blob: dd7122225433f906f43cf45674a9efe43e2dfaf9 [file] [log] [blame]
/*
* Copyright (c) 2007 The Hewlett-Packard Development Company
* Copyright (c) 2018 TU Dresden
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "arch/x86/fs_workload.hh"
#include "arch/x86/bios/acpi.hh"
#include "arch/x86/bios/intelmp.hh"
#include "arch/x86/bios/smbios.hh"
#include "arch/x86/faults.hh"
#include "base/loader/object_file.hh"
#include "cpu/thread_context.hh"
#include "debug/ACPI.hh"
#include "params/X86FsWorkload.hh"
#include "sim/system.hh"
namespace gem5
{
namespace X86ISA
{
FsWorkload::FsWorkload(const Params &p) : KernelWorkload(p),
smbiosTable(p.smbios_table),
mpFloatingPointer(p.intel_mp_pointer),
mpConfigTable(p.intel_mp_table),
rsdp(p.acpi_description_table_pointer)
{}
void
installSegDesc(ThreadContext *tc, SegmentRegIndex seg,
SegDescriptor desc, bool longmode)
{
bool honorBase = !longmode || seg == SEGMENT_REG_FS ||
seg == SEGMENT_REG_GS ||
seg == SEGMENT_REG_TSL ||
seg == SYS_SEGMENT_REG_TR;
SegAttr attr = 0;
attr.dpl = desc.dpl;
attr.unusable = 0;
attr.defaultSize = desc.d;
attr.longMode = desc.l;
attr.avl = desc.avl;
attr.granularity = desc.g;
attr.present = desc.p;
attr.system = desc.s;
attr.type = desc.type;
if (desc.s) {
if (desc.type.codeOrData) {
// Code segment
attr.expandDown = 0;
attr.readable = desc.type.r;
attr.writable = 0;
} else {
// Data segment
attr.expandDown = desc.type.e;
attr.readable = 1;
attr.writable = desc.type.w;
}
} else {
attr.readable = 1;
attr.writable = 1;
attr.expandDown = 0;
}
tc->setMiscReg(MISCREG_SEG_BASE(seg), desc.base);
tc->setMiscReg(MISCREG_SEG_EFF_BASE(seg), honorBase ? desc.base : 0);
tc->setMiscReg(MISCREG_SEG_LIMIT(seg), desc.limit);
tc->setMiscReg(MISCREG_SEG_ATTR(seg), (RegVal)attr);
}
void
FsWorkload::initState()
{
KernelWorkload::initState();
for (auto *tc: system->threads) {
X86ISA::InitInterrupt(0).invoke(tc);
if (tc->contextId() == 0) {
tc->activate();
} else {
// This is an application processor (AP). It should be initialized
// to look like only the BIOS POST has run on it and put then put
// it into a halted state.
tc->suspend();
}
}
fatal_if(!kernelObj, "No kernel to load.");
fatal_if(kernelObj->getArch() == loader::I386,
"Loading a 32 bit x86 kernel is not supported.");
ThreadContext *tc = system->threads[0];
auto phys_proxy = system->physProxy;
// This is the boot strap processor (BSP). Initialize it to look like
// the boot loader has just turned control over to the 64 bit OS. We
// won't actually set up real mode or legacy protected mode descriptor
// tables because we aren't executing any code that would require
// them. We do, however toggle the control bits in the correct order
// while allowing consistency checks and the underlying mechansims
// just to be safe.
const int NumPDTs = 4;
const Addr PageMapLevel4 = 0x70000;
const Addr PageDirPtrTable = 0x71000;
const Addr PageDirTable[NumPDTs] =
{0x72000, 0x73000, 0x74000, 0x75000};
const Addr GDTBase = 0x76000;
const int PML4Bits = 9;
const int PDPTBits = 9;
const int PDTBits = 9;
/*
* Set up the gdt.
*/
uint8_t numGDTEntries = 0;
// Place holder at selector 0
uint64_t nullDescriptor = 0;
phys_proxy.writeBlob(GDTBase + numGDTEntries * 8, &nullDescriptor, 8);
numGDTEntries++;
SegDescriptor initDesc = 0;
initDesc.type.codeOrData = 0; // code or data type
initDesc.type.c = 0; // conforming
initDesc.type.r = 1; // readable
initDesc.dpl = 0; // privilege
initDesc.p = 1; // present
initDesc.l = 1; // longmode - 64 bit
initDesc.d = 0; // operand size
initDesc.g = 1; // granularity
initDesc.s = 1; // system segment
initDesc.limit = 0xFFFFFFFF;
initDesc.base = 0;
// 64 bit code segment
SegDescriptor csDesc = initDesc;
csDesc.type.codeOrData = 1;
csDesc.dpl = 0;
// Because we're dealing with a pointer and I don't think it's
// guaranteed that there isn't anything in a nonvirtual class between
// it's beginning in memory and it's actual data, we'll use an
// intermediary.
uint64_t csDescVal = csDesc;
phys_proxy.writeBlob(GDTBase + numGDTEntries * 8, (&csDescVal), 8);
numGDTEntries++;
SegSelector cs = 0;
cs.si = numGDTEntries - 1;
tc->setMiscReg(MISCREG_CS, (RegVal)cs);
// 32 bit data segment
SegDescriptor dsDesc = initDesc;
dsDesc.type.e = 0;
dsDesc.type.w = 1;
dsDesc.d = 1;
dsDesc.baseHigh = 0;
dsDesc.baseLow = 0;
uint64_t dsDescVal = dsDesc;
phys_proxy.writeBlob(GDTBase + numGDTEntries * 8, (&dsDescVal), 8);
numGDTEntries++;
SegSelector ds = 0;
ds.si = numGDTEntries - 1;
tc->setMiscReg(MISCREG_DS, (RegVal)ds);
tc->setMiscReg(MISCREG_ES, (RegVal)ds);
tc->setMiscReg(MISCREG_FS, (RegVal)ds);
tc->setMiscReg(MISCREG_GS, (RegVal)ds);
tc->setMiscReg(MISCREG_SS, (RegVal)ds);
tc->setMiscReg(MISCREG_TSL, 0);
SegAttr ldtAttr = 0;
ldtAttr.unusable = 1;
tc->setMiscReg(MISCREG_TSL_ATTR, ldtAttr);
tc->setMiscReg(MISCREG_TSG_BASE, GDTBase);
tc->setMiscReg(MISCREG_TSG_LIMIT, 8 * numGDTEntries - 1);
SegDescriptor tssDesc = initDesc;
tssDesc.type = 0xB;
tssDesc.s = 0;
uint64_t tssDescVal = tssDesc;
phys_proxy.writeBlob(GDTBase + numGDTEntries * 8, (&tssDescVal), 8);
numGDTEntries++;
SegSelector tss = 0;
tss.si = numGDTEntries - 1;
tc->setMiscReg(MISCREG_TR, (RegVal)tss);
installSegDesc(tc, SYS_SEGMENT_REG_TR, tssDesc, true);
/*
* Identity map the first 4GB of memory. In order to map this region
* of memory in long mode, there needs to be one actual page map level
* 4 entry which points to one page directory pointer table which
* points to 4 different page directory tables which are full of two
* megabyte pages. All of the other entries in valid tables are set
* to indicate that they don't pertain to anything valid and will
* cause a fault if used.
*/
// Put valid values in all of the various table entries which indicate
// that those entries don't point to further tables or pages. Then
// set the values of those entries which are needed.
// Page Map Level 4
// read/write, user, not present
uint64_t pml4e = htole<uint64_t>(0x6);
for (int offset = 0; offset < (1 << PML4Bits) * 8; offset += 8)
phys_proxy.writeBlob(PageMapLevel4 + offset, (&pml4e), 8);
// Point to the only PDPT
pml4e = htole<uint64_t>(0x7 | PageDirPtrTable);
phys_proxy.writeBlob(PageMapLevel4, (&pml4e), 8);
// Page Directory Pointer Table
// read/write, user, not present
uint64_t pdpe = htole<uint64_t>(0x6);
for (int offset = 0; offset < (1 << PDPTBits) * 8; offset += 8)
phys_proxy.writeBlob(PageDirPtrTable + offset, &pdpe, 8);
// Point to the PDTs
for (int table = 0; table < NumPDTs; table++) {
pdpe = htole<uint64_t>(0x7 | PageDirTable[table]);
phys_proxy.writeBlob(PageDirPtrTable + table * 8, &pdpe, 8);
}
// Page Directory Tables
Addr base = 0;
const Addr pageSize = 2 << 20;
for (int table = 0; table < NumPDTs; table++) {
for (int offset = 0; offset < (1 << PDTBits) * 8; offset += 8) {
// read/write, user, present, 4MB
uint64_t pdte = htole(0x87 | base);
phys_proxy.writeBlob(PageDirTable[table] + offset, &pdte, 8);
base += pageSize;
}
}
/*
* Transition from real mode all the way up to Long mode
*/
CR0 cr0 = tc->readMiscRegNoEffect(MISCREG_CR0);
// Turn off paging.
cr0.pg = 0;
tc->setMiscReg(MISCREG_CR0, cr0);
// Turn on protected mode.
cr0.pe = 1;
tc->setMiscReg(MISCREG_CR0, cr0);
CR4 cr4 = tc->readMiscRegNoEffect(MISCREG_CR4);
// Turn on pae.
cr4.pae = 1;
tc->setMiscReg(MISCREG_CR4, cr4);
// Point to the page tables.
tc->setMiscReg(MISCREG_CR3, PageMapLevel4);
Efer efer = tc->readMiscRegNoEffect(MISCREG_EFER);
// Enable long mode.
efer.lme = 1;
tc->setMiscReg(MISCREG_EFER, efer);
// Start using longmode segments.
installSegDesc(tc, SEGMENT_REG_CS, csDesc, true);
installSegDesc(tc, SEGMENT_REG_DS, dsDesc, true);
installSegDesc(tc, SEGMENT_REG_ES, dsDesc, true);
installSegDesc(tc, SEGMENT_REG_FS, dsDesc, true);
installSegDesc(tc, SEGMENT_REG_GS, dsDesc, true);
installSegDesc(tc, SEGMENT_REG_SS, dsDesc, true);
// Activate long mode.
cr0.pg = 1;
tc->setMiscReg(MISCREG_CR0, cr0);
tc->pcState(kernelObj->entryPoint());
// We should now be in long mode. Yay!
Addr ebdaPos = 0xF0000;
Addr fixed, table;
// Write out the SMBios/DMI table.
writeOutSMBiosTable(ebdaPos, fixed, table);
ebdaPos += (fixed + table);
ebdaPos = roundUp(ebdaPos, 16);
// Write out the Intel MP Specification configuration table.
writeOutMPTable(ebdaPos, fixed, table);
ebdaPos += (fixed + table);
// Write out ACPI tables
writeOutACPITables(ebdaPos, table);
ebdaPos += table;
}
void
FsWorkload::writeOutSMBiosTable(Addr header,
Addr &headerSize, Addr &structSize, Addr table)
{
// If the table location isn't specified, just put it after the header.
// The header size as of the 2.5 SMBios specification is 0x1F bytes.
if (!table)
table = header + 0x1F;
smbiosTable->setTableAddr(table);
smbiosTable->writeOut(system->physProxy, header, headerSize, structSize);
// Do some bounds checking to make sure we at least didn't step on
// ourselves.
assert(header > table || header + headerSize <= table);
assert(table > header || table + structSize <= header);
}
void
FsWorkload::writeOutMPTable(Addr fp, Addr &fpSize, Addr &tableSize, Addr table)
{
// If the table location isn't specified and it exists, just put
// it after the floating pointer. The fp size as of the 1.4 Intel MP
// specification is 0x10 bytes.
if (mpConfigTable) {
if (!table)
table = fp + 0x10;
mpFloatingPointer->setTableAddr(table);
}
fpSize = mpFloatingPointer->writeOut(system->physProxy, fp);
if (mpConfigTable)
tableSize = mpConfigTable->writeOut(system->physProxy, table);
else
tableSize = 0;
// Do some bounds checking to make sure we at least didn't step on
// ourselves and the fp structure was the size we thought it was.
assert(fp > table || fp + fpSize <= table);
assert(table > fp || table + tableSize <= fp);
assert(fpSize == 0x10);
}
void
FsWorkload::writeOutACPITables(Addr fp, Addr &fpSize)
{
fpSize = 0;
if (rsdp) {
ACPI::LinearAllocator alloc(fp, 0x000FFFFF);
rsdp->write(system->physProxy, alloc);
fpSize = alloc.alloc(0, 0) - fp;
DPRINTF(ACPI, "Wrote ACPI tables to memory at %llx with size %llx.\n",
fp, fpSize);
}
}
} // namespace X86ISA
} // namespace gem5