
misc_reg, tc);
switch (misc_reg) {
case MISCREG_CNTPCT:
case MISCREG_CNTPCT_EL0:
return !hcr.e2h && trap_cond_1;
case MISCREG_CNTP_CTL ... MISCREG_CNTP_TVAL_S:
case MISCREG_CNTP_CTL_EL0 ... MISCREG_CNTP_TVAL_EL0:
return (!hcr.e2h && trap_cond_0) ||
(hcr.e2h && !hcr.tge && trap_cond_1);
default:
break;
}
return false;
}
bool
isGenericTimerPhysEL1SystemAccessTrapEL2(const MiscRegIndex misc_reg,
ThreadContext *tc)
{
const HCR hcr = tc->readMiscReg(MISCREG_HCR_EL2);
bool trap_cond_0 = condGenericTimerPhysEL1SystemAccessTrapEL2(
misc_reg, tc);
bool trap_cond_1 = condGenericTimerCommonEL1SystemAccessTrapEL2(
misc_reg, tc);
switch (misc_reg) {
case MISCREG_CNTPCT:
case MISCREG_CNTPCT_EL0:
return trap_cond_1;
case MISCREG_CNTP_CTL ... MISCREG_CNTP_TVAL_S:
case MISCREG_CNTP_CTL_EL0 ... MISCREG_CNTP_TVAL_EL0:
return (!hcr.e2h && trap_cond_0) ||
(hcr.e2h && trap_cond_1);
default:
break;
}
return false;
}
bool
isGenericTimerVirtSystemAccessTrapEL2(const MiscRegIndex misc_reg,
ThreadContext *tc)
{
const HCR hcr = tc->readMiscReg(MISCREG_HCR_EL2);
bool trap_cond = condGenericTimerCommonEL1SystemAccessTrapEL2(
misc_reg, tc);
return !ELIs32(tc, EL1) && !(hcr.e2h && hcr.tge) && trap_cond;
}
bool
condGenericTimerCommonEL0SystemAccessTrapEL2(const MiscRegIndex misc_reg,
ThreadContext *tc)
{
const CNTHCTL_E2H cnthctl = tc->readMiscReg(MISCREG_CNTHCTL_EL2);
switch (misc_reg) {
case MISCREG_CNTFRQ:
case MISCREG_CNTFRQ_EL0:
return !cnthctl.el0pcten && !cnthctl.el0vcten;
case MISCREG_CNTPCT:
case MISCREG_CNTPCT_EL0:
return !cnthctl.el0pcten;
case MISCREG_CNTVCT:
case MISCREG_CNTVCT_EL0:
return !cnthctl.el0vcten;
case MISCREG_CNTP_CTL ... MISCREG_CNTP_TVAL_S:
case MISCREG_CNTP_CTL_EL0 ... MISCREG_CNTP_TVAL_EL0:
return !cnthctl.el0pten;
case MISCREG_CNTV_CTL ... MISCREG_CNTV_TVAL:
case MISCREG_CNTV_CTL_EL0 ... MISCREG_CNTV_TVAL_EL0:
return !cnthctl.el0vten;
default:
break;
}
return false;
}
bool
condGenericTimerCommonEL1SystemAccessTrapEL2(const MiscRegIndex misc_reg,
ThreadContext *tc)
{
const AA64MMFR0 mmfr0 = tc->readMiscRegNoEffect(MISCREG_ID_AA64MMFR0_EL1);
const HCR hcr = tc->readMiscReg(MISCREG_HCR_EL2);
const RegVal cnthctl_val = tc->readMiscReg(MISCREG_CNTHCTL_EL2);
const CNTHCTL cnthctl = cnthctl_val;
const CNTHCTL_E2H cnthctl_e2h = cnthctl_val;
switch (misc_reg) {
case MISCREG_CNTPCT:
case MISCREG_CNTPCT_EL0:
return hcr.e2h ? !cnthctl_e2h.el1pcten : !cnthctl.el1pcten;
case MISCREG_CNTVCT:
case MISCREG_CNTVCT_EL0:
if (!mmfr0.ecv)
return false;
else
return hcr.e2h ? cnthctl_e2h.el1tvct : cnthctl.el1tvct;
case MISCREG_CNTP_CTL ... MISCREG_CNTP_TVAL_S:
case MISCREG_CNTP_CTL_EL0 ... MISCREG_CNTP_TVAL_EL0:
return hcr.e2h ? !cnthctl_e2h.el1pten : false;
case MISCREG_CNTV_CTL ... MISCREG_CNTV_TVAL:
case MISCREG_CNTV_CTL_EL0 ... MISCREG_CNTV_TVAL_EL0:
if (!mmfr0.ecv)
return false;
else
return hcr.e2h ? cnthctl_e2h.el1tvt : cnthctl.el1tvt;
default:
break;
}
return false;
}
bool
condGenericTimerPhysEL1SystemAccessTrapEL2(const MiscRegIndex misc_reg,
ThreadContext *tc)
{
const CNTHCTL cnthctl = tc->readMiscReg(MISCREG_CNTHCTL_EL2);
return !cnthctl.el1pcen;
}
bool
isGenericTimerSystemAccessTrapEL3(const MiscRegIndex misc_reg,
ThreadContext *tc)
{
switch (misc_reg) {
case MISCREG_CNTPS_CTL_EL1 ... MISCREG_CNTPS_TVAL_EL1:
{
const SCR scr = tc->readMiscReg(MISCREG_SCR_EL3);
return currEL(tc) == EL1 && !scr.ns && !scr.st;
}
default:
break;
}
return false;
}
bool
decodeMrsMsrBankedReg(uint8_t sysM, bool r, bool &isIntReg, int &regIdx,
CPSR cpsr, SCR scr, NSACR nsacr, bool checkSecurity)
{
OperatingMode mode = MODE_UNDEFINED;
bool ok = true;
// R mostly indicates if its a int register or a misc reg, we override
// below if the few corner cases
isIntReg = !r;
// Loosely based on ARM ARM issue C section B9.3.10
if (r) {
switch (sysM) {
case 0xE:
regIdx = MISCREG_SPSR_FIQ;
mode = MODE_FIQ;
break;
case 0x10:
regIdx = MISCREG_SPSR_IRQ;
mode = MODE_IRQ;
break;
case 0x12:
regIdx = MISCREG_SPSR_SVC;
mode = MODE_SVC;
break;
case 0x14:
regIdx = MISCREG_SPSR_ABT;
mode = MODE_ABORT;
break;
case 0x16:
regIdx = MISCREG_SPSR_UND;
mode = MODE_UNDEFINED;
break;
case 0x1C:
regIdx = MISCREG_SPSR_MON;
mode = MODE_MON;
break;
case 0x1E:
regIdx = MISCREG_SPSR_HYP;
mode = MODE_HYP;
break;
default:
ok = false;
break;
}
} else {
int sysM4To3 = bits(sysM, 4, 3);
if (sysM4To3 == 0) {
mode = MODE_USER;
regIdx = intRegInMode(mode, bits(sysM, 2, 0) + 8);
} else if (sysM4To3 == 1) {
mode = MODE_FIQ;
regIdx = intRegInMode(mode, bits(sysM, 2, 0) + 8);
} else if (sysM4To3 == 3) {
if (bits(sysM, 1) == 0) {
mode = MODE_MON;
regIdx = intRegInMode(mode, 14 - bits(sysM, 0));
} else {
mode = MODE_HYP;
if (bits(sysM, 0) == 1) {
regIdx = intRegInMode(mode, 13); // R13 in HYP
} else {
isIntReg = false;
regIdx = MISCREG_ELR_HYP;
}
}
} else { // Other Banked registers
int sysM2 = bits(sysM, 2);
int sysM1 = bits(sysM, 1);
mode = (OperatingMode)(((sysM2 || sysM1) << 0) |
(1 << 1) |
((sysM2 && !sysM1) << 2) |
((sysM2 && sysM1) << 3) |
(1 << 4));
regIdx = intRegInMode(mode, 14 - bits(sysM, 0));
// Don't flatten the register here. This is going to go through
// setIntReg() which will do the flattening
ok &= mode != cpsr.mode;
}
}
// Check that the requested register is accessable from the current mode
if (ok && checkSecurity && mode != cpsr.mode) {
switch (cpsr.mode) {
case MODE_USER:
ok = false;
break;
case MODE_FIQ:
ok &= mode != MODE_HYP;
ok &= (mode != MODE_MON) || !scr.ns;
break;
case MODE_HYP:
ok &= mode != MODE_MON;
ok &= (mode != MODE_FIQ) || !nsacr.rfr;
break;
case MODE_IRQ:
case MODE_SVC:
case MODE_ABORT:
case MODE_UNDEFINED:
case MODE_SYSTEM:
ok &= mode != MODE_HYP;
ok &= (mode != MODE_MON) || !scr.ns;
ok &= (mode != MODE_FIQ) || !nsacr.rfr;
break;
// can access everything, no further checks required
case MODE_MON:
break;
default:
panic("unknown Mode 0x%x\n", cpsr.mode);
break;
}
}
return ok;
}
bool
isUnpriviledgeAccess(ThreadContext *tc)
{
const HCR hcr = tc->readMiscReg(MISCREG_HCR_EL2);
const CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
// NV Extension not implemented yet
bool have_nv_ext = false;
bool unpriv_el1 = currEL(tc) == EL1 &&
!(ArmSystem::haveEL(tc, EL2) &&
have_nv_ext && hcr.nv == 1 && hcr.nv1 == 1);
bool unpriv_el2 = ArmSystem::haveEL(tc, EL2) && HaveVirtHostExt(tc) &&
currEL(tc) == EL2 && hcr.e2h == 1 && hcr.tge == 1;
return (unpriv_el1 || unpriv_el2) && !cpsr.uao;
}
bool
SPAlignmentCheckEnabled(ThreadContext *tc)
{
ExceptionLevel regime = s1TranslationRegime(tc, currEL(tc));
switch (currEL(tc)) {
case EL3:
return ((SCTLR)tc->readMiscReg(MISCREG_SCTLR_EL3)).sa;
case EL2:
return ((SCTLR)tc->readMiscReg(MISCREG_SCTLR_EL2)).sa;
case EL1:
return ((SCTLR)tc->readMiscReg(MISCREG_SCTLR_EL1)).sa;
case EL0:
{
SCTLR sc = (regime == EL2) ? tc->readMiscReg(MISCREG_SCTLR_EL2):
tc->readMiscReg(MISCREG_SCTLR_EL1);
return sc.sa0;
}
default:
panic("Invalid exception level");
break;
}
}
int
decodePhysAddrRange64(uint8_t pa_enc)
{
switch (pa_enc) {
case 0x0:
return 32;
case 0x1:
return 36;
case 0x2:
return 40;
case 0x3:
return 42;
case 0x4:
return 44;
case 0x5:
return 48;
case 0x6:
return 52;
default:
panic("Invalid phys. address range encoding");
}
}
uint8_t
encodePhysAddrRange64(int pa_size)
{
switch (pa_size) {
case 32:
return 0x0;
case 36:
return 0x1;
case 40:
return 0x2;
case 42:
return 0x3;
case 44:
return 0x4;
case 48:
return 0x5;
case 52:
return 0x6;
default:
panic("Invalid phys. address range");
}
}
void
syncVecRegsToElems(ThreadContext *tc)
{
for (int ri = 0; ri < NumVecRegs; ri++) {
RegId reg_id(VecRegClass, ri);
const VecRegContainer &reg = tc->readVecReg(reg_id);
for (int ei = 0; ei < NumVecElemPerVecReg; ei++) {
RegId elem_id(VecElemClass, ri, ei);
tc->setVecElem(elem_id, reg.as<VecElem>()[ei]);
}
}
}
void
syncVecElemsToRegs(ThreadContext *tc)
{
for (int ri = 0; ri < NumVecRegs; ri++) {
VecRegContainer reg;
for (int ei = 0; ei < NumVecElemPerVecReg; ei++) {
RegId elem_id(VecElemClass, ri, ei);
reg.as<VecElem>()[ei] = tc->readVecElem(elem_id);
}
RegId reg_id(VecRegClass, ri);
tc->setVecReg(reg_id, reg);
}
}
} // namespace ArmISA
} // namespace gem5