blob: 9029aba3e9bc40b1246f67c473df8f56b16e1fc1 [file] [log] [blame]
/*
* Copyright (c) 2011-2012, 2016-2018 ARM Limited
* Copyright (c) 2013 Advanced Micro Devices, Inc.
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2004-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Kevin Lim
*/
#ifndef __CPU_O3_THREAD_CONTEXT_HH__
#define __CPU_O3_THREAD_CONTEXT_HH__
#include "config/the_isa.hh"
#include "cpu/o3/isa_specific.hh"
#include "cpu/thread_context.hh"
class EndQuiesceEvent;
namespace Kernel {
class Statistics;
}
/**
* Derived ThreadContext class for use with the O3CPU. It
* provides the interface for any external objects to access a
* single thread's state and some general CPU state. Any time
* external objects try to update state through this interface,
* the CPU will create an event to squash all in-flight
* instructions in order to ensure state is maintained correctly.
* It must be defined specifically for the O3CPU because
* not all architectural state is located within the O3ThreadState
* (such as the commit PC, and registers), and specific actions
* must be taken when using this interface (such as squashing all
* in-flight instructions when doing a write to this interface).
*/
template <class Impl>
class O3ThreadContext : public ThreadContext
{
public:
typedef typename Impl::O3CPU O3CPU;
/** Pointer to the CPU. */
O3CPU *cpu;
/** Pointer to the thread state that this TC corrseponds to. */
O3ThreadState<Impl> *thread;
/** Returns a pointer to the ITB. */
BaseTLB *getITBPtr() override { return cpu->itb; }
/** Returns a pointer to the DTB. */
BaseTLB *getDTBPtr() override { return cpu->dtb; }
CheckerCPU *getCheckerCpuPtr() override { return NULL; }
TheISA::ISA *
getIsaPtr() override
{
return cpu->isa[thread->threadId()];
}
TheISA::Decoder *
getDecoderPtr() override
{
return cpu->fetch.decoder[thread->threadId()];
}
/** Returns a pointer to this CPU. */
BaseCPU *getCpuPtr() override { return cpu; }
/** Reads this CPU's ID. */
int cpuId() const override { return cpu->cpuId(); }
/** Reads this CPU's Socket ID. */
uint32_t socketId() const override { return cpu->socketId(); }
ContextID contextId() const override { return thread->contextId(); }
void setContextId(ContextID id) override { thread->setContextId(id); }
/** Returns this thread's ID number. */
int threadId() const override { return thread->threadId(); }
void setThreadId(int id) override { return thread->setThreadId(id); }
/** Returns a pointer to the system. */
System *getSystemPtr() override { return cpu->system; }
/** Returns a pointer to this thread's kernel statistics. */
::Kernel::Statistics *
getKernelStats() override
{
return thread->kernelStats;
}
/** Returns a pointer to this thread's process. */
Process *getProcessPtr() override { return thread->getProcessPtr(); }
void setProcessPtr(Process *p) override { thread->setProcessPtr(p); }
PortProxy &getPhysProxy() override { return thread->getPhysProxy(); }
PortProxy &getVirtProxy() override;
void
initMemProxies(ThreadContext *tc) override
{
thread->initMemProxies(tc);
}
/** Returns this thread's status. */
Status status() const override { return thread->status(); }
/** Sets this thread's status. */
void
setStatus(Status new_status) override
{
thread->setStatus(new_status);
}
/** Set the status to Active. */
void activate() override;
/** Set the status to Suspended. */
void suspend() override;
/** Set the status to Halted. */
void halt() override;
/** Dumps the function profiling information.
* @todo: Implement.
*/
void dumpFuncProfile() override;
/** Takes over execution of a thread from another CPU. */
void takeOverFrom(ThreadContext *old_context) override;
/** Registers statistics associated with this TC. */
void regStats(const std::string &name) override;
/** Reads the last tick that this thread was activated on. */
Tick readLastActivate() override;
/** Reads the last tick that this thread was suspended on. */
Tick readLastSuspend() override;
/** Clears the function profiling information. */
void profileClear() override;
/** Samples the function profiling information. */
void profileSample() override;
/** Copies the architectural registers from another TC into this TC. */
void copyArchRegs(ThreadContext *tc) override;
/** Resets all architectural registers to 0. */
void clearArchRegs() override;
/** Reads an integer register. */
RegVal
readReg(RegIndex reg_idx)
{
return readIntRegFlat(flattenRegId(RegId(IntRegClass,
reg_idx)).index());
}
RegVal
readIntReg(RegIndex reg_idx) const override
{
return readIntRegFlat(flattenRegId(RegId(IntRegClass,
reg_idx)).index());
}
RegVal
readFloatReg(RegIndex reg_idx) const override
{
return readFloatRegFlat(flattenRegId(RegId(FloatRegClass,
reg_idx)).index());
}
const VecRegContainer &
readVecReg(const RegId& id) const override
{
return readVecRegFlat(flattenRegId(id).index());
}
/**
* Read vector register operand for modification, hierarchical indexing.
*/
VecRegContainer &
getWritableVecReg(const RegId& id) override
{
return getWritableVecRegFlat(flattenRegId(id).index());
}
/** Vector Register Lane Interfaces. */
/** @{ */
/** Reads source vector 8bit operand. */
ConstVecLane8
readVec8BitLaneReg(const RegId& id) const override
{
return readVecLaneFlat<uint8_t>(flattenRegId(id).index(),
id.elemIndex());
}
/** Reads source vector 16bit operand. */
ConstVecLane16
readVec16BitLaneReg(const RegId& id) const override
{
return readVecLaneFlat<uint16_t>(flattenRegId(id).index(),
id.elemIndex());
}
/** Reads source vector 32bit operand. */
ConstVecLane32
readVec32BitLaneReg(const RegId& id) const override
{
return readVecLaneFlat<uint32_t>(flattenRegId(id).index(),
id.elemIndex());
}
/** Reads source vector 64bit operand. */
ConstVecLane64
readVec64BitLaneReg(const RegId& id) const override
{
return readVecLaneFlat<uint64_t>(flattenRegId(id).index(),
id.elemIndex());
}
/** Write a lane of the destination vector register. */
void
setVecLane(const RegId& reg,
const LaneData<LaneSize::Byte>& val) override
{
return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val);
}
void
setVecLane(const RegId& reg,
const LaneData<LaneSize::TwoByte>& val) override
{
return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val);
}
void
setVecLane(const RegId& reg,
const LaneData<LaneSize::FourByte>& val) override
{
return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val);
}
void
setVecLane(const RegId& reg,
const LaneData<LaneSize::EightByte>& val) override
{
return setVecLaneFlat(flattenRegId(reg).index(), reg.elemIndex(), val);
}
/** @} */
const VecElem &
readVecElem(const RegId& reg) const override
{
return readVecElemFlat(flattenRegId(reg).index(), reg.elemIndex());
}
const VecPredRegContainer &
readVecPredReg(const RegId& id) const override
{
return readVecPredRegFlat(flattenRegId(id).index());
}
VecPredRegContainer&
getWritableVecPredReg(const RegId& id) override
{
return getWritableVecPredRegFlat(flattenRegId(id).index());
}
RegVal
readCCReg(RegIndex reg_idx) const override
{
return readCCRegFlat(flattenRegId(RegId(CCRegClass,
reg_idx)).index());
}
/** Sets an integer register to a value. */
void
setIntReg(RegIndex reg_idx, RegVal val) override
{
setIntRegFlat(flattenRegId(RegId(IntRegClass, reg_idx)).index(), val);
}
void
setFloatReg(RegIndex reg_idx, RegVal val) override
{
setFloatRegFlat(flattenRegId(RegId(FloatRegClass,
reg_idx)).index(), val);
}
void
setVecReg(const RegId& reg, const VecRegContainer& val) override
{
setVecRegFlat(flattenRegId(reg).index(), val);
}
void
setVecElem(const RegId& reg, const VecElem& val) override
{
setVecElemFlat(flattenRegId(reg).index(), reg.elemIndex(), val);
}
void
setVecPredReg(const RegId& reg,
const VecPredRegContainer& val) override
{
setVecPredRegFlat(flattenRegId(reg).index(), val);
}
void
setCCReg(RegIndex reg_idx, RegVal val) override
{
setCCRegFlat(flattenRegId(RegId(CCRegClass, reg_idx)).index(), val);
}
/** Reads this thread's PC state. */
TheISA::PCState
pcState() const override
{
return cpu->pcState(thread->threadId());
}
/** Sets this thread's PC state. */
void pcState(const TheISA::PCState &val) override;
void pcStateNoRecord(const TheISA::PCState &val) override;
/** Reads this thread's PC. */
Addr
instAddr() const override
{
return cpu->instAddr(thread->threadId());
}
/** Reads this thread's next PC. */
Addr
nextInstAddr() const override
{
return cpu->nextInstAddr(thread->threadId());
}
/** Reads this thread's next PC. */
MicroPC
microPC() const override
{
return cpu->microPC(thread->threadId());
}
/** Reads a miscellaneous register. */
RegVal
readMiscRegNoEffect(RegIndex misc_reg) const override
{
return cpu->readMiscRegNoEffect(misc_reg, thread->threadId());
}
/** Reads a misc. register, including any side-effects the
* read might have as defined by the architecture. */
RegVal
readMiscReg(RegIndex misc_reg) override
{
return cpu->readMiscReg(misc_reg, thread->threadId());
}
/** Sets a misc. register. */
void setMiscRegNoEffect(RegIndex misc_reg, RegVal val) override;
/** Sets a misc. register, including any side-effects the
* write might have as defined by the architecture. */
void setMiscReg(RegIndex misc_reg, RegVal val) override;
RegId flattenRegId(const RegId& regId) const override;
/** Returns the number of consecutive store conditional failures. */
// @todo: Figure out where these store cond failures should go.
unsigned
readStCondFailures() const override
{
return thread->storeCondFailures;
}
/** Sets the number of consecutive store conditional failures. */
void
setStCondFailures(unsigned sc_failures) override
{
thread->storeCondFailures = sc_failures;
}
/** Executes a syscall in SE mode. */
void
syscall(int64_t callnum, Fault *fault) override
{
return cpu->syscall(callnum, thread->threadId(), fault);
}
/** Reads the funcExeInst counter. */
Counter readFuncExeInst() const override { return thread->funcExeInst; }
/** Returns pointer to the quiesce event. */
EndQuiesceEvent *
getQuiesceEvent() override
{
return this->thread->quiesceEvent;
}
/** check if the cpu is currently in state update mode and squash if not.
* This function will return true if a trap is pending or if a fault or
* similar is currently writing to the thread context and doesn't want
* reset all the state (see noSquashFromTC).
*/
inline void
conditionalSquash()
{
if (!thread->trapPending && !thread->noSquashFromTC)
cpu->squashFromTC(thread->threadId());
}
RegVal readIntRegFlat(RegIndex idx) const override;
void setIntRegFlat(RegIndex idx, RegVal val) override;
RegVal readFloatRegFlat(RegIndex idx) const override;
void setFloatRegFlat(RegIndex idx, RegVal val) override;
const VecRegContainer& readVecRegFlat(RegIndex idx) const override;
/** Read vector register operand for modification, flat indexing. */
VecRegContainer& getWritableVecRegFlat(RegIndex idx) override;
void setVecRegFlat(RegIndex idx, const VecRegContainer& val) override;
template <typename VecElem>
VecLaneT<VecElem, true>
readVecLaneFlat(RegIndex idx, int lId) const
{
return cpu->template readArchVecLane<VecElem>(idx, lId,
thread->threadId());
}
template <typename LD>
void
setVecLaneFlat(int idx, int lId, const LD& val)
{
cpu->template setArchVecLane(idx, lId, thread->threadId(), val);
}
const VecElem &readVecElemFlat(RegIndex idx,
const ElemIndex& elemIndex) const override;
void setVecElemFlat(RegIndex idx, const ElemIndex& elemIdx,
const VecElem& val) override;
const VecPredRegContainer& readVecPredRegFlat(RegIndex idx) const override;
VecPredRegContainer& getWritableVecPredRegFlat(RegIndex idx) override;
void setVecPredRegFlat(RegIndex idx,
const VecPredRegContainer& val) override;
RegVal readCCRegFlat(RegIndex idx) const override;
void setCCRegFlat(RegIndex idx, RegVal val) override;
};
#endif