blob: f99917d21ce0d884fde7511bf6eaacd657a4ca50 [file] [log] [blame]
/*
* Copyright (c) 2012-2014, TU Delft
* Copyright (c) 2012-2014, TU Eindhoven
* Copyright (c) 2012-2014, TU Kaiserslautern
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "CommandAnalysis.h"
using std::cerr;
using std::endl;
using std::max;
using namespace Data;
int64_t zero_guard(int64_t cycles_in, const char* warning)
{
// Calculate max(0, cycles_in)
int64_t zero = 0;
if (warning != nullptr && cycles_in < 0) {
// This line is commented out for now, we will attempt to remove the situations where
// these warnings trigger later.
// cerr << "WARNING: " << warning << endl;
}
return max(zero, cycles_in);
}
void CommandAnalysis::handleAct(unsigned bank, int64_t timestamp)
{
printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::ACT, timestamp, bank);
// If command is ACT - update number of acts, bank state of the
// target bank, first and latest activation cycle and the memory
// state. Update the number of precharged/idle-precharged cycles.
// If the bank is already active ignore the command and generate a
// warning.
if (isPrecharged(bank)) {
numberofactsBanks[bank]++;
if (nActiveBanks() == 0) {
// Here a memory state transition to ACT is happening. Save the
// number of cycles in precharge state (increment the counter).
first_act_cycle = timestamp;
precycles += zero_guard(timestamp - last_pre_cycle, "1 last_pre_cycle is in the future.");
idle_pre_update(timestamp, latest_pre_cycle);
}
bank_state[bank] = BANK_ACTIVE;
latest_act_cycle = timestamp;
} else {
printWarning("Bank is already active!", MemCommand::ACT, timestamp, bank);
}
}
void CommandAnalysis::handleRd(unsigned bank, int64_t timestamp)
{
printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::RD, timestamp, bank);
// If command is RD - update number of reads and read cycle. Check
// for active idle cycles (if any).
if (isPrecharged(bank)) {
printWarning("Bank is not active!", MemCommand::RD, timestamp, bank);
}
numberofreadsBanks[bank]++;
idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp);
latest_read_cycle = timestamp;
}
void CommandAnalysis::handleWr(unsigned bank, int64_t timestamp)
{
printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::WR, timestamp, bank);
// If command is WR - update number of writes and write cycle. Check
// for active idle cycles (if any).
if (isPrecharged(bank)) {
printWarning("Bank is not active!", MemCommand::WR, timestamp, bank);
}
numberofwritesBanks[bank]++;
idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp);
latest_write_cycle = timestamp;
}
void CommandAnalysis::handleRef(unsigned bank, int64_t timestamp)
{
printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::REF, timestamp, bank);
// If command is REF - update number of refreshes, set bank state of
// all banks to ACT, set the last PRE cycles at RFC-RP cycles from
// timestamp, set the number of active cycles to RFC-RP and check
// for active and precharged cycles and idle active and idle
// precharged cycles before refresh. Change memory state to 0.
printWarningIfActive("One or more banks are active! REF requires all banks to be precharged.", MemCommand::REF, timestamp, bank);
numberofrefs++;
idle_pre_update(timestamp, latest_pre_cycle);
first_act_cycle = timestamp;
std::fill(first_act_cycle_banks.begin(), first_act_cycle_banks.end(), timestamp);
precycles += zero_guard(timestamp - last_pre_cycle, "2 last_pre_cycle is in the future.");
last_pre_cycle = timestamp + memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP;
latest_pre_cycle = last_pre_cycle;
actcycles += memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP;
for (auto &e : actcyclesBanks) {
e += memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP;
}
for (auto& bs : bank_state) {
bs = BANK_PRECHARGED;
}
}
void CommandAnalysis::handleRefB(unsigned bank, int64_t timestamp)
{
// A REFB command requires a previous PRE command.
if (isPrecharged(bank)) {
// This previous PRE command handler is also responsible for keeping the
// memory state updated.
// Here we consider that the memory state is not changed in order to keep
// things simple, since the transition from PRE to ACT state takes time.
numberofrefbBanks[bank]++;
// Length of the refresh: here we have an approximation, we consider tRP
// also as act cycles because the bank will be precharged (stable) after
// tRP.
actcyclesBanks[bank] += memSpec.memTimingSpec.RAS + memSpec.memTimingSpec.RP;
} else {
printWarning("Bank must be precharged for REFB!", MemCommand::REFB, timestamp, bank);
}
}
void CommandAnalysis::handlePre(unsigned bank, int64_t timestamp)
{
printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::PRE, timestamp, bank);
// If command is explicit PRE - update number of precharges, bank
// state of the target bank and last and latest precharge cycle.
// Calculate the number of active cycles if the memory was in the
// active state before, but there is a state transition to PRE now
// (i.e., this is the last active bank).
// If the bank is already precharged ignore the command and generate a
// warning.
// Precharge only if the target bank is active
if (bank_state[bank] == BANK_ACTIVE) {
numberofpresBanks[bank]++;
actcyclesBanks[bank] += zero_guard(timestamp - first_act_cycle_banks[bank], "first_act_cycle is in the future (bank).");
// Since we got here, at least one bank is active
assert(nActiveBanks() != 0);
if (nActiveBanks() == 1) {
// This is the last active bank. Therefore, here a memory state
// transition to PRE is happening. Let's increment the active cycle
// counter.
actcycles += zero_guard(timestamp - first_act_cycle, "first_act_cycle is in the future.");
last_pre_cycle = timestamp;
idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp);
}
bank_state[bank] = BANK_PRECHARGED;
latest_pre_cycle = timestamp;
} else {
printWarning("Bank is already precharged!", MemCommand::PRE, timestamp, bank);
}
}
void CommandAnalysis::handlePreA(unsigned bank, int64_t timestamp)
{
printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::PREA, timestamp, bank);
// If command is explicit PREA (precharge all banks) - update
// number of precharges by the number of active banks, update the bank
// state of all banks to PRE and set the precharge cycle (the cycle in
// which the memory state changes from ACT to PRE, aka last_pre_cycle).
// Calculate the number of active cycles if the memory was in the
// active state before, but there is a state transition to PRE now.
if (nActiveBanks() > 0) {
// Active banks are being precharged
// At least one bank was active, therefore the current memory state is
// ACT. Since all banks are being precharged a memory state transition
// to PRE is happening. Add to the counter the amount of cycles the
// memory remained in the ACT state.
actcycles += zero_guard(timestamp - first_act_cycle, "first_act_cycle is in the future.");
last_pre_cycle = timestamp;
for (unsigned b = 0; b < num_banks; b++) {
if (bank_state[b] == BANK_ACTIVE) {
// Active banks are being precharged
numberofpresBanks[b] += 1;
actcyclesBanks[b] += zero_guard(timestamp - first_act_cycle_banks[b], "first_act_cycle is in the future (bank).");
}
}
idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp);
latest_pre_cycle = timestamp;
// Reset the state for all banks to precharged.
for (auto& bs : bank_state) {
bs = BANK_PRECHARGED;
}
} else {
printWarning("All banks are already precharged!", MemCommand::PREA, timestamp, bank);
}
}
void CommandAnalysis::handlePdnFAct(unsigned bank, int64_t timestamp)
{
// If command is fast-exit active power-down - update number of
// power-downs, set the power-down cycle and the memory mode to
// fast-exit active power-down. Save states of all the banks from
// the cycle before entering active power-down, to be returned to
// after powering-up. Update active and active idle cycles.
printWarningIfNotActive("All banks are precharged! Incorrect use of Active Power-Down.", MemCommand::PDN_F_ACT, timestamp, bank);
f_act_pdns++;
last_bank_state = bank_state;
pdn_cycle = timestamp;
actcycles += zero_guard(timestamp - first_act_cycle, "first_act_cycle is in the future.");
for (unsigned b = 0; b < num_banks; b++) {
if (bank_state[b] == BANK_ACTIVE) {
actcyclesBanks[b] += zero_guard(timestamp - first_act_cycle_banks[b], "first_act_cycle is in the future (bank).");
}
}
idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp);
mem_state = CommandAnalysis::MS_PDN_F_ACT;
}
void CommandAnalysis::handlePdnSAct(unsigned bank, int64_t timestamp)
{
// If command is slow-exit active power-down - update number of
// power-downs, set the power-down cycle and the memory mode to
// slow-exit active power-down. Save states of all the banks from
// the cycle before entering active power-down, to be returned to
// after powering-up. Update active and active idle cycles.
printWarningIfNotActive("All banks are precharged! Incorrect use of Active Power-Down.", MemCommand::PDN_S_ACT, timestamp, bank);
s_act_pdns++;
last_bank_state = bank_state;
pdn_cycle = timestamp;
actcycles += zero_guard(timestamp - first_act_cycle, "first_act_cycle is in the future.");
for (unsigned b = 0; b < num_banks; b++) {
if (bank_state[b] == BANK_ACTIVE) {
actcyclesBanks[b] += zero_guard(timestamp - first_act_cycle_banks[b], "first_act_cycle is in the future (bank).");
}
}
idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp);
mem_state = CommandAnalysis::MS_PDN_S_ACT;
}
void CommandAnalysis::handlePdnFPre(unsigned bank, int64_t timestamp)
{
// If command is fast-exit precharged power-down - update number of
// power-downs, set the power-down cycle and the memory mode to
// fast-exit precahrged power-down. Update precharged and precharged
// idle cycles.
printWarningIfActive("One or more banks are active! Incorrect use of Precharged Power-Down.", MemCommand::PDN_F_PRE, timestamp, bank);
f_pre_pdns++;
pdn_cycle = timestamp;
precycles += zero_guard(timestamp - last_pre_cycle, "3 last_pre_cycle is in the future.");
idle_pre_update(timestamp, latest_pre_cycle);
mem_state = CommandAnalysis::MS_PDN_F_PRE;
}
void CommandAnalysis::handlePdnSPre(unsigned bank, int64_t timestamp)
{
// If command is slow-exit precharged power-down - update number of
// power-downs, set the power-down cycle and the memory mode to
// slow-exit precahrged power-down. Update precharged and precharged
// idle cycles.
printWarningIfActive("One or more banks are active! Incorrect use of Precharged Power-Down.", MemCommand::PDN_S_PRE, timestamp, bank);
s_pre_pdns++;
pdn_cycle = timestamp;
precycles += zero_guard(timestamp - last_pre_cycle, "4 last_pre_cycle is in the future.");
idle_pre_update(timestamp, latest_pre_cycle);
mem_state = CommandAnalysis::MS_PDN_S_PRE;
}
void CommandAnalysis::handlePupAct(int64_t timestamp)
{
// If command is power-up in the active mode - check the power-down
// exit-mode employed (fast or slow), update the number of power-down
// and power-up cycles and the latest and first act cycle. Also, reset
// all the individual bank states to the respective saved states
// before entering power-down.
const MemTimingSpec& t = memSpec.memTimingSpec;
if (mem_state == CommandAnalysis::MS_PDN_F_ACT) {
f_act_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future.");
pup_act_cycles += t.XP;
latest_act_cycle = timestamp;
} else if (mem_state == CommandAnalysis::MS_PDN_S_ACT) {
s_act_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future.");
if (memSpec.memArchSpec.dll == false) {
pup_act_cycles += t.XP;
latest_act_cycle = timestamp;
} else {
pup_act_cycles += t.XPDLL - t.RCD;
latest_act_cycle = timestamp + zero_guard(t.XPDLL - (2 * t.RCD), "t.XPDLL - (2 * t.RCD) < 0");
}
} else {
cerr << "Incorrect use of Active Power-Up!" << endl;
}
mem_state = MS_NOT_IN_PD;
bank_state = last_bank_state;
first_act_cycle = timestamp;
std::fill(first_act_cycle_banks.begin(), first_act_cycle_banks.end(), timestamp);
}
void CommandAnalysis::handlePupPre(int64_t timestamp)
{
// If command is power-up in the precharged mode - check the power-down
// exit-mode employed (fast or slow), update the number of power-down
// and power-up cycles and the latest and last pre cycle.
const MemTimingSpec& t = memSpec.memTimingSpec;
if (mem_state == CommandAnalysis::MS_PDN_F_PRE) {
f_pre_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future.");
pup_pre_cycles += t.XP;
latest_pre_cycle = timestamp;
} else if (mem_state == CommandAnalysis::MS_PDN_S_PRE) {
s_pre_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future.");
if (memSpec.memArchSpec.dll == false) {
pup_pre_cycles += t.XP;
latest_pre_cycle = timestamp;
} else {
pup_pre_cycles += t.XPDLL - t.RCD;
latest_pre_cycle = timestamp + zero_guard(t.XPDLL - t.RCD - t.RP, "t.XPDLL - t.RCD - t.RP");
}
} else {
cerr << "Incorrect use of Precharged Power-Up!" << endl;
}
mem_state = MS_NOT_IN_PD;
last_pre_cycle = timestamp;
}
void CommandAnalysis::handleSREn(unsigned bank, int64_t timestamp)
{
// If command is self-refresh - update number of self-refreshes,
// set memory state to SREF, update precharge and idle precharge
// cycles and set the self-refresh cycle.
printWarningIfActive("One or more banks are active! SREF requires all banks to be precharged.", MemCommand::SREN, timestamp, bank);
numberofsrefs++;
sref_cycle = timestamp;
sref_cycle_window = timestamp;
sref_ref_pre_cycles_window = 0;
sref_ref_act_cycles_window = 0;
precycles += zero_guard(timestamp - last_pre_cycle, "5 last_pre_cycle is in the future.");
idle_pre_update(timestamp, latest_pre_cycle);
mem_state = CommandAnalysis::MS_SREF;
}
void CommandAnalysis::handleSREx(unsigned bank, int64_t timestamp)
{
// If command is self-refresh exit - update the number of self-refresh
// clock cycles, number of active and precharged auto-refresh clock
// cycles during self-refresh and self-refresh exit based on the number
// of cycles in the self-refresh mode and auto-refresh duration (RFC).
// Set the last and latest precharge cycle accordingly and set the
// memory state to 0.
const MemTimingSpec& t = memSpec.memTimingSpec;
if (mem_state != CommandAnalysis::MS_SREF) {
cerr << "Incorrect use of Self-Refresh Power-Up!" << endl;
}
// The total duration of self-refresh is given by the difference between
// the current clock cycle and the clock cycle of entering self-refresh.
int64_t sref_duration = timestamp - sref_cycle;
// Negative or zero duration should never happen.
if (sref_duration <= 0) {
printWarning("Invalid Self-Refresh duration!", MemCommand::SREX, timestamp, bank);
sref_duration = 0;
}
// The minimum time that the DRAM must remain in Self-Refresh is CKESR.
if (sref_duration < t.CKESR) {
printWarning("Self-Refresh duration < CKESR!", MemCommand::SREX, timestamp, bank);
}
if (sref_duration >= t.RFC) {
/*
* Self-refresh Exit Context 1 (tSREF >= tRFC):
* The memory remained in self-refresh for a certain number of clock
* cycles greater than a refresh cycle time (RFC). Consequently, the
* initial auto-refresh accomplished.
*
*
* SREN # SREX
* | # ^
* | # |
* |<------------------------- tSREF ----------...----->|
* | # |
* | Initial Auto-Refresh # |
* v # |
* ------------------------------------#-------...-----------------> t
* #
* <------------- tRFC -------------->#
* <---- (tRFC - tRP) ----><-- tRP -->#
* | |
* v v
* sref_ref_act_cycles sref_ref_pre_cycles
*
*
* Summary:
* sref_cycles += tSREF – tRFC
* sref_ref_act_cycles += tRFC - tRP
* sref_ref_pre_cycles += tRP
* spup_ref_act_cycles += 0
* spup_ref_pre_cycles += 0
*
*/
// The initial auto-refresh consumes (IDD5 − IDD3N) over one refresh
// period (RFC) from the start of the self-refresh.
sref_ref_act_cycles += t.RFC -
t.RP - sref_ref_act_cycles_window;
sref_ref_pre_cycles += t.RP - sref_ref_pre_cycles_window;
last_pre_cycle = timestamp;
// The IDD6 current is consumed for the time period spent in the
// self-refresh mode, which excludes the time spent in finishing the
// initial auto-refresh.
if (sref_cycle_window > sref_cycle + t.RFC) {
sref_cycles += zero_guard(timestamp - sref_cycle_window, "sref_cycle_window is in the future.");
} else {
sref_cycles += zero_guard(timestamp - sref_cycle - t.RFC, "sref_cycle - t.RFC < 0");
}
// IDD2N current is consumed when exiting the self-refresh state.
if (memSpec.memArchSpec.dll == false) {
spup_cycles += t.XS;
latest_pre_cycle = timestamp + zero_guard(t.XS - t.RP, "t.XS - t.RP < 0");
} else {
spup_cycles += t.XSDLL - t.RCD;
latest_pre_cycle = timestamp + zero_guard(t.XSDLL - t.RCD - t.RP, "t.XSDLL - t.RCD - t.RP < 0");
}
} else {
// Self-refresh Exit Context 2 (tSREF < tRFC):
// Exit self-refresh before the completion of the initial
// auto-refresh.
// Number of active cycles needed by an auto-refresh.
int64_t ref_act_cycles = t.RFC - t.RP;
if (sref_duration >= ref_act_cycles) {
/*
* Self-refresh Exit Context 2A (tSREF < tRFC && tSREF >= tRFC - tRP):
* The duration of self-refresh is equal or greater than the number
* of active cycles needed by the initial auto-refresh.
*
*
* SREN SREX
* | ^ #
* | | #
* |<------------------ tSREF --------------------->| #
* | | #
* | Initial Auto-Refresh #
* v | #
* -----------------------------------------------------------#--> t
* #
* <------------------------ tRFC -------------------------->#
* <------------- (tRFC - tRP)--------------><----- tRP ---->#
* | <-----><------->
* v | |
* sref_ref_act_cycles v v
* sref_ref_pre_cycles spup_ref_pre_cycles
*
*
* Summary:
* sref_cycles += 0
* sref_ref_act_cycles += tRFC - tRP
* sref_ref_pre_cycles += tSREF – (tRFC – tRP)
* spup_ref_act_cycles += 0
* spup_ref_pre_cycles += tRP – sref_ref_pre_cycles
*
*/
// Number of precharged cycles (zero <= pre_cycles < RP)
int64_t pre_cycles = sref_duration - ref_act_cycles - sref_ref_pre_cycles_window;
sref_ref_act_cycles += ref_act_cycles - sref_ref_act_cycles_window;
sref_ref_pre_cycles += pre_cycles;
// Number of precharged cycles during the self-refresh power-up. It
// is at maximum tRP (if pre_cycles is zero).
int64_t spup_pre = t.RP - pre_cycles;
spup_ref_pre_cycles += spup_pre;
last_pre_cycle = timestamp + spup_pre;
if (memSpec.memArchSpec.dll == false) {
spup_cycles += t.XS - spup_pre;
latest_pre_cycle = timestamp + zero_guard(t.XS - spup_pre - t.RP, "t.XS - spup_pre - t.RP < 0");
} else {
spup_cycles += t.XSDLL - t.RCD - spup_pre;
latest_pre_cycle = timestamp + zero_guard(t.XSDLL - t.RCD - spup_pre - t.RP, "t.XSDLL - t.RCD - spup_pre - t.RP");
}
} else {
/*
* Self-refresh Exit Context 2B (tSREF < tRFC - tRP):
* self-refresh duration is shorter than the number of active cycles
* needed by the initial auto-refresh.
*
*
* SREN SREX
* | ^ #
* | | #
* |<-------------- tSREF ----------->| #
* | | #
* | Initial Auto-Refresh #
* v | #
* ------------------------------------------------------------#--> t
* #
* <------------------------ tRFC --------------------------->#
* <-------------- (tRFC - tRP)-------------><------ tRP ---->#
* <--------------------------------><------><--------------->
* | | |
* v v v
* sref_ref_act_cycles spup_ref_act_cycles spup_ref_pre_cycles
*
*
* Summary:
* sref_cycles += 0
* sref_ref_act_cycles += tSREF
* sref_ref_pre_cycles += 0
* spup_ref_act_cycles += (tRFC – tRP) - tSREF
* spup_ref_pre_cycles += tRP
*
*/
sref_ref_act_cycles += sref_duration - sref_ref_act_cycles_window;
int64_t spup_act = (t.RFC - t.RP) - sref_duration;
spup_ref_act_cycles += spup_act;
spup_ref_pre_cycles += t.RP;
last_pre_cycle = timestamp + spup_act + t.RP;
if (memSpec.memArchSpec.dll == false) {
spup_cycles += t.XS - spup_act - t.RP;
latest_pre_cycle = timestamp + zero_guard(t.XS - spup_act - (2 * t.RP), "t.XS - spup_act - (2 * t.RP) < 0");
} else {
spup_cycles += t.XSDLL - t.RCD - spup_act - t.RP;
latest_pre_cycle = timestamp + zero_guard(t.XSDLL - t.RCD - spup_act - (2 * t.RP), "t.XSDLL - t.RCD - spup_act - (2 * t.RP) < 0");
}
}
}
mem_state = MS_NOT_IN_PD;
}
void CommandAnalysis::handleNopEnd(int64_t timestamp)
{
// May be optionally used at the end of memory trace for better accuracy
// Update all counters based on completion of operations.
const MemTimingSpec& t = memSpec.memTimingSpec;
for (unsigned b = 0; b < num_banks; b++) {
if (bank_state[b] == BANK_ACTIVE) {
actcyclesBanks[b] += zero_guard(timestamp - first_act_cycle_banks[b], "first_act_cycle is in the future (bank)");
}
}
if (nActiveBanks() > 0 && mem_state == MS_NOT_IN_PD) {
actcycles += zero_guard(timestamp - first_act_cycle, "first_act_cycle is in the future");
idle_act_update(latest_read_cycle, latest_write_cycle,
latest_act_cycle, timestamp);
} else if (nActiveBanks() == 0 && mem_state == MS_NOT_IN_PD) {
precycles += zero_guard(timestamp - last_pre_cycle, "6 last_pre_cycle is in the future");
idle_pre_update(timestamp, latest_pre_cycle);
} else if (mem_state == CommandAnalysis::MS_PDN_F_ACT) {
f_act_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future");
} else if (mem_state == CommandAnalysis::MS_PDN_S_ACT) {
s_act_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future");
} else if (mem_state == CommandAnalysis::MS_PDN_F_PRE) {
f_pre_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future");
} else if (mem_state == CommandAnalysis::MS_PDN_S_PRE) {
s_pre_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future");
} else if (mem_state == CommandAnalysis::MS_SREF) {
auto rfc_minus_rp = (t.RFC - t.RP);
if (timestamp > sref_cycle + t.RFC) {
if (sref_cycle_window <= sref_cycle + rfc_minus_rp) {
sref_ref_act_cycles += rfc_minus_rp - sref_ref_act_cycles_window;
sref_ref_act_cycles_window = rfc_minus_rp;
sref_cycle_window = sref_cycle + rfc_minus_rp;
}
if (sref_cycle_window <= sref_cycle + t.RFC) {
sref_ref_pre_cycles += t.RP - sref_ref_pre_cycles_window;
sref_ref_pre_cycles_window = t.RP;
sref_cycle_window = sref_cycle + t.RFC;
}
sref_cycles += zero_guard(timestamp - sref_cycle_window, "sref_cycle_window is in the future");
} else if (timestamp > sref_cycle + rfc_minus_rp) {
if (sref_cycle_window <= sref_cycle + rfc_minus_rp) {
sref_ref_act_cycles += rfc_minus_rp - sref_ref_act_cycles_window;
sref_ref_act_cycles_window = rfc_minus_rp;
sref_cycle_window = sref_cycle + rfc_minus_rp;
}
sref_ref_pre_cycles_window += timestamp - sref_cycle_window;
sref_ref_pre_cycles += timestamp - sref_cycle_window;
} else {
sref_ref_act_cycles_window += timestamp - sref_cycle_window;
sref_ref_act_cycles += timestamp - sref_cycle_window;
}
}
}