blob: acfecf97b8105b963f8226d18196020710d7b995 [file] [log] [blame]
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Google Test - The Google C++ Testing and Mocking Framework
//
// This file tests the universal value printer.
#include <algorithm>
#include <cctype>
#include <cstdint>
#include <cstring>
#include <deque>
#include <forward_list>
#include <limits>
#include <list>
#include <map>
#include <memory>
#include <set>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "gtest/gtest-printers.h"
#include "gtest/gtest.h"
// Some user-defined types for testing the universal value printer.
// An anonymous enum type.
enum AnonymousEnum { kAE1 = -1, kAE2 = 1 };
// An enum without a user-defined printer.
enum EnumWithoutPrinter { kEWP1 = -2, kEWP2 = 42 };
// An enum with a << operator.
enum EnumWithStreaming { kEWS1 = 10 };
std::ostream& operator<<(std::ostream& os, EnumWithStreaming e) {
return os << (e == kEWS1 ? "kEWS1" : "invalid");
}
// An enum with a PrintTo() function.
enum EnumWithPrintTo { kEWPT1 = 1 };
void PrintTo(EnumWithPrintTo e, std::ostream* os) {
*os << (e == kEWPT1 ? "kEWPT1" : "invalid");
}
// A class implicitly convertible to BiggestInt.
class BiggestIntConvertible {
public:
operator ::testing::internal::BiggestInt() const { return 42; }
};
// A parent class with two child classes. The parent and one of the kids have
// stream operators.
class ParentClass {};
class ChildClassWithStreamOperator : public ParentClass {};
class ChildClassWithoutStreamOperator : public ParentClass {};
static void operator<<(std::ostream& os, const ParentClass&) {
os << "ParentClass";
}
static void operator<<(std::ostream& os, const ChildClassWithStreamOperator&) {
os << "ChildClassWithStreamOperator";
}
// A user-defined unprintable class template in the global namespace.
template <typename T>
class UnprintableTemplateInGlobal {
public:
UnprintableTemplateInGlobal() : value_() {}
private:
T value_;
};
// A user-defined streamable type in the global namespace.
class StreamableInGlobal {
public:
virtual ~StreamableInGlobal() {}
};
inline void operator<<(::std::ostream& os, const StreamableInGlobal& /* x */) {
os << "StreamableInGlobal";
}
void operator<<(::std::ostream& os, const StreamableInGlobal* /* x */) {
os << "StreamableInGlobal*";
}
namespace foo {
// A user-defined unprintable type in a user namespace.
class UnprintableInFoo {
public:
UnprintableInFoo() : z_(0) { memcpy(xy_, "\xEF\x12\x0\x0\x34\xAB\x0\x0", 8); }
double z() const { return z_; }
private:
char xy_[8];
double z_;
};
// A user-defined printable type in a user-chosen namespace.
struct PrintableViaPrintTo {
PrintableViaPrintTo() : value() {}
int value;
};
void PrintTo(const PrintableViaPrintTo& x, ::std::ostream* os) {
*os << "PrintableViaPrintTo: " << x.value;
}
// A type with a user-defined << for printing its pointer.
struct PointerPrintable {};
::std::ostream& operator<<(::std::ostream& os,
const PointerPrintable* /* x */) {
return os << "PointerPrintable*";
}
// A user-defined printable class template in a user-chosen namespace.
template <typename T>
class PrintableViaPrintToTemplate {
public:
explicit PrintableViaPrintToTemplate(const T& a_value) : value_(a_value) {}
const T& value() const { return value_; }
private:
T value_;
};
template <typename T>
void PrintTo(const PrintableViaPrintToTemplate<T>& x, ::std::ostream* os) {
*os << "PrintableViaPrintToTemplate: " << x.value();
}
// A user-defined streamable class template in a user namespace.
template <typename T>
class StreamableTemplateInFoo {
public:
StreamableTemplateInFoo() : value_() {}
const T& value() const { return value_; }
private:
T value_;
};
template <typename T>
inline ::std::ostream& operator<<(::std::ostream& os,
const StreamableTemplateInFoo<T>& x) {
return os << "StreamableTemplateInFoo: " << x.value();
}
// A user-defined streamable type in a user namespace whose operator<< is
// templated on the type of the output stream.
struct TemplatedStreamableInFoo {};
template <typename OutputStream>
OutputStream& operator<<(OutputStream& os,
const TemplatedStreamableInFoo& /*ts*/) {
os << "TemplatedStreamableInFoo";
return os;
}
// A user-defined streamable but recursively-defined container type in
// a user namespace, it mimics therefore std::filesystem::path or
// boost::filesystem::path.
class PathLike {
public:
struct iterator {
typedef PathLike value_type;
iterator& operator++();
PathLike& operator*();
};
using value_type = char;
using const_iterator = iterator;
PathLike() {}
iterator begin() const { return iterator(); }
iterator end() const { return iterator(); }
friend ::std::ostream& operator<<(::std::ostream& os, const PathLike&) {
return os << "Streamable-PathLike";
}
};
} // namespace foo
namespace testing {
namespace {
template <typename T>
class Wrapper {
public:
explicit Wrapper(T&& value) : value_(std::forward<T>(value)) {}
const T& value() const { return value_; }
private:
T value_;
};
} // namespace
namespace internal {
template <typename T>
class UniversalPrinter<Wrapper<T>> {
public:
static void Print(const Wrapper<T>& w, ::std::ostream* os) {
*os << "Wrapper(";
UniversalPrint(w.value(), os);
*os << ')';
}
};
} // namespace internal
namespace gtest_printers_test {
using ::std::deque;
using ::std::list;
using ::std::make_pair;
using ::std::map;
using ::std::multimap;
using ::std::multiset;
using ::std::pair;
using ::std::set;
using ::std::vector;
using ::testing::PrintToString;
using ::testing::internal::FormatForComparisonFailureMessage;
using ::testing::internal::ImplicitCast_;
using ::testing::internal::NativeArray;
using ::testing::internal::RelationToSourceReference;
using ::testing::internal::Strings;
using ::testing::internal::UniversalPrint;
using ::testing::internal::UniversalPrinter;
using ::testing::internal::UniversalTersePrint;
using ::testing::internal::UniversalTersePrintTupleFieldsToStrings;
// Prints a value to a string using the universal value printer. This
// is a helper for testing UniversalPrinter<T>::Print() for various types.
template <typename T>
std::string Print(const T& value) {
::std::stringstream ss;
UniversalPrinter<T>::Print(value, &ss);
return ss.str();
}
// Prints a value passed by reference to a string, using the universal
// value printer. This is a helper for testing
// UniversalPrinter<T&>::Print() for various types.
template <typename T>
std::string PrintByRef(const T& value) {
::std::stringstream ss;
UniversalPrinter<T&>::Print(value, &ss);
return ss.str();
}
// Tests printing various enum types.
TEST(PrintEnumTest, AnonymousEnum) {
EXPECT_EQ("-1", Print(kAE1));
EXPECT_EQ("1", Print(kAE2));
}
TEST(PrintEnumTest, EnumWithoutPrinter) {
EXPECT_EQ("-2", Print(kEWP1));
EXPECT_EQ("42", Print(kEWP2));
}
TEST(PrintEnumTest, EnumWithStreaming) {
EXPECT_EQ("kEWS1", Print(kEWS1));
EXPECT_EQ("invalid", Print(static_cast<EnumWithStreaming>(0)));
}
TEST(PrintEnumTest, EnumWithPrintTo) {
EXPECT_EQ("kEWPT1", Print(kEWPT1));
EXPECT_EQ("invalid", Print(static_cast<EnumWithPrintTo>(0)));
}
// Tests printing a class implicitly convertible to BiggestInt.
TEST(PrintClassTest, BiggestIntConvertible) {
EXPECT_EQ("42", Print(BiggestIntConvertible()));
}
// Tests printing various char types.
// char.
TEST(PrintCharTest, PlainChar) {
EXPECT_EQ("'\\0'", Print('\0'));
EXPECT_EQ("'\\'' (39, 0x27)", Print('\''));
EXPECT_EQ("'\"' (34, 0x22)", Print('"'));
EXPECT_EQ("'?' (63, 0x3F)", Print('?'));
EXPECT_EQ("'\\\\' (92, 0x5C)", Print('\\'));
EXPECT_EQ("'\\a' (7)", Print('\a'));
EXPECT_EQ("'\\b' (8)", Print('\b'));
EXPECT_EQ("'\\f' (12, 0xC)", Print('\f'));
EXPECT_EQ("'\\n' (10, 0xA)", Print('\n'));
EXPECT_EQ("'\\r' (13, 0xD)", Print('\r'));
EXPECT_EQ("'\\t' (9)", Print('\t'));
EXPECT_EQ("'\\v' (11, 0xB)", Print('\v'));
EXPECT_EQ("'\\x7F' (127)", Print('\x7F'));
EXPECT_EQ("'\\xFF' (255)", Print('\xFF'));
EXPECT_EQ("' ' (32, 0x20)", Print(' '));
EXPECT_EQ("'a' (97, 0x61)", Print('a'));
}
// signed char.
TEST(PrintCharTest, SignedChar) {
EXPECT_EQ("'\\0'", Print(static_cast<signed char>('\0')));
EXPECT_EQ("'\\xCE' (-50)", Print(static_cast<signed char>(-50)));
}
// unsigned char.
TEST(PrintCharTest, UnsignedChar) {
EXPECT_EQ("'\\0'", Print(static_cast<unsigned char>('\0')));
EXPECT_EQ("'b' (98, 0x62)", Print(static_cast<unsigned char>('b')));
}
TEST(PrintCharTest, Char16) { EXPECT_EQ("U+0041", Print(u'A')); }
TEST(PrintCharTest, Char32) { EXPECT_EQ("U+0041", Print(U'A')); }
#ifdef __cpp_char8_t
TEST(PrintCharTest, Char8) { EXPECT_EQ("U+0041", Print(u8'A')); }
#endif
// Tests printing other simple, built-in types.
// bool.
TEST(PrintBuiltInTypeTest, Bool) {
EXPECT_EQ("false", Print(false));
EXPECT_EQ("true", Print(true));
}
// wchar_t.
TEST(PrintBuiltInTypeTest, Wchar_t) {
EXPECT_EQ("L'\\0'", Print(L'\0'));
EXPECT_EQ("L'\\'' (39, 0x27)", Print(L'\''));
EXPECT_EQ("L'\"' (34, 0x22)", Print(L'"'));
EXPECT_EQ("L'?' (63, 0x3F)", Print(L'?'));
EXPECT_EQ("L'\\\\' (92, 0x5C)", Print(L'\\'));
EXPECT_EQ("L'\\a' (7)", Print(L'\a'));
EXPECT_EQ("L'\\b' (8)", Print(L'\b'));
EXPECT_EQ("L'\\f' (12, 0xC)", Print(L'\f'));
EXPECT_EQ("L'\\n' (10, 0xA)", Print(L'\n'));
EXPECT_EQ("L'\\r' (13, 0xD)", Print(L'\r'));
EXPECT_EQ("L'\\t' (9)", Print(L'\t'));
EXPECT_EQ("L'\\v' (11, 0xB)", Print(L'\v'));
EXPECT_EQ("L'\\x7F' (127)", Print(L'\x7F'));
EXPECT_EQ("L'\\xFF' (255)", Print(L'\xFF'));
EXPECT_EQ("L' ' (32, 0x20)", Print(L' '));
EXPECT_EQ("L'a' (97, 0x61)", Print(L'a'));
EXPECT_EQ("L'\\x576' (1398)", Print(static_cast<wchar_t>(0x576)));
EXPECT_EQ("L'\\xC74D' (51021)", Print(static_cast<wchar_t>(0xC74D)));
}
// Test that int64_t provides more storage than wchar_t.
TEST(PrintTypeSizeTest, Wchar_t) {
EXPECT_LT(sizeof(wchar_t), sizeof(int64_t));
}
// Various integer types.
TEST(PrintBuiltInTypeTest, Integer) {
EXPECT_EQ("'\\xFF' (255)", Print(static_cast<unsigned char>(255))); // uint8
EXPECT_EQ("'\\x80' (-128)", Print(static_cast<signed char>(-128))); // int8
EXPECT_EQ("65535", Print(std::numeric_limits<uint16_t>::max())); // uint16
EXPECT_EQ("-32768", Print(std::numeric_limits<int16_t>::min())); // int16
EXPECT_EQ("4294967295",
Print(std::numeric_limits<uint32_t>::max())); // uint32
EXPECT_EQ("-2147483648",
Print(std::numeric_limits<int32_t>::min())); // int32
EXPECT_EQ("18446744073709551615",
Print(std::numeric_limits<uint64_t>::max())); // uint64
EXPECT_EQ("-9223372036854775808",
Print(std::numeric_limits<int64_t>::min())); // int64
#ifdef __cpp_char8_t
EXPECT_EQ("U+0000",
Print(std::numeric_limits<char8_t>::min())); // char8_t
EXPECT_EQ("U+00FF",
Print(std::numeric_limits<char8_t>::max())); // char8_t
#endif
EXPECT_EQ("U+0000",
Print(std::numeric_limits<char16_t>::min())); // char16_t
EXPECT_EQ("U+FFFF",
Print(std::numeric_limits<char16_t>::max())); // char16_t
EXPECT_EQ("U+0000",
Print(std::numeric_limits<char32_t>::min())); // char32_t
EXPECT_EQ("U+FFFFFFFF",
Print(std::numeric_limits<char32_t>::max())); // char32_t
}
// Size types.
TEST(PrintBuiltInTypeTest, Size_t) {
EXPECT_EQ("1", Print(sizeof('a'))); // size_t.
#if !GTEST_OS_WINDOWS
// Windows has no ssize_t type.
EXPECT_EQ("-2", Print(static_cast<ssize_t>(-2))); // ssize_t.
#endif // !GTEST_OS_WINDOWS
}
// gcc/clang __{u,}int128_t values.
#if defined(__SIZEOF_INT128__)
TEST(PrintBuiltInTypeTest, Int128) {
// Small ones
EXPECT_EQ("0", Print(__int128_t{0}));
EXPECT_EQ("0", Print(__uint128_t{0}));
EXPECT_EQ("12345", Print(__int128_t{12345}));
EXPECT_EQ("12345", Print(__uint128_t{12345}));
EXPECT_EQ("-12345", Print(__int128_t{-12345}));
// Large ones
EXPECT_EQ("340282366920938463463374607431768211455", Print(~__uint128_t{}));
__int128_t max_128 = static_cast<__int128_t>(~__uint128_t{} / 2);
EXPECT_EQ("-170141183460469231731687303715884105728", Print(~max_128));
EXPECT_EQ("170141183460469231731687303715884105727", Print(max_128));
}
#endif // __SIZEOF_INT128__
// Floating-points.
TEST(PrintBuiltInTypeTest, FloatingPoints) {
EXPECT_EQ("1.5", Print(1.5f)); // float
EXPECT_EQ("-2.5", Print(-2.5)); // double
}
#if GTEST_HAS_RTTI
TEST(PrintBuiltInTypeTest, TypeInfo) {
struct MyStruct {};
auto res = Print(typeid(MyStruct{}));
// We can't guarantee that we can demangle the name, but either name should
// contain the substring "MyStruct".
EXPECT_NE(res.find("MyStruct"), res.npos) << res;
}
#endif // GTEST_HAS_RTTI
// Since ::std::stringstream::operator<<(const void *) formats the pointer
// output differently with different compilers, we have to create the expected
// output first and use it as our expectation.
static std::string PrintPointer(const void* p) {
::std::stringstream expected_result_stream;
expected_result_stream << p;
return expected_result_stream.str();
}
// Tests printing C strings.
// const char*.
TEST(PrintCStringTest, Const) {
const char* p = "World";
EXPECT_EQ(PrintPointer(p) + " pointing to \"World\"", Print(p));
}
// char*.
TEST(PrintCStringTest, NonConst) {
char p[] = "Hi";
EXPECT_EQ(PrintPointer(p) + " pointing to \"Hi\"",
Print(static_cast<char*>(p)));
}
// NULL C string.
TEST(PrintCStringTest, Null) {
const char* p = nullptr;
EXPECT_EQ("NULL", Print(p));
}
// Tests that C strings are escaped properly.
TEST(PrintCStringTest, EscapesProperly) {
const char* p = "'\"?\\\a\b\f\n\r\t\v\x7F\xFF a";
EXPECT_EQ(PrintPointer(p) +
" pointing to \"'\\\"?\\\\\\a\\b\\f"
"\\n\\r\\t\\v\\x7F\\xFF a\"",
Print(p));
}
#ifdef __cpp_char8_t
// const char8_t*.
TEST(PrintU8StringTest, Const) {
const char8_t* p = u8"界";
EXPECT_EQ(PrintPointer(p) + " pointing to u8\"\\xE7\\x95\\x8C\"", Print(p));
}
// char8_t*.
TEST(PrintU8StringTest, NonConst) {
char8_t p[] = u8"世";
EXPECT_EQ(PrintPointer(p) + " pointing to u8\"\\xE4\\xB8\\x96\"",
Print(static_cast<char8_t*>(p)));
}
// NULL u8 string.
TEST(PrintU8StringTest, Null) {
const char8_t* p = nullptr;
EXPECT_EQ("NULL", Print(p));
}
// Tests that u8 strings are escaped properly.
TEST(PrintU8StringTest, EscapesProperly) {
const char8_t* p = u8"'\"?\\\a\b\f\n\r\t\v\x7F\xFF hello 世界";
EXPECT_EQ(PrintPointer(p) +
" pointing to u8\"'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\\x7F\\xFF "
"hello \\xE4\\xB8\\x96\\xE7\\x95\\x8C\"",
Print(p));
}
#endif
// const char16_t*.
TEST(PrintU16StringTest, Const) {
const char16_t* p = u"界";
EXPECT_EQ(PrintPointer(p) + " pointing to u\"\\x754C\"", Print(p));
}
// char16_t*.
TEST(PrintU16StringTest, NonConst) {
char16_t p[] = u"世";
EXPECT_EQ(PrintPointer(p) + " pointing to u\"\\x4E16\"",
Print(static_cast<char16_t*>(p)));
}
// NULL u16 string.
TEST(PrintU16StringTest, Null) {
const char16_t* p = nullptr;
EXPECT_EQ("NULL", Print(p));
}
// Tests that u16 strings are escaped properly.
TEST(PrintU16StringTest, EscapesProperly) {
const char16_t* p = u"'\"?\\\a\b\f\n\r\t\v\x7F\xFF hello 世界";
EXPECT_EQ(PrintPointer(p) +
" pointing to u\"'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\\x7F\\xFF "
"hello \\x4E16\\x754C\"",
Print(p));
}
// const char32_t*.
TEST(PrintU32StringTest, Const) {
const char32_t* p = U"🗺️";
EXPECT_EQ(PrintPointer(p) + " pointing to U\"\\x1F5FA\\xFE0F\"", Print(p));
}
// char32_t*.
TEST(PrintU32StringTest, NonConst) {
char32_t p[] = U"🌌";
EXPECT_EQ(PrintPointer(p) + " pointing to U\"\\x1F30C\"",
Print(static_cast<char32_t*>(p)));
}
// NULL u32 string.
TEST(PrintU32StringTest, Null) {
const char32_t* p = nullptr;
EXPECT_EQ("NULL", Print(p));
}
// Tests that u32 strings are escaped properly.
TEST(PrintU32StringTest, EscapesProperly) {
const char32_t* p = U"'\"?\\\a\b\f\n\r\t\v\x7F\xFF hello 🗺️";
EXPECT_EQ(PrintPointer(p) +
" pointing to U\"'\\\"?\\\\\\a\\b\\f\\n\\r\\t\\v\\x7F\\xFF "
"hello \\x1F5FA\\xFE0F\"",
Print(p));
}
// MSVC compiler can be configured to define whar_t as a typedef
// of unsigned short. Defining an overload for const wchar_t* in that case
// would cause pointers to unsigned shorts be printed as wide strings,
// possibly accessing more memory than intended and causing invalid
// memory accesses. MSVC defines _NATIVE_WCHAR_T_DEFINED symbol when
// wchar_t is implemented as a native type.
#if !defined(_MSC_VER) || defined(_NATIVE_WCHAR_T_DEFINED)
// const wchar_t*.
TEST(PrintWideCStringTest, Const) {
const wchar_t* p = L"World";
EXPECT_EQ(PrintPointer(p) + " pointing to L\"World\"", Print(p));
}
// wchar_t*.
TEST(PrintWideCStringTest, NonConst) {
wchar_t p[] = L"Hi";
EXPECT_EQ(PrintPointer(p) + " pointing to L\"Hi\"",
Print(static_cast<wchar_t*>(p)));
}
// NULL wide C string.
TEST(PrintWideCStringTest, Null) {
const wchar_t* p = nullptr;
EXPECT_EQ("NULL", Print(p));
}
// Tests that wide C strings are escaped properly.
TEST(PrintWideCStringTest, EscapesProperly) {
const wchar_t s[] = {'\'', '"', '?', '\\', '\a', '\b',
'\f', '\n', '\r', '\t', '\v', 0xD3,
0x576, 0x8D3, 0xC74D, ' ', 'a', '\0'};
EXPECT_EQ(PrintPointer(s) +
" pointing to L\"'\\\"?\\\\\\a\\b\\f"
"\\n\\r\\t\\v\\xD3\\x576\\x8D3\\xC74D a\"",
Print(static_cast<const wchar_t*>(s)));
}
#endif // native wchar_t
// Tests printing pointers to other char types.
// signed char*.
TEST(PrintCharPointerTest, SignedChar) {
signed char* p = reinterpret_cast<signed char*>(0x1234);
EXPECT_EQ(PrintPointer(p), Print(p));
p = nullptr;
EXPECT_EQ("NULL", Print(p));
}
// const signed char*.
TEST(PrintCharPointerTest, ConstSignedChar) {
signed char* p = reinterpret_cast<signed char*>(0x1234);
EXPECT_EQ(PrintPointer(p), Print(p));
p = nullptr;
EXPECT_EQ("NULL", Print(p));
}
// unsigned char*.
TEST(PrintCharPointerTest, UnsignedChar) {
unsigned char* p = reinterpret_cast<unsigned char*>(0x1234);
EXPECT_EQ(PrintPointer(p), Print(p));
p = nullptr;
EXPECT_EQ("NULL", Print(p));
}
// const unsigned char*.
TEST(PrintCharPointerTest, ConstUnsignedChar) {
const unsigned char* p = reinterpret_cast<const unsigned char*>(0x1234);
EXPECT_EQ(PrintPointer(p), Print(p));
p = nullptr;
EXPECT_EQ("NULL", Print(p));
}
// Tests printing pointers to simple, built-in types.
// bool*.
TEST(PrintPointerToBuiltInTypeTest, Bool) {
bool* p = reinterpret_cast<bool*>(0xABCD);
EXPECT_EQ(PrintPointer(p), Print(p));
p = nullptr;
EXPECT_EQ("NULL", Print(p));
}
// void*.
TEST(PrintPointerToBuiltInTypeTest, Void) {
void* p = reinterpret_cast<void*>(0xABCD);
EXPECT_EQ(PrintPointer(p), Print(p));
p = nullptr;
EXPECT_EQ("NULL", Print(p));
}
// const void*.
TEST(PrintPointerToBuiltInTypeTest, ConstVoid) {
const void* p = reinterpret_cast<const void*>(0xABCD);
EXPECT_EQ(PrintPointer(p), Print(p));
p = nullptr;
EXPECT_EQ("NULL", Print(p));
}
// Tests printing pointers to pointers.
TEST(PrintPointerToPointerTest, IntPointerPointer) {
int** p = reinterpret_cast<int**>(0xABCD);
EXPECT_EQ(PrintPointer(p), Print(p));
p = nullptr;
EXPECT_EQ("NULL", Print(p));
}
// Tests printing (non-member) function pointers.
void MyFunction(int /* n */) {}
TEST(PrintPointerTest, NonMemberFunctionPointer) {
// We cannot directly cast &MyFunction to const void* because the
// standard disallows casting between pointers to functions and
// pointers to objects, and some compilers (e.g. GCC 3.4) enforce
// this limitation.
EXPECT_EQ(PrintPointer(reinterpret_cast<const void*>(
reinterpret_cast<internal::BiggestInt>(&MyFunction))),
Print(&MyFunction));
int (*p)(bool) = NULL; // NOLINT
EXPECT_EQ("NULL", Print(p));
}
// An assertion predicate determining whether a one string is a prefix for
// another.
template <typename StringType>
AssertionResult HasPrefix(const StringType& str, const StringType& prefix) {
if (str.find(prefix, 0) == 0) return AssertionSuccess();
const bool is_wide_string = sizeof(prefix[0]) > 1;
const char* const begin_string_quote = is_wide_string ? "L\"" : "\"";
return AssertionFailure()
<< begin_string_quote << prefix << "\" is not a prefix of "
<< begin_string_quote << str << "\"\n";
}
// Tests printing member variable pointers. Although they are called
// pointers, they don't point to a location in the address space.
// Their representation is implementation-defined. Thus they will be
// printed as raw bytes.
struct Foo {
public:
virtual ~Foo() {}
int MyMethod(char x) { return x + 1; }
virtual char MyVirtualMethod(int /* n */) { return 'a'; }
int value;
};
TEST(PrintPointerTest, MemberVariablePointer) {
EXPECT_TRUE(HasPrefix(Print(&Foo::value),
Print(sizeof(&Foo::value)) + "-byte object "));
int Foo::*p = NULL; // NOLINT
EXPECT_TRUE(HasPrefix(Print(p), Print(sizeof(p)) + "-byte object "));
}
// Tests printing member function pointers. Although they are called
// pointers, they don't point to a location in the address space.
// Their representation is implementation-defined. Thus they will be
// printed as raw bytes.
TEST(PrintPointerTest, MemberFunctionPointer) {
EXPECT_TRUE(HasPrefix(Print(&Foo::MyMethod),
Print(sizeof(&Foo::MyMethod)) + "-byte object "));
EXPECT_TRUE(
HasPrefix(Print(&Foo::MyVirtualMethod),
Print(sizeof((&Foo::MyVirtualMethod))) + "-byte object "));
int (Foo::*p)(char) = NULL; // NOLINT
EXPECT_TRUE(HasPrefix(Print(p), Print(sizeof(p)) + "-byte object "));
}
// Tests printing C arrays.
// The difference between this and Print() is that it ensures that the
// argument is a reference to an array.
template <typename T, size_t N>
std::string PrintArrayHelper(T (&a)[N]) {
return Print(a);
}
// One-dimensional array.
TEST(PrintArrayTest, OneDimensionalArray) {
int a[5] = {1, 2, 3, 4, 5};
EXPECT_EQ("{ 1, 2, 3, 4, 5 }", PrintArrayHelper(a));
}
// Two-dimensional array.
TEST(PrintArrayTest, TwoDimensionalArray) {
int a[2][5] = {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 0}};
EXPECT_EQ("{ { 1, 2, 3, 4, 5 }, { 6, 7, 8, 9, 0 } }", PrintArrayHelper(a));
}
// Array of const elements.
TEST(PrintArrayTest, ConstArray) {
const bool a[1] = {false};
EXPECT_EQ("{ false }", PrintArrayHelper(a));
}
// char array without terminating NUL.
TEST(PrintArrayTest, CharArrayWithNoTerminatingNul) {
// Array a contains '\0' in the middle and doesn't end with '\0'.
char a[] = {'H', '\0', 'i'};
EXPECT_EQ("\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a));
}
// char array with terminating NUL.
TEST(PrintArrayTest, CharArrayWithTerminatingNul) {
const char a[] = "\0Hi";
EXPECT_EQ("\"\\0Hi\"", PrintArrayHelper(a));
}
#ifdef __cpp_char8_t
// char_t array without terminating NUL.
TEST(PrintArrayTest, Char8ArrayWithNoTerminatingNul) {
// Array a contains '\0' in the middle and doesn't end with '\0'.
const char8_t a[] = {u8'H', u8'\0', u8'i'};
EXPECT_EQ("u8\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a));
}
// char8_t array with terminating NUL.
TEST(PrintArrayTest, Char8ArrayWithTerminatingNul) {
const char8_t a[] = u8"\0世界";
EXPECT_EQ("u8\"\\0\\xE4\\xB8\\x96\\xE7\\x95\\x8C\"", PrintArrayHelper(a));
}
#endif
// const char16_t array without terminating NUL.
TEST(PrintArrayTest, Char16ArrayWithNoTerminatingNul) {
// Array a contains '\0' in the middle and doesn't end with '\0'.
const char16_t a[] = {u'こ', u'\0', u'ん', u'に', u'ち', u'は'};
EXPECT_EQ("u\"\\x3053\\0\\x3093\\x306B\\x3061\\x306F\" (no terminating NUL)",
PrintArrayHelper(a));
}
// char16_t array with terminating NUL.
TEST(PrintArrayTest, Char16ArrayWithTerminatingNul) {
const char16_t a[] = u"\0こんにちは";
EXPECT_EQ("u\"\\0\\x3053\\x3093\\x306B\\x3061\\x306F\"", PrintArrayHelper(a));
}
// char32_t array without terminating NUL.
TEST(PrintArrayTest, Char32ArrayWithNoTerminatingNul) {
// Array a contains '\0' in the middle and doesn't end with '\0'.
const char32_t a[] = {U'👋', U'\0', U'🌌'};
EXPECT_EQ("U\"\\x1F44B\\0\\x1F30C\" (no terminating NUL)",
PrintArrayHelper(a));
}
// char32_t array with terminating NUL.
TEST(PrintArrayTest, Char32ArrayWithTerminatingNul) {
const char32_t a[] = U"\0👋🌌";
EXPECT_EQ("U\"\\0\\x1F44B\\x1F30C\"", PrintArrayHelper(a));
}
// wchar_t array without terminating NUL.
TEST(PrintArrayTest, WCharArrayWithNoTerminatingNul) {
// Array a contains '\0' in the middle and doesn't end with '\0'.
const wchar_t a[] = {L'H', L'\0', L'i'};
EXPECT_EQ("L\"H\\0i\" (no terminating NUL)", PrintArrayHelper(a));
}
// wchar_t array with terminating NUL.
TEST(PrintArrayTest, WCharArrayWithTerminatingNul) {
const wchar_t a[] = L"\0Hi";
EXPECT_EQ("L\"\\0Hi\"", PrintArrayHelper(a));
}
// Array of objects.
TEST(PrintArrayTest, ObjectArray) {
std::string a[3] = {"Hi", "Hello", "Ni hao"};
EXPECT_EQ("{ \"Hi\", \"Hello\", \"Ni hao\" }", PrintArrayHelper(a));
}
// Array with many elements.
TEST(PrintArrayTest, BigArray) {
int a[100] = {1, 2, 3};
EXPECT_EQ("{ 1, 2, 3, 0, 0, 0, 0, 0, ..., 0, 0, 0, 0, 0, 0, 0, 0 }",
PrintArrayHelper(a));
}
// Tests printing ::string and ::std::string.
// ::std::string.
TEST(PrintStringTest, StringInStdNamespace) {
const char s[] = "'\"?\\\a\b\f\n\0\r\t\v\x7F\xFF a";
const ::std::string str(s, sizeof(s));
EXPECT_EQ("\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v\\x7F\\xFF a\\0\"",
Print(str));
}
TEST(PrintStringTest, StringAmbiguousHex) {
// "\x6BANANA" is ambiguous, it can be interpreted as starting with either of:
// '\x6', '\x6B', or '\x6BA'.
// a hex escaping sequence following by a decimal digit
EXPECT_EQ("\"0\\x12\" \"3\"", Print(::std::string("0\x12"
"3")));
// a hex escaping sequence following by a hex digit (lower-case)
EXPECT_EQ("\"mm\\x6\" \"bananas\"", Print(::std::string("mm\x6"
"bananas")));
// a hex escaping sequence following by a hex digit (upper-case)
EXPECT_EQ("\"NOM\\x6\" \"BANANA\"", Print(::std::string("NOM\x6"
"BANANA")));
// a hex escaping sequence following by a non-xdigit
EXPECT_EQ("\"!\\x5-!\"", Print(::std::string("!\x5-!")));
}
// Tests printing ::std::wstring.
#if GTEST_HAS_STD_WSTRING
// ::std::wstring.
TEST(PrintWideStringTest, StringInStdNamespace) {
const wchar_t s[] = L"'\"?\\\a\b\f\n\0\r\t\v\xD3\x576\x8D3\xC74D a";
const ::std::wstring str(s, sizeof(s) / sizeof(wchar_t));
EXPECT_EQ(
"L\"'\\\"?\\\\\\a\\b\\f\\n\\0\\r\\t\\v"
"\\xD3\\x576\\x8D3\\xC74D a\\0\"",
Print(str));
}
TEST(PrintWideStringTest, StringAmbiguousHex) {
// same for wide strings.
EXPECT_EQ("L\"0\\x12\" L\"3\"", Print(::std::wstring(L"0\x12"
L"3")));
EXPECT_EQ("L\"mm\\x6\" L\"bananas\"", Print(::std::wstring(L"mm\x6"
L"bananas")));
EXPECT_EQ("L\"NOM\\x6\" L\"BANANA\"", Print(::std::wstring(L"NOM\x6"
L"BANANA")));
EXPECT_EQ("L\"!\\x5-!\"", Print(::std::wstring(L"!\x5-!")));
}
#endif // GTEST_HAS_STD_WSTRING
#ifdef __cpp_char8_t
TEST(PrintStringTest, U8String) {
std::u8string str = u8"Hello, 世界";
EXPECT_EQ(str, str); // Verify EXPECT_EQ compiles with this type.
EXPECT_EQ("u8\"Hello, \\xE4\\xB8\\x96\\xE7\\x95\\x8C\"", Print(str));
}
#endif
TEST(PrintStringTest, U16String) {
std::u16string str = u"Hello, 世界";
EXPECT_EQ(str, str); // Verify EXPECT_EQ compiles with this type.
EXPECT_EQ("u\"Hello, \\x4E16\\x754C\"", Print(str));
}
TEST(PrintStringTest, U32String) {
std::u32string str = U"Hello, 🗺️";
EXPECT_EQ(str, str); // Verify EXPECT_EQ compiles with this type
EXPECT_EQ("U\"Hello, \\x1F5FA\\xFE0F\"", Print(str));
}
// Tests printing types that support generic streaming (i.e. streaming
// to std::basic_ostream<Char, CharTraits> for any valid Char and
// CharTraits types).
// Tests printing a non-template type that supports generic streaming.
class AllowsGenericStreaming {};
template <typename Char, typename CharTraits>
std::basic_ostream<Char, CharTraits>& operator<<(
std::basic_ostream<Char, CharTraits>& os,
const AllowsGenericStreaming& /* a */) {
return os << "AllowsGenericStreaming";
}
TEST(PrintTypeWithGenericStreamingTest, NonTemplateType) {
AllowsGenericStreaming a;
EXPECT_EQ("AllowsGenericStreaming", Print(a));
}
// Tests printing a template type that supports generic streaming.
template <typename T>
class AllowsGenericStreamingTemplate {};
template <typename Char, typename CharTraits, typename T>
std::basic_ostream<Char, CharTraits>& operator<<(
std::basic_ostream<Char, CharTraits>& os,
const AllowsGenericStreamingTemplate<T>& /* a */) {
return os << "AllowsGenericStreamingTemplate";
}
TEST(PrintTypeWithGenericStreamingTest, TemplateType) {
AllowsGenericStreamingTemplate<int> a;
EXPECT_EQ("AllowsGenericStreamingTemplate", Print(a));
}
// Tests printing a type that supports generic streaming and can be
// implicitly converted to another printable type.
template <typename T>
class AllowsGenericStreamingAndImplicitConversionTemplate {
public:
operator bool() const { return false; }
};
template <typename Char, typename CharTraits, typename T>
std::basic_ostream<Char, CharTraits>& operator<<(
std::basic_ostream<Char, CharTraits>& os,
const AllowsGenericStreamingAndImplicitConversionTemplate<T>& /* a */) {
return os << "AllowsGenericStreamingAndImplicitConversionTemplate";
}
TEST(PrintTypeWithGenericStreamingTest, TypeImplicitlyConvertible) {
AllowsGenericStreamingAndImplicitConversionTemplate<int> a;
EXPECT_EQ("AllowsGenericStreamingAndImplicitConversionTemplate", Print(a));
}
#if GTEST_INTERNAL_HAS_STRING_VIEW
// Tests printing internal::StringView.
TEST(PrintStringViewTest, SimpleStringView) {
const internal::StringView sp = "Hello";
EXPECT_EQ("\"Hello\"", Print(sp));
}
TEST(PrintStringViewTest, UnprintableCharacters) {
const char str[] = "NUL (\0) and \r\t";
const internal::StringView sp(str, sizeof(str) - 1);
EXPECT_EQ("\"NUL (\\0) and \\r\\t\"", Print(sp));
}
#endif // GTEST_INTERNAL_HAS_STRING_VIEW
// Tests printing STL containers.
TEST(PrintStlContainerTest, EmptyDeque) {
deque<char> empty;
EXPECT_EQ("{}", Print(empty));
}
TEST(PrintStlContainerTest, NonEmptyDeque) {
deque<int> non_empty;
non_empty.push_back(1);
non_empty.push_back(3);
EXPECT_EQ("{ 1, 3 }", Print(non_empty));
}
TEST(PrintStlContainerTest, OneElementHashMap) {
::std::unordered_map<int, char> map1;
map1[1] = 'a';
EXPECT_EQ("{ (1, 'a' (97, 0x61)) }", Print(map1));
}
TEST(PrintStlContainerTest, HashMultiMap) {
::std::unordered_multimap<int, bool> map1;
map1.insert(make_pair(5, true));
map1.insert(make_pair(5, false));
// Elements of hash_multimap can be printed in any order.
const std::string result = Print(map1);
EXPECT_TRUE(result == "{ (5, true), (5, false) }" ||
result == "{ (5, false), (5, true) }")
<< " where Print(map1) returns \"" << result << "\".";
}
TEST(PrintStlContainerTest, HashSet) {
::std::unordered_set<int> set1;
set1.insert(1);
EXPECT_EQ("{ 1 }", Print(set1));
}
TEST(PrintStlContainerTest, HashMultiSet) {
const int kSize = 5;
int a[kSize] = {1, 1, 2, 5, 1};
::std::unordered_multiset<int> set1(a, a + kSize);
// Elements of hash_multiset can be printed in any order.
const std::string result = Print(set1);
const std::string expected_pattern = "{ d, d, d, d, d }"; // d means a digit.
// Verifies the result matches the expected pattern; also extracts
// the numbers in the result.
ASSERT_EQ(expected_pattern.length(), result.length());
std::vector<int> numbers;
for (size_t i = 0; i != result.length(); i++) {
if (expected_pattern[i] == 'd') {
ASSERT_NE(isdigit(static_cast<unsigned char>(result[i])), 0);
numbers.push_back(result[i] - '0');
} else {
EXPECT_EQ(expected_pattern[i], result[i])
<< " where result is " << result;
}
}
// Makes sure the result contains the right numbers.
std::sort(numbers.begin(), numbers.end());
std::sort(a, a + kSize);
EXPECT_TRUE(std::equal(a, a + kSize, numbers.begin()));
}
TEST(PrintStlContainerTest, List) {
const std::string a[] = {"hello", "world"};
const list<std::string> strings(a, a + 2);
EXPECT_EQ("{ \"hello\", \"world\" }", Print(strings));
}
TEST(PrintStlContainerTest, Map) {
map<int, bool> map1;
map1[1] = true;
map1[5] = false;
map1[3] = true;
EXPECT_EQ("{ (1, true), (3, true), (5, false) }", Print(map1));
}
TEST(PrintStlContainerTest, MultiMap) {
multimap<bool, int> map1;
// The make_pair template function would deduce the type as
// pair<bool, int> here, and since the key part in a multimap has to
// be constant, without a templated ctor in the pair class (as in
// libCstd on Solaris), make_pair call would fail to compile as no
// implicit conversion is found. Thus explicit typename is used
// here instead.
map1.insert(pair<const bool, int>(true, 0));
map1.insert(pair<const bool, int>(true, 1));
map1.insert(pair<const bool, int>(false, 2));
EXPECT_EQ("{ (false, 2), (true, 0), (true, 1) }", Print(map1));
}
TEST(PrintStlContainerTest, Set) {
const unsigned int a[] = {3, 0, 5};
set<unsigned int> set1(a, a + 3);
EXPECT_EQ("{ 0, 3, 5 }", Print(set1));
}
TEST(PrintStlContainerTest, MultiSet) {
const int a[] = {1, 1, 2, 5, 1};
multiset<int> set1(a, a + 5);
EXPECT_EQ("{ 1, 1, 1, 2, 5 }", Print(set1));
}
TEST(PrintStlContainerTest, SinglyLinkedList) {
int a[] = {9, 2, 8};
const std::forward_list<int> ints(a, a + 3);
EXPECT_EQ("{ 9, 2, 8 }", Print(ints));
}
TEST(PrintStlContainerTest, Pair) {
pair<const bool, int> p(true, 5);
EXPECT_EQ("(true, 5)", Print(p));
}
TEST(PrintStlContainerTest, Vector) {
vector<int> v;
v.push_back(1);
v.push_back(2);
EXPECT_EQ("{ 1, 2 }", Print(v));
}
TEST(PrintStlContainerTest, LongSequence) {
const int a[100] = {1, 2, 3};
const vector<int> v(a, a + 100);
EXPECT_EQ(
"{ 1, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, "
"0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... }",
Print(v));
}
TEST(PrintStlContainerTest, NestedContainer) {
const int a1[] = {1, 2};
const int a2[] = {3, 4, 5};
const list<int> l1(a1, a1 + 2);
const list<int> l2(a2, a2 + 3);
vector<list<int>> v;
v.push_back(l1);
v.push_back(l2);
EXPECT_EQ("{ { 1, 2 }, { 3, 4, 5 } }", Print(v));
}
TEST(PrintStlContainerTest, OneDimensionalNativeArray) {
const int a[3] = {1, 2, 3};
NativeArray<int> b(a, 3, RelationToSourceReference());
EXPECT_EQ("{ 1, 2, 3 }", Print(b));
}
TEST(PrintStlContainerTest, TwoDimensionalNativeArray) {
const int a[2][3] = {{1, 2, 3}, {4, 5, 6}};
NativeArray<int[3]> b(a, 2, RelationToSourceReference());
EXPECT_EQ("{ { 1, 2, 3 }, { 4, 5, 6 } }", Print(b));
}
// Tests that a class named iterator isn't treated as a container.
struct iterator {
char x;
};
TEST(PrintStlContainerTest, Iterator) {
iterator it = {};
EXPECT_EQ("1-byte object <00>", Print(it));
}
// Tests that a class named const_iterator isn't treated as a container.
struct const_iterator {
char x;
};
TEST(PrintStlContainerTest, ConstIterator) {
const_iterator it = {};
EXPECT_EQ("1-byte object <00>", Print(it));
}
// Tests printing ::std::tuples.
// Tuples of various arities.
TEST(PrintStdTupleTest, VariousSizes) {
::std::tuple<> t0;
EXPECT_EQ("()", Print(t0));
::std::tuple<int> t1(5);
EXPECT_EQ("(5)", Print(t1));
::std::tuple<char, bool> t2('a', true);
EXPECT_EQ("('a' (97, 0x61), true)", Print(t2));
::std::tuple<bool, int, int> t3(false, 2, 3);
EXPECT_EQ("(false, 2, 3)", Print(t3));
::std::tuple<bool, int, int, int> t4(false, 2, 3, 4);
EXPECT_EQ("(false, 2, 3, 4)", Print(t4));
const char* const str = "8";
::std::tuple<bool, char, short, int32_t, int64_t, float, double, // NOLINT
const char*, void*, std::string>
t10(false, 'a', static_cast<short>(3), 4, 5, 1.5F, -2.5, str, // NOLINT
nullptr, "10");
EXPECT_EQ("(false, 'a' (97, 0x61), 3, 4, 5, 1.5, -2.5, " + PrintPointer(str) +
" pointing to \"8\", NULL, \"10\")",
Print(t10));
}
// Nested tuples.
TEST(PrintStdTupleTest, NestedTuple) {
::std::tuple<::std::tuple<int, bool>, char> nested(::std::make_tuple(5, true),
'a');
EXPECT_EQ("((5, true), 'a' (97, 0x61))", Print(nested));
}
TEST(PrintNullptrT, Basic) { EXPECT_EQ("(nullptr)", Print(nullptr)); }
TEST(PrintReferenceWrapper, Printable) {
int x = 5;
EXPECT_EQ("@" + PrintPointer(&x) + " 5", Print(std::ref(x)));
EXPECT_EQ("@" + PrintPointer(&x) + " 5", Print(std::cref(x)));
}
TEST(PrintReferenceWrapper, Unprintable) {
::foo::UnprintableInFoo up;
EXPECT_EQ(
"@" + PrintPointer(&up) +
" 16-byte object <EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
Print(std::ref(up)));
EXPECT_EQ(
"@" + PrintPointer(&up) +
" 16-byte object <EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
Print(std::cref(up)));
}
// Tests printing user-defined unprintable types.
// Unprintable types in the global namespace.
TEST(PrintUnprintableTypeTest, InGlobalNamespace) {
EXPECT_EQ("1-byte object <00>", Print(UnprintableTemplateInGlobal<char>()));
}
// Unprintable types in a user namespace.
TEST(PrintUnprintableTypeTest, InUserNamespace) {
EXPECT_EQ("16-byte object <EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
Print(::foo::UnprintableInFoo()));
}
// Unprintable types are that too big to be printed completely.
struct Big {
Big() { memset(array, 0, sizeof(array)); }
char array[257];
};
TEST(PrintUnpritableTypeTest, BigObject) {
EXPECT_EQ(
"257-byte object <00-00 00-00 00-00 00-00 00-00 00-00 "
"00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
"00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
"00-00 00-00 00-00 00-00 00-00 00-00 ... 00-00 00-00 00-00 "
"00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
"00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 "
"00-00 00-00 00-00 00-00 00-00 00-00 00-00 00-00 00>",
Print(Big()));
}
// Tests printing user-defined streamable types.
// Streamable types in the global namespace.
TEST(PrintStreamableTypeTest, InGlobalNamespace) {
StreamableInGlobal x;
EXPECT_EQ("StreamableInGlobal", Print(x));
EXPECT_EQ("StreamableInGlobal*", Print(&x));
}
// Printable template types in a user namespace.
TEST(PrintStreamableTypeTest, TemplateTypeInUserNamespace) {
EXPECT_EQ("StreamableTemplateInFoo: 0",
Print(::foo::StreamableTemplateInFoo<int>()));
}
TEST(PrintStreamableTypeTest, TypeInUserNamespaceWithTemplatedStreamOperator) {
EXPECT_EQ("TemplatedStreamableInFoo",
Print(::foo::TemplatedStreamableInFoo()));
}
TEST(PrintStreamableTypeTest, SubclassUsesSuperclassStreamOperator) {
ParentClass parent;
ChildClassWithStreamOperator child_stream;
ChildClassWithoutStreamOperator child_no_stream;
EXPECT_EQ("ParentClass", Print(parent));
EXPECT_EQ("ChildClassWithStreamOperator", Print(child_stream));
EXPECT_EQ("ParentClass", Print(child_no_stream));
}
// Tests printing a user-defined recursive container type that has a <<
// operator.
TEST(PrintStreamableTypeTest, PathLikeInUserNamespace) {
::foo::PathLike x;
EXPECT_EQ("Streamable-PathLike", Print(x));
const ::foo::PathLike cx;
EXPECT_EQ("Streamable-PathLike", Print(cx));
}
// Tests printing user-defined types that have a PrintTo() function.
TEST(PrintPrintableTypeTest, InUserNamespace) {
EXPECT_EQ("PrintableViaPrintTo: 0", Print(::foo::PrintableViaPrintTo()));
}
// Tests printing a pointer to a user-defined type that has a <<
// operator for its pointer.
TEST(PrintPrintableTypeTest, PointerInUserNamespace) {
::foo::PointerPrintable x;
EXPECT_EQ("PointerPrintable*", Print(&x));
}
// Tests printing user-defined class template that have a PrintTo() function.
TEST(PrintPrintableTypeTest, TemplateInUserNamespace) {
EXPECT_EQ("PrintableViaPrintToTemplate: 5",
Print(::foo::PrintableViaPrintToTemplate<int>(5)));
}
// Tests that the universal printer prints both the address and the
// value of a reference.
TEST(PrintReferenceTest, PrintsAddressAndValue) {
int n = 5;
EXPECT_EQ("@" + PrintPointer(&n) + " 5", PrintByRef(n));
int a[2][3] = {{0, 1, 2}, {3, 4, 5}};
EXPECT_EQ("@" + PrintPointer(a) + " { { 0, 1, 2 }, { 3, 4, 5 } }",
PrintByRef(a));
const ::foo::UnprintableInFoo x;
EXPECT_EQ("@" + PrintPointer(&x) +
" 16-byte object "
"<EF-12 00-00 34-AB 00-00 00-00 00-00 00-00 00-00>",
PrintByRef(x));
}
// Tests that the universal printer prints a function pointer passed by
// reference.
TEST(PrintReferenceTest, HandlesFunctionPointer) {
void (*fp)(int n) = &MyFunction;
const std::string fp_pointer_string =
PrintPointer(reinterpret_cast<const void*>(&fp));
// We cannot directly cast &MyFunction to const void* because the
// standard disallows casting between pointers to functions and
// pointers to objects, and some compilers (e.g. GCC 3.4) enforce
// this limitation.
const std::string fp_string = PrintPointer(reinterpret_cast<const void*>(
reinterpret_cast<internal::BiggestInt>(fp)));
EXPECT_EQ("@" + fp_pointer_string + " " + fp_string, PrintByRef(fp));
}
// Tests that the universal printer prints a member function pointer
// passed by reference.
TEST(PrintReferenceTest, HandlesMemberFunctionPointer) {
int (Foo::*p)(char ch) = &Foo::MyMethod;
EXPECT_TRUE(HasPrefix(PrintByRef(p),
"@" + PrintPointer(reinterpret_cast<const void*>(&p)) +
" " + Print(sizeof(p)) + "-byte object "));
char (Foo::*p2)(int n) = &Foo::MyVirtualMethod;
EXPECT_TRUE(HasPrefix(PrintByRef(p2),
"@" + PrintPointer(reinterpret_cast<const void*>(&p2)) +
" " + Print(sizeof(p2)) + "-byte object "));
}
// Tests that the universal printer prints a member variable pointer
// passed by reference.
TEST(PrintReferenceTest, HandlesMemberVariablePointer) {
int Foo::*p = &Foo::value; // NOLINT
EXPECT_TRUE(HasPrefix(PrintByRef(p), "@" + PrintPointer(&p) + " " +
Print(sizeof(p)) + "-byte object "));
}
// Tests that FormatForComparisonFailureMessage(), which is used to print
// an operand in a comparison assertion (e.g. ASSERT_EQ) when the assertion
// fails, formats the operand in the desired way.
// scalar
TEST(FormatForComparisonFailureMessageTest, WorksForScalar) {
EXPECT_STREQ("123", FormatForComparisonFailureMessage(123, 124).c_str());
}
// non-char pointer
TEST(FormatForComparisonFailureMessageTest, WorksForNonCharPointer) {
int n = 0;
EXPECT_EQ(PrintPointer(&n),
FormatForComparisonFailureMessage(&n, &n).c_str());
}
// non-char array
TEST(FormatForComparisonFailureMessageTest, FormatsNonCharArrayAsPointer) {
// In expression 'array == x', 'array' is compared by pointer.
// Therefore we want to print an array operand as a pointer.
int n[] = {1, 2, 3};
EXPECT_EQ(PrintPointer(n), FormatForComparisonFailureMessage(n, n).c_str());
}
// Tests formatting a char pointer when it's compared with another pointer.
// In this case we want to print it as a raw pointer, as the comparison is by
// pointer.
// char pointer vs pointer
TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsPointer) {
// In expression 'p == x', where 'p' and 'x' are (const or not) char
// pointers, the operands are compared by pointer. Therefore we
// want to print 'p' as a pointer instead of a C string (we don't
// even know if it's supposed to point to a valid C string).
// const char*
const char* s = "hello";
EXPECT_EQ(PrintPointer(s), FormatForComparisonFailureMessage(s, s).c_str());
// char*
char ch = 'a';
EXPECT_EQ(PrintPointer(&ch),
FormatForComparisonFailureMessage(&ch, &ch).c_str());
}
// wchar_t pointer vs pointer
TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsPointer) {
// In expression 'p == x', where 'p' and 'x' are (const or not) char
// pointers, the operands are compared by pointer. Therefore we
// want to print 'p' as a pointer instead of a wide C string (we don't
// even know if it's supposed to point to a valid wide C string).
// const wchar_t*
const wchar_t* s = L"hello";
EXPECT_EQ(PrintPointer(s), FormatForComparisonFailureMessage(s, s).c_str());
// wchar_t*
wchar_t ch = L'a';
EXPECT_EQ(PrintPointer(&ch),
FormatForComparisonFailureMessage(&ch, &ch).c_str());
}
// Tests formatting a char pointer when it's compared to a string object.
// In this case we want to print the char pointer as a C string.
// char pointer vs std::string
TEST(FormatForComparisonFailureMessageTest, WorksForCharPointerVsStdString) {
const char* s = "hello \"world";
EXPECT_STREQ("\"hello \\\"world\"", // The string content should be escaped.
FormatForComparisonFailureMessage(s, ::std::string()).c_str());
// char*
char str[] = "hi\1";
char* p = str;
EXPECT_STREQ("\"hi\\x1\"", // The string content should be escaped.
FormatForComparisonFailureMessage(p, ::std::string()).c_str());
}
#if GTEST_HAS_STD_WSTRING
// wchar_t pointer vs std::wstring
TEST(FormatForComparisonFailureMessageTest, WorksForWCharPointerVsStdWString) {
const wchar_t* s = L"hi \"world";
EXPECT_STREQ("L\"hi \\\"world\"", // The string content should be escaped.
FormatForComparisonFailureMessage(s, ::std::wstring()).c_str());
// wchar_t*
wchar_t str[] = L"hi\1";
wchar_t* p = str;
EXPECT_STREQ("L\"hi\\x1\"", // The string content should be escaped.
FormatForComparisonFailureMessage(p, ::std::wstring()).c_str());
}
#endif
// Tests formatting a char array when it's compared with a pointer or array.
// In this case we want to print the array as a row pointer, as the comparison
// is by pointer.
// char array vs pointer
TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsPointer) {
char str[] = "hi \"world\"";
char* p = nullptr;
EXPECT_EQ(PrintPointer(str),
FormatForComparisonFailureMessage(str, p).c_str());
}
// char array vs char array
TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsCharArray) {
const char str[] = "hi \"world\"";
EXPECT_EQ(PrintPointer(str),
FormatForComparisonFailureMessage(str, str).c_str());
}
// wchar_t array vs pointer
TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsPointer) {
wchar_t str[] = L"hi \"world\"";
wchar_t* p = nullptr;
EXPECT_EQ(PrintPointer(str),
FormatForComparisonFailureMessage(str, p).c_str());
}
// wchar_t array vs wchar_t array
TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsWCharArray) {
const wchar_t str[] = L"hi \"world\"";
EXPECT_EQ(PrintPointer(str),
FormatForComparisonFailureMessage(str, str).c_str());
}
// Tests formatting a char array when it's compared with a string object.
// In this case we want to print the array as a C string.
// char array vs std::string
TEST(FormatForComparisonFailureMessageTest, WorksForCharArrayVsStdString) {
const char str[] = "hi \"world\"";
EXPECT_STREQ("\"hi \\\"world\\\"\"", // The content should be escaped.
FormatForComparisonFailureMessage(str, ::std::string()).c_str());
}
#if GTEST_HAS_STD_WSTRING
// wchar_t array vs std::wstring
TEST(FormatForComparisonFailureMessageTest, WorksForWCharArrayVsStdWString) {
const wchar_t str[] = L"hi \"w\0rld\"";
EXPECT_STREQ(
"L\"hi \\\"w\"", // The content should be escaped.
// Embedded NUL terminates the string.
FormatForComparisonFailureMessage(str, ::std::wstring()).c_str());
}
#endif
// Useful for testing PrintToString(). We cannot use EXPECT_EQ()
// there as its implementation uses PrintToString(). The caller must
// ensure that 'value' has no side effect.
#define EXPECT_PRINT_TO_STRING_(value, expected_string) \
EXPECT_TRUE(PrintToString(value) == (expected_string)) \
<< " where " #value " prints as " << (PrintToString(value))
TEST(PrintToStringTest, WorksForScalar) { EXPECT_PRINT_TO_STRING_(123, "123"); }
TEST(PrintToStringTest, WorksForPointerToConstChar) {
const char* p = "hello";
EXPECT_PRINT_TO_STRING_(p, "\"hello\"");
}
TEST(PrintToStringTest, WorksForPointerToNonConstChar) {
char s[] = "hello";
char* p = s;
EXPECT_PRINT_TO_STRING_(p, "\"hello\"");
}
TEST(PrintToStringTest, EscapesForPointerToConstChar) {
const char* p = "hello\n";
EXPECT_PRINT_TO_STRING_(p, "\"hello\\n\"");
}
TEST(PrintToStringTest, EscapesForPointerToNonConstChar) {
char s[] = "hello\1";
char* p = s;
EXPECT_PRINT_TO_STRING_(p, "\"hello\\x1\"");
}
TEST(PrintToStringTest, WorksForArray) {
int n[3] = {1, 2, 3};
EXPECT_PRINT_TO_STRING_(n, "{ 1, 2, 3 }");
}
TEST(PrintToStringTest, WorksForCharArray) {
char s[] = "hello";
EXPECT_PRINT_TO_STRING_(s, "\"hello\"");
}
TEST(PrintToStringTest, WorksForCharArrayWithEmbeddedNul) {
const char str_with_nul[] = "hello\0 world";
EXPECT_PRINT_TO_STRING_(str_with_nul, "\"hello\\0 world\"");
char mutable_str_with_nul[] = "hello\0 world";
EXPECT_PRINT_TO_STRING_(mutable_str_with_nul, "\"hello\\0 world\"");
}
TEST(PrintToStringTest, ContainsNonLatin) {
// Test with valid UTF-8. Prints both in hex and as text.
std::string non_ascii_str = ::std::string("오전 4:30");
EXPECT_PRINT_TO_STRING_(non_ascii_str,
"\"\\xEC\\x98\\xA4\\xEC\\xA0\\x84 4:30\"\n"
" As Text: \"오전 4:30\"");
non_ascii_str = ::std::string("From ä — ẑ");
EXPECT_PRINT_TO_STRING_(non_ascii_str,
"\"From \\xC3\\xA4 \\xE2\\x80\\x94 \\xE1\\xBA\\x91\""
"\n As Text: \"From ä — ẑ\"");
}
TEST(IsValidUTF8Test, IllFormedUTF8) {
// The following test strings are ill-formed UTF-8 and are printed
// as hex only (or ASCII, in case of ASCII bytes) because IsValidUTF8() is
// expected to fail, thus output does not contain "As Text:".
static const char* const kTestdata[][2] = {
// 2-byte lead byte followed by a single-byte character.
{"\xC3\x74", "\"\\xC3t\""},
// Valid 2-byte character followed by an orphan trail byte.
{"\xC3\x84\xA4", "\"\\xC3\\x84\\xA4\""},
// Lead byte without trail byte.
{"abc\xC3", "\"abc\\xC3\""},
// 3-byte lead byte, single-byte character, orphan trail byte.
{"x\xE2\x70\x94", "\"x\\xE2p\\x94\""},
// Truncated 3-byte character.
{"\xE2\x80", "\"\\xE2\\x80\""},
// Truncated 3-byte character followed by valid 2-byte char.
{"\xE2\x80\xC3\x84", "\"\\xE2\\x80\\xC3\\x84\""},
// Truncated 3-byte character followed by a single-byte character.
{"\xE2\x80\x7A", "\"\\xE2\\x80z\""},
// 3-byte lead byte followed by valid 3-byte character.
{"\xE2\xE2\x80\x94", "\"\\xE2\\xE2\\x80\\x94\""},
// 4-byte lead byte followed by valid 3-byte character.
{"\xF0\xE2\x80\x94", "\"\\xF0\\xE2\\x80\\x94\""},
// Truncated 4-byte character.
{"\xF0\xE2\x80", "\"\\xF0\\xE2\\x80\""},
// Invalid UTF-8 byte sequences embedded in other chars.
{"abc\xE2\x80\x94\xC3\x74xyc", "\"abc\\xE2\\x80\\x94\\xC3txyc\""},
{"abc\xC3\x84\xE2\x80\xC3\x84xyz",
"\"abc\\xC3\\x84\\xE2\\x80\\xC3\\x84xyz\""},
// Non-shortest UTF-8 byte sequences are also ill-formed.
// The classics: xC0, xC1 lead byte.
{"\xC0\x80", "\"\\xC0\\x80\""},
{"\xC1\x81", "\"\\xC1\\x81\""},
// Non-shortest sequences.
{"\xE0\x80\x80", "\"\\xE0\\x80\\x80\""},
{"\xf0\x80\x80\x80", "\"\\xF0\\x80\\x80\\x80\""},
// Last valid code point before surrogate range, should be printed as
// text,
// too.
{"\xED\x9F\xBF", "\"\\xED\\x9F\\xBF\"\n As Text: \"퟿\""},
// Start of surrogate lead. Surrogates are not printed as text.
{"\xED\xA0\x80", "\"\\xED\\xA0\\x80\""},
// Last non-private surrogate lead.
{"\xED\xAD\xBF", "\"\\xED\\xAD\\xBF\""},
// First private-use surrogate lead.
{"\xED\xAE\x80", "\"\\xED\\xAE\\x80\""},
// Last private-use surrogate lead.
{"\xED\xAF\xBF", "\"\\xED\\xAF\\xBF\""},
// Mid-point of surrogate trail.
{"\xED\xB3\xBF", "\"\\xED\\xB3\\xBF\""},
// First valid code point after surrogate range, should be printed as
// text,
// too.
{"\xEE\x80\x80", "\"\\xEE\\x80\\x80\"\n As Text: \"\""}};
for (int i = 0; i < int(sizeof(kTestdata) / sizeof(kTestdata[0])); ++i) {
EXPECT_PRINT_TO_STRING_(kTestdata[i][0], kTestdata[i][1]);
}
}
#undef EXPECT_PRINT_TO_STRING_
TEST(UniversalTersePrintTest, WorksForNonReference) {
::std::stringstream ss;
UniversalTersePrint(123, &ss);
EXPECT_EQ("123", ss.str());
}
TEST(UniversalTersePrintTest, WorksForReference) {
const int& n = 123;
::std::stringstream ss;
UniversalTersePrint(n, &ss);
EXPECT_EQ("123", ss.str());
}
TEST(UniversalTersePrintTest, WorksForCString) {
const char* s1 = "abc";
::std::stringstream ss1;
UniversalTersePrint(s1, &ss1);
EXPECT_EQ("\"abc\"", ss1.str());
char* s2 = const_cast<char*>(s1);
::std::stringstream ss2;
UniversalTersePrint(s2, &ss2);
EXPECT_EQ("\"abc\"", ss2.str());
const char* s3 = nullptr;
::std::stringstream ss3;
UniversalTersePrint(s3, &ss3);
EXPECT_EQ("NULL", ss3.str());
}
TEST(UniversalPrintTest, WorksForNonReference) {
::std::stringstream ss;
UniversalPrint(123, &ss);
EXPECT_EQ("123", ss.str());
}
TEST(UniversalPrintTest, WorksForReference) {
const int& n = 123;
::std::stringstream ss;
UniversalPrint(n, &ss);
EXPECT_EQ("123", ss.str());
}
TEST(UniversalPrintTest, WorksForPairWithConst) {
std::pair<const Wrapper<std::string>, int> p(Wrapper<std::string>("abc"), 1);
::std::stringstream ss;
UniversalPrint(p, &ss);
EXPECT_EQ("(Wrapper(\"abc\"), 1)", ss.str());
}
TEST(UniversalPrintTest, WorksForCString) {
const char* s1 = "abc";
::std::stringstream ss1;
UniversalPrint(s1, &ss1);
EXPECT_EQ(PrintPointer(s1) + " pointing to \"abc\"", std::string(ss1.str()));
char* s2 = const_cast<char*>(s1);
::std::stringstream ss2;
UniversalPrint(s2, &ss2);
EXPECT_EQ(PrintPointer(s2) + " pointing to \"abc\"", std::string(ss2.str()));
const char* s3 = nullptr;
::std::stringstream ss3;
UniversalPrint(s3, &ss3);
EXPECT_EQ("NULL", ss3.str());
}
TEST(UniversalPrintTest, WorksForCharArray) {
const char str[] = "\"Line\0 1\"\nLine 2";
::std::stringstream ss1;
UniversalPrint(str, &ss1);
EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss1.str());
const char mutable_str[] = "\"Line\0 1\"\nLine 2";
::std::stringstream ss2;
UniversalPrint(mutable_str, &ss2);
EXPECT_EQ("\"\\\"Line\\0 1\\\"\\nLine 2\"", ss2.str());
}
TEST(UniversalPrintTest, IncompleteType) {
struct Incomplete;
char some_object = 0;
EXPECT_EQ("(incomplete type)",
PrintToString(reinterpret_cast<Incomplete&>(some_object)));
}
TEST(UniversalPrintTest, SmartPointers) {
EXPECT_EQ("(nullptr)", PrintToString(std::unique_ptr<int>()));
std::unique_ptr<int> p(new int(17));
EXPECT_EQ("(ptr = " + PrintPointer(p.get()) + ", value = 17)",
PrintToString(p));
std::unique_ptr<int[]> p2(new int[2]);
EXPECT_EQ("(" + PrintPointer(p2.get()) + ")", PrintToString(p2));
EXPECT_EQ("(nullptr)", PrintToString(std::shared_ptr<int>()));
std::shared_ptr<int> p3(new int(1979));
EXPECT_EQ("(ptr = " + PrintPointer(p3.get()) + ", value = 1979)",
PrintToString(p3));
#if __cpp_lib_shared_ptr_arrays >= 201611L
std::shared_ptr<int[]> p4(new int[2]);
EXPECT_EQ("(" + PrintPointer(p4.get()) + ")", PrintToString(p4));
#endif
// modifiers
EXPECT_EQ("(nullptr)", PrintToString(std::unique_ptr<int>()));
EXPECT_EQ("(nullptr)", PrintToString(std::unique_ptr<const int>()));
EXPECT_EQ("(nullptr)", PrintToString(std::unique_ptr<volatile int>()));
EXPECT_EQ("(nullptr)", PrintToString(std::unique_ptr<volatile const int>()));
EXPECT_EQ("(nullptr)", PrintToString(std::unique_ptr<int[]>()));
EXPECT_EQ("(nullptr)", PrintToString(std::unique_ptr<const int[]>()));
EXPECT_EQ("(nullptr)", PrintToString(std::unique_ptr<volatile int[]>()));
EXPECT_EQ("(nullptr)",
PrintToString(std::unique_ptr<volatile const int[]>()));
EXPECT_EQ("(nullptr)", PrintToString(std::shared_ptr<int>()));
EXPECT_EQ("(nullptr)", PrintToString(std::shared_ptr<const int>()));
EXPECT_EQ("(nullptr)", PrintToString(std::shared_ptr<volatile int>()));
EXPECT_EQ("(nullptr)", PrintToString(std::shared_ptr<volatile const int>()));
#if __cpp_lib_shared_ptr_arrays >= 201611L
EXPECT_EQ("(nullptr)", PrintToString(std::shared_ptr<int[]>()));
EXPECT_EQ("(nullptr)", PrintToString(std::shared_ptr<const int[]>()));
EXPECT_EQ("(nullptr)", PrintToString(std::shared_ptr<volatile int[]>()));
EXPECT_EQ("(nullptr)",
PrintToString(std::shared_ptr<volatile const int[]>()));
#endif
// void
EXPECT_EQ("(nullptr)", PrintToString(std::unique_ptr<void, void (*)(void*)>(
nullptr, nullptr)));
EXPECT_EQ("(" + PrintPointer(p.get()) + ")",
PrintToString(
std::unique_ptr<void, void (*)(void*)>(p.get(), [](void*) {})));
EXPECT_EQ("(nullptr)", PrintToString(std::shared_ptr<void>()));
EXPECT_EQ("(" + PrintPointer(p.get()) + ")",
PrintToString(std::shared_ptr<void>(p.get(), [](void*) {})));
}
TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsEmptyTuple) {
Strings result = UniversalTersePrintTupleFieldsToStrings(::std::make_tuple());
EXPECT_EQ(0u, result.size());
}
TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsOneTuple) {
Strings result =
UniversalTersePrintTupleFieldsToStrings(::std::make_tuple(1));
ASSERT_EQ(1u, result.size());
EXPECT_EQ("1", result[0]);
}
TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsTwoTuple) {
Strings result =
UniversalTersePrintTupleFieldsToStrings(::std::make_tuple(1, 'a'));
ASSERT_EQ(2u, result.size());
EXPECT_EQ("1", result[0]);
EXPECT_EQ("'a' (97, 0x61)", result[1]);
}
TEST(UniversalTersePrintTupleFieldsToStringsTestWithStd, PrintsTersely) {
const int n = 1;
Strings result = UniversalTersePrintTupleFieldsToStrings(
::std::tuple<const int&, const char*>(n, "a"));
ASSERT_EQ(2u, result.size());
EXPECT_EQ("1", result[0]);
EXPECT_EQ("\"a\"", result[1]);
}
#if GTEST_INTERNAL_HAS_ANY
class PrintAnyTest : public ::testing::Test {
protected:
template <typename T>
static std::string ExpectedTypeName() {
#if GTEST_HAS_RTTI
return internal::GetTypeName<T>();
#else
return "<unknown_type>";
#endif // GTEST_HAS_RTTI
}
};
TEST_F(PrintAnyTest, Empty) {
internal::Any any;
EXPECT_EQ("no value", PrintToString(any));
}
TEST_F(PrintAnyTest, NonEmpty) {
internal::Any any;
constexpr int val1 = 10;
const std::string val2 = "content";
any = val1;
EXPECT_EQ("value of type " + ExpectedTypeName<int>(), PrintToString(any));
any = val2;
EXPECT_EQ("value of type " + ExpectedTypeName<std::string>(),
PrintToString(any));
}
#endif // GTEST_INTERNAL_HAS_ANY
#if GTEST_INTERNAL_HAS_OPTIONAL
TEST(PrintOptionalTest, Basic) {
EXPECT_EQ("(nullopt)", PrintToString(internal::Nullopt()));
internal::Optional<int> value;
EXPECT_EQ("(nullopt)", PrintToString(value));
value = {7};
EXPECT_EQ("(7)", PrintToString(value));
EXPECT_EQ("(1.1)", PrintToString(internal::Optional<double>{1.1}));
EXPECT_EQ("(\"A\")", PrintToString(internal::Optional<std::string>{"A"}));
}
#endif // GTEST_INTERNAL_HAS_OPTIONAL
#if GTEST_INTERNAL_HAS_VARIANT
struct NonPrintable {
unsigned char contents = 17;
};
TEST(PrintOneofTest, Basic) {
using Type = internal::Variant<int, StreamableInGlobal, NonPrintable>;
EXPECT_EQ("('int(index = 0)' with value 7)", PrintToString(Type(7)));
EXPECT_EQ("('StreamableInGlobal(index = 1)' with value StreamableInGlobal)",
PrintToString(Type(StreamableInGlobal{})));
EXPECT_EQ(
"('testing::gtest_printers_test::NonPrintable(index = 2)' with value "
"1-byte object <11>)",
PrintToString(Type(NonPrintable{})));
}
#endif // GTEST_INTERNAL_HAS_VARIANT
namespace {
class string_ref;
/**
* This is a synthetic pointer to a fixed size string.
*/
class string_ptr {
public:
string_ptr(const char* data, size_t size) : data_(data), size_(size) {}
string_ptr& operator++() noexcept {
data_ += size_;
return *this;
}
string_ref operator*() const noexcept;
private:
const char* data_;
size_t size_;
};
/**
* This is a synthetic reference of a fixed size string.
*/
class string_ref {
public:
string_ref(const char* data, size_t size) : data_(data), size_(size) {}
string_ptr operator&() const noexcept { return {data_, size_}; } // NOLINT
bool operator==(const char* s) const noexcept {
if (size_ > 0 && data_[size_ - 1] != 0) {
return std::string(data_, size_) == std::string(s);
} else {
return std::string(data_) == std::string(s);
}
}
private:
const char* data_;
size_t size_;
};
string_ref string_ptr::operator*() const noexcept { return {data_, size_}; }
TEST(string_ref, compare) {
const char* s = "alex\0davidjohn\0";
string_ptr ptr(s, 5);
EXPECT_EQ(*ptr, "alex");
EXPECT_TRUE(*ptr == "alex");
++ptr;
EXPECT_EQ(*ptr, "david");
EXPECT_TRUE(*ptr == "david");
++ptr;
EXPECT_EQ(*ptr, "john");
}
} // namespace
} // namespace gtest_printers_test
} // namespace testing