blob: 3e6357b34ea4ccad4201647079546145aec05330 [file] [log] [blame]
/*
* Copyright (c) 2017, 2020 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2003-2005 The Regents of The University of Michigan
* Copyright (c) 2013 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_STATIC_INST_HH__
#define __CPU_STATIC_INST_HH__
#include <bitset>
#include <cstdint>
#include <memory>
#include <string>
#include "arch/generic/pcstate.hh"
#include "base/logging.hh"
#include "base/refcnt.hh"
#include "cpu/op_class.hh"
#include "cpu/reg_class.hh"
#include "cpu/static_inst_fwd.hh"
#include "enums/StaticInstFlags.hh"
#include "sim/byteswap.hh"
namespace gem5
{
// forward declarations
class Packet;
class ExecContext;
class ThreadContext;
GEM5_DEPRECATED_NAMESPACE(Loader, loader);
namespace loader
{
class SymbolTable;
} // namespace loader
namespace Trace
{
class InstRecord;
} // namespace Trace
/**
* Base, ISA-independent static instruction class.
*
* The main component of this class is the vector of flags and the
* associated methods for reading them. Any object that can rely
* solely on these flags can process instructions without being
* recompiled for multiple ISAs.
*/
class StaticInst : public RefCounted, public StaticInstFlags
{
public:
using RegIdArrayPtr = RegId (StaticInst:: *)[];
private:
/// See srcRegIdx().
RegIdArrayPtr _srcRegIdxPtr = nullptr;
/// See destRegIdx().
RegIdArrayPtr _destRegIdxPtr = nullptr;
protected:
/// Flag values for this instruction.
std::bitset<Num_Flags> flags;
/// See opClass().
OpClass _opClass;
/// See numSrcRegs().
int8_t _numSrcRegs = 0;
/// See numDestRegs().
int8_t _numDestRegs = 0;
/// The following are used to track physical register usage
/// for machines with separate int & FP reg files.
//@{
int8_t _numFPDestRegs = 0;
int8_t _numIntDestRegs = 0;
int8_t _numCCDestRegs = 0;
//@}
/** To use in architectures with vector register file. */
/** @{ */
int8_t _numVecDestRegs = 0;
int8_t _numVecElemDestRegs = 0;
int8_t _numVecPredDestRegs = 0;
/** @} */
public:
/// @name Register information.
/// The sum of numFPDestRegs(), numIntDestRegs(), numVecDestRegs(),
/// numVecElemDestRegs() and numVecPredDestRegs() equals numDestRegs().
/// The former two functions are used to track physical register usage for
/// machines with separate int & FP reg files, the next three are for
/// machines with vector and predicate register files.
//@{
/// Number of source registers.
int8_t numSrcRegs() const { return _numSrcRegs; }
/// Number of destination registers.
int8_t numDestRegs() const { return _numDestRegs; }
/// Number of floating-point destination regs.
int8_t numFPDestRegs() const { return _numFPDestRegs; }
/// Number of integer destination regs.
int8_t numIntDestRegs() const { return _numIntDestRegs; }
/// Number of vector destination regs.
int8_t numVecDestRegs() const { return _numVecDestRegs; }
/// Number of vector element destination regs.
int8_t numVecElemDestRegs() const { return _numVecElemDestRegs; }
/// Number of predicate destination regs.
int8_t numVecPredDestRegs() const { return _numVecPredDestRegs; }
/// Number of coprocesor destination regs.
int8_t numCCDestRegs() const { return _numCCDestRegs; }
//@}
/// @name Flag accessors.
/// These functions are used to access the values of the various
/// instruction property flags. See StaticInst::Flags for descriptions
/// of the individual flags.
//@{
bool isNop() const { return flags[IsNop]; }
bool
isMemRef() const
{
return flags[IsLoad] || flags[IsStore] || flags[IsAtomic];
}
bool isLoad() const { return flags[IsLoad]; }
bool isStore() const { return flags[IsStore]; }
bool isAtomic() const { return flags[IsAtomic]; }
bool isStoreConditional() const { return flags[IsStoreConditional]; }
bool isInstPrefetch() const { return flags[IsInstPrefetch]; }
bool isDataPrefetch() const { return flags[IsDataPrefetch]; }
bool isPrefetch() const { return isInstPrefetch() ||
isDataPrefetch(); }
bool isInteger() const { return flags[IsInteger]; }
bool isFloating() const { return flags[IsFloating]; }
bool isVector() const { return flags[IsVector]; }
bool isControl() const { return flags[IsControl]; }
bool isCall() const { return flags[IsCall]; }
bool isReturn() const { return flags[IsReturn]; }
bool isDirectCtrl() const { return flags[IsDirectControl]; }
bool isIndirectCtrl() const { return flags[IsIndirectControl]; }
bool isCondCtrl() const { return flags[IsCondControl]; }
bool isUncondCtrl() const { return flags[IsUncondControl]; }
bool isSerializing() const { return flags[IsSerializing] ||
flags[IsSerializeBefore] ||
flags[IsSerializeAfter]; }
bool isSerializeBefore() const { return flags[IsSerializeBefore]; }
bool isSerializeAfter() const { return flags[IsSerializeAfter]; }
bool isSquashAfter() const { return flags[IsSquashAfter]; }
bool
isFullMemBarrier() const
{
return flags[IsReadBarrier] && flags[IsWriteBarrier];
}
bool isReadBarrier() const { return flags[IsReadBarrier]; }
bool isWriteBarrier() const { return flags[IsWriteBarrier]; }
bool isNonSpeculative() const { return flags[IsNonSpeculative]; }
bool isQuiesce() const { return flags[IsQuiesce]; }
bool isUnverifiable() const { return flags[IsUnverifiable]; }
bool isSyscall() const { return flags[IsSyscall]; }
bool isMacroop() const { return flags[IsMacroop]; }
bool isMicroop() const { return flags[IsMicroop]; }
bool isDelayedCommit() const { return flags[IsDelayedCommit]; }
bool isLastMicroop() const { return flags[IsLastMicroop]; }
bool isFirstMicroop() const { return flags[IsFirstMicroop]; }
// hardware transactional memory
// HtmCmds must be identified as such in order
// to provide them with necessary memory ordering semantics.
bool isHtmStart() const { return flags[IsHtmStart]; }
bool isHtmStop() const { return flags[IsHtmStop]; }
bool isHtmCancel() const { return flags[IsHtmCancel]; }
bool
isHtmCmd() const
{
return isHtmStart() || isHtmStop() || isHtmCancel();
}
//@}
void setFirstMicroop() { flags[IsFirstMicroop] = true; }
void setLastMicroop() { flags[IsLastMicroop] = true; }
void setDelayedCommit() { flags[IsDelayedCommit] = true; }
void setFlag(Flags f) { flags[f] = true; }
/// Operation class. Used to select appropriate function unit in issue.
OpClass opClass() const { return _opClass; }
/// Return logical index (architectural reg num) of i'th destination reg.
/// Only the entries from 0 through numDestRegs()-1 are valid.
const RegId &destRegIdx(int i) const { return (this->*_destRegIdxPtr)[i]; }
void
setDestRegIdx(int i, const RegId &val)
{
(this->*_destRegIdxPtr)[i] = val;
}
/// Return logical index (architectural reg num) of i'th source reg.
/// Only the entries from 0 through numSrcRegs()-1 are valid.
const RegId &srcRegIdx(int i) const { return (this->*_srcRegIdxPtr)[i]; }
void
setSrcRegIdx(int i, const RegId &val)
{
(this->*_srcRegIdxPtr)[i] = val;
}
/// Pointer to a statically allocated "null" instruction object.
static StaticInstPtr nullStaticInstPtr;
virtual uint64_t getEMI() const { return 0; }
protected:
/**
* Set the pointers which point to the arrays of source and destination
* register indices. These will be defined in derived classes which know
* what size they need to be, and installed here so they can be accessed
* with the base class accessors.
*/
void
setRegIdxArrays(RegIdArrayPtr src, RegIdArrayPtr dest)
{
_srcRegIdxPtr = src;
_destRegIdxPtr = dest;
}
/**
* Base mnemonic (e.g., "add"). Used by generateDisassembly()
* methods. Also useful to readily identify instructions from
* within the debugger when #cachedDisassembly has not been
* initialized.
*/
const char *mnemonic;
/**
* String representation of disassembly (lazily evaluated via
* disassemble()).
*/
mutable std::unique_ptr<std::string> cachedDisassembly;
/**
* Internal function to generate disassembly string.
*/
virtual std::string generateDisassembly(
Addr pc, const loader::SymbolTable *symtab) const = 0;
/// Constructor.
/// It's important to initialize everything here to a sane
/// default, since the decoder generally only overrides
/// the fields that are meaningful for the particular
/// instruction.
StaticInst(const char *_mnemonic, OpClass op_class)
: _opClass(op_class), mnemonic(_mnemonic)
{}
public:
virtual ~StaticInst() {};
virtual Fault execute(ExecContext *xc,
Trace::InstRecord *traceData) const = 0;
virtual Fault
initiateAcc(ExecContext *xc, Trace::InstRecord *traceData) const
{
panic("initiateAcc not defined!");
}
virtual Fault
completeAcc(Packet *pkt, ExecContext *xc,
Trace::InstRecord *trace_data) const
{
panic("completeAcc not defined!");
}
virtual void advancePC(PCStateBase &pc_state) const = 0;
virtual void advancePC(ThreadContext *tc) const;
virtual std::unique_ptr<PCStateBase>
buildRetPC(const PCStateBase &cur_pc, const PCStateBase &call_pc) const
{
panic("buildRetPC not defined!");
}
/**
* Return the microop that goes with a particular micropc. This should
* only be defined/used in macroops which will contain microops
*/
virtual StaticInstPtr fetchMicroop(MicroPC upc) const;
/**
* Return the target address for a PC-relative branch.
* Invalid if not a PC-relative branch (i.e. isDirectCtrl()
* should be true).
*/
virtual std::unique_ptr<PCStateBase> branchTarget(
const PCStateBase &pc) const;
/**
* Return the target address for an indirect branch (jump). The
* register value is read from the supplied thread context, so
* the result is valid only if the thread context is about to
* execute the branch in question. Invalid if not an indirect
* branch (i.e. isIndirectCtrl() should be true).
*/
virtual std::unique_ptr<PCStateBase> branchTarget(
ThreadContext *tc) const;
/**
* Return string representation of disassembled instruction.
* The default version of this function will call the internal
* virtual generateDisassembly() function to get the string,
* then cache it in #cachedDisassembly. If the disassembly
* should not be cached, this function should be overridden directly.
*/
virtual const std::string &disassemble(Addr pc,
const loader::SymbolTable *symtab=nullptr) const;
/**
* Print a separator separated list of this instruction's set flag
* names on the given stream.
*/
void printFlags(std::ostream &outs, const std::string &separator) const;
/// Return name of machine instruction
std::string getName() { return mnemonic; }
protected:
template<typename T>
size_t
simpleAsBytes(void *buf, size_t max_size, const T &t)
{
size_t size = sizeof(T);
if (size <= max_size)
*reinterpret_cast<T *>(buf) = htole<T>(t);
return size;
}
public:
/**
* Instruction classes can override this function to return a
* a representation of themselves as a blob of bytes, generally assumed to
* be that instructions ExtMachInst.
*
* buf is a buffer to hold the bytes.
* max_size is the size allocated for that buffer by the caller.
* The return value is how much data was actually put into the buffer,
* zero if no data was put in the buffer, or the necessary size of the
* buffer if there wasn't enough space.
*/
virtual size_t asBytes(void *buf, size_t max_size) { return 0; }
};
} // namespace gem5
#endif // __CPU_STATIC_INST_HH__