blob: becb6b9a467ca07988a641d31b9f7fdb100dda1d [file] [log] [blame]
/*
* Copyright (c) 2012, 2020 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "arch/arm/kvm/arm_cpu.hh"
#include <linux/kvm.h>
#include <algorithm>
#include <cerrno>
#include <memory>
#include <set>
#include "arch/arm/interrupts.hh"
#include "arch/arm/regs/int.hh"
#include "arch/arm/regs/misc.hh"
#include "cpu/kvm/base.hh"
#include "debug/Kvm.hh"
#include "debug/KvmContext.hh"
#include "debug/KvmInt.hh"
#include "sim/pseudo_inst.hh"
namespace gem5
{
using namespace ArmISA;
namespace
{
constexpr uint64_t
extractField(uint64_t val, uint64_t mask, size_t shift)
{
return (val & mask) >> shift;
}
constexpr bool
regIsArm(uint64_t id)
{
return (id & KVM_REG_ARCH_MASK) == KVM_REG_ARM;
}
constexpr bool
regIs32Bit(uint64_t id)
{
return (id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32;
}
constexpr bool
regIs64Bit(uint64_t id)
{
return (id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64;
}
constexpr bool
regIsCp(uint64_t id, uint64_t cp)
{
return (id & KVM_REG_ARM_COPROC_MASK) == cp;
}
constexpr bool
regIsCore(uint64_t id)
{
return regIsCp(id, KVM_REG_ARM_CORE);
}
constexpr bool
regIsVfp(uint64_t id)
{
return regIsCp(id, KVM_REG_ARM_VFP);
}
constexpr uint64_t
regVfpReg(uint64_t id)
{
return id & KVM_REG_ARM_VFP_MASK;
}
// HACK: These aren't really defined in any of the headers, so we'll
// assume some reasonable values for now.
constexpr bool
regIsVfpReg(uint64_t id)
{
return regVfpReg(id) < 0x100;
}
constexpr bool
regIsVfpCtrl(uint64_t id)
{
return regVfpReg(id) >= 0x100;
}
constexpr bool
regIsDemux(uint64_t id)
{
return regIsCp(id, KVM_REG_ARM_DEMUX);
}
// There is no constant in the kernel headers defining the mask to use
// to get the core register index. We'll just do what they do
// internally.
constexpr uint64_t
regCoreIdx(uint64_t id)
{
return ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
}
constexpr uint64_t
regCp(uint64_t id)
{
return extractField(id, KVM_REG_ARM_COPROC_MASK, KVM_REG_ARM_COPROC_SHIFT);
}
constexpr uint64_t
regCrn(uint64_t id)
{
return extractField(id, KVM_REG_ARM_32_CRN_MASK, KVM_REG_ARM_32_CRN_SHIFT);
}
constexpr uint64_t
regOpc1(uint64_t id)
{
return extractField(id, KVM_REG_ARM_OPC1_MASK, KVM_REG_ARM_OPC1_SHIFT);
}
constexpr uint64_t
regCrm(uint64_t id)
{
return extractField(id, KVM_REG_ARM_CRM_MASK, KVM_REG_ARM_CRM_SHIFT);
}
constexpr uint64_t
regOpc2(uint64_t id)
{
return extractField(id, KVM_REG_ARM_32_OPC2_MASK,
KVM_REG_ARM_32_OPC2_SHIFT);
}
constexpr uint64_t
regCp32(uint64_t cpnum, uint64_t crn, uint64_t opc1, uint64_t crm,
uint64_t opc2)
{
return KVM_REG_ARM | KVM_REG_SIZE_U32 |
(cpnum << KVM_REG_ARM_COPROC_SHIFT) |
(crn << KVM_REG_ARM_32_CRN_SHIFT) |
(opc1 << KVM_REG_ARM_OPC1_SHIFT) |
(crm << KVM_REG_ARM_CRM_SHIFT) |
(opc2 << KVM_REG_ARM_32_OPC2_SHIFT);
}
constexpr uint64_t
regCp64(uint64_t cpnum, uint64_t opc1, uint64_t crm)
{
return KVM_REG_ARM | KVM_REG_SIZE_U64 |
(cpnum << KVM_REG_ARM_COPROC_SHIFT) |
(opc1 << KVM_REG_ARM_OPC1_SHIFT) |
(crm << KVM_REG_ARM_CRM_SHIFT);
}
constexpr KvmIntRegInfo
regCore32(off_t offset, RegIndex idx, const char *name)
{
return { KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_CORE | offset,
idx, name };
}
constexpr uint64_t
regVfp32(uint64_t regno)
{
return KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | regno;
}
constexpr uint64_t
regVfp64(uint64_t regno)
{
return KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | regno;
}
constexpr uint64_t
regDemux32(uint64_t dmxid, uint64_t val)
{
return KVM_REG_ARM | KVM_REG_SIZE_U32 | dmxid | val;
}
constexpr uint64_t
interruptId(uint64_t type, uint64_t vcpu, uint64_t irq)
{
return (type << KVM_ARM_IRQ_TYPE_SHIFT) |
(vcpu << KVM_ARM_IRQ_VCPU_SHIFT) |
(irq << KVM_ARM_IRQ_NUM_SHIFT);
}
constexpr uint64_t
interruptVcpuIrq(uint64_t vcpu)
{
return interruptId(KVM_ARM_IRQ_TYPE_CPU, vcpu, KVM_ARM_IRQ_CPU_IRQ);
}
constexpr uint64_t
interruptVcpuFiq(uint64_t vcpu)
{
return interruptId(KVM_ARM_IRQ_TYPE_CPU, vcpu, KVM_ARM_IRQ_CPU_FIQ);
}
} // anonymous namespace
// Some of the co-processor registers are invariants and must have the
// same value on both the host and the guest. We need to keep a list
// of these to prevent gem5 from fiddling with them on the guest.
static uint64_t invariant_reg_vector[] = {
regCp32(15, 0, 0, 0, 0), // MIDR
regCp32(15, 0, 0, 0, 1), // CTR
regCp32(15, 0, 0, 0, 2), // TCMTR
regCp32(15, 0, 0, 0, 3), // TLBTR
regCp32(15, 0, 0, 0, 6), // REVIDR
regCp32(15, 0, 0, 1, 0), // ID_PFR0
regCp32(15, 0, 0, 1, 1), // ID_PFR1
regCp32(15, 0, 0, 1, 2), // ID_DFR0
regCp32(15, 0, 0, 1, 3), // ID_AFR0
regCp32(15, 0, 0, 1, 4), // ID_MMFR0
regCp32(15, 0, 0, 1, 5), // ID_MMFR1
regCp32(15, 0, 0, 1, 6), // ID_MMFR2
regCp32(15, 0, 0, 1, 7), // ID_MMFR3
regCp32(15, 0, 0, 2, 0), // ID_ISAR0
regCp32(15, 0, 0, 2, 1), // ID_ISAR1
regCp32(15, 0, 0, 2, 2), // ID_ISAR2
regCp32(15, 0, 0, 2, 3), // ID_ISAR3
regCp32(15, 0, 0, 2, 4), // ID_ISAR4
regCp32(15, 0, 0, 2, 5), // ID_ISAR5
regCp32(15, 0, 0, 2, 6), // ID_MMFR4
regCp32(15, 0, 0, 2, 7), // ID_ISAR6
regCp32(15, 0, 1, 0, 0), // CSSIDR
regCp32(15, 0, 1, 0, 1), // CLIDR
regCp32(15, 0, 1, 0, 7), // AIDR
regVfp32(KVM_REG_ARM_VFP_MVFR0),
regVfp32(KVM_REG_ARM_VFP_MVFR1),
regVfp32(KVM_REG_ARM_VFP_FPSID),
regDemux32(KVM_REG_ARM_DEMUX_ID_CCSIDR, 0),
};
const static uint64_t KVM_REG64_TTBR0(regCp64(15, 0, 2));
const static uint64_t KVM_REG64_TTBR1(regCp64(15, 1, 2));
const std::set<uint64_t> ArmKvmCPU::invariant_regs(
std::begin(invariant_reg_vector), std::end(invariant_reg_vector));
ArmKvmCPU::KvmIntRegInfo ArmKvmCPU::kvmIntRegs[] = {
regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_r0), int_reg::R0, "R0"),
regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_r1), int_reg::R1, "R1"),
regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_r2), int_reg::R2, "R2"),
regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_r3), int_reg::R3, "R3"),
regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_r4), int_reg::R4, "R4"),
regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_r5), int_reg::R5, "R5"),
regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_r6), int_reg::R6, "R6"),
regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_r7), int_reg::R7, "R7"),
regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_r8), int_reg::R8, "R8"),
regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_r9), int_reg::R9, "R9"),
regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_r10), int_reg::R10, "R10"),
regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_fp), int_reg::R11, "R11"),
regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_ip), int_reg::R12, "R12"),
regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_sp), int_reg::R13, "R13(USR)"),
regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_lr), int_reg::R14, "R14(USR)"),
regCore32(KVM_REG_ARM_CORE_REG(svc_regs[0]), int_reg::SpSvc, "R13(SVC)"),
regCore32(KVM_REG_ARM_CORE_REG(svc_regs[1]), int_reg::LrSvc, "R14(SVC)"),
regCore32(KVM_REG_ARM_CORE_REG(abt_regs[0]), int_reg::SpAbt, "R13(ABT)"),
regCore32(KVM_REG_ARM_CORE_REG(abt_regs[1]), int_reg::LrAbt, "R14(ABT)"),
regCore32(KVM_REG_ARM_CORE_REG(und_regs[0]), int_reg::SpUnd, "R13(UND)"),
regCore32(KVM_REG_ARM_CORE_REG(und_regs[1]), int_reg::LrUnd, "R14(UND)"),
regCore32(KVM_REG_ARM_CORE_REG(irq_regs[0]), int_reg::SpIrq, "R13(IRQ)"),
regCore32(KVM_REG_ARM_CORE_REG(irq_regs[1]), int_reg::LrIrq, "R14(IRQ)"),
regCore32(KVM_REG_ARM_CORE_REG(fiq_regs[0]), int_reg::R8Fiq, "R8(FIQ)"),
regCore32(KVM_REG_ARM_CORE_REG(fiq_regs[1]), int_reg::R9Fiq, "R9(FIQ)"),
regCore32(KVM_REG_ARM_CORE_REG(fiq_regs[2]), int_reg::R10Fiq, "R10(FIQ)"),
regCore32(KVM_REG_ARM_CORE_REG(fiq_regs[3]), int_reg::R11Fiq, "R11(FIQ)"),
regCore32(KVM_REG_ARM_CORE_REG(fiq_regs[4]), int_reg::R12Fiq, "R12(FIQ)"),
regCore32(KVM_REG_ARM_CORE_REG(fiq_regs[5]), int_reg::R13Fiq, "R13(FIQ)"),
regCore32(KVM_REG_ARM_CORE_REG(fiq_regs[6]), int_reg::R14Fiq, "R14(FIQ)"),
{ 0, int_reg::NumRegs, NULL }
};
ArmKvmCPU::KvmCoreMiscRegInfo ArmKvmCPU::kvmCoreMiscRegs[] = {
regCore32(KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr), MISCREG_CPSR, "CPSR"),
regCore32(KVM_REG_ARM_CORE_REG(svc_regs[2]), MISCREG_SPSR_SVC,
"SPSR(SVC)"),
regCore32(KVM_REG_ARM_CORE_REG(abt_regs[2]), MISCREG_SPSR_ABT,
"SPSR(ABT)"),
regCore32(KVM_REG_ARM_CORE_REG(und_regs[2]), MISCREG_SPSR_UND,
"SPSR(UND)"),
regCore32(KVM_REG_ARM_CORE_REG(irq_regs[2]), MISCREG_SPSR_IRQ,
"SPSR(IRQ)"),
regCore32(KVM_REG_ARM_CORE_REG(fiq_regs[2]), MISCREG_SPSR_FIQ,
"SPSR(FIQ)"),
{ 0, NUM_MISCREGS }
};
ArmKvmCPU::ArmKvmCPU(const ArmKvmCPUParams &params)
: BaseKvmCPU(params),
irqAsserted(false), fiqAsserted(false)
{
}
ArmKvmCPU::~ArmKvmCPU()
{
}
void
ArmKvmCPU::startup()
{
BaseKvmCPU::startup();
/* TODO: This needs to be moved when we start to support VMs with
* multiple threads since kvmArmVCpuInit requires that all CPUs in
* the VM have been created.
*/
/* TODO: The CPU type needs to be configurable once KVM on ARM
* starts to support more CPUs.
*/
kvmArmVCpuInit(KVM_ARM_TARGET_CORTEX_A15);
}
Tick
ArmKvmCPU::kvmRun(Tick ticks)
{
auto interrupt = static_cast<ArmISA::Interrupts *>(interrupts[0]);
const bool simFIQ = interrupt->checkRaw(INT_FIQ);
const bool simIRQ = interrupt->checkRaw(INT_IRQ);
if (fiqAsserted != simFIQ) {
fiqAsserted = simFIQ;
DPRINTF(KvmInt, "KVM: Update FIQ state: %i\n", simFIQ);
vm->setIRQLine(interruptVcpuFiq(vcpuID), simFIQ);
}
if (irqAsserted != simIRQ) {
irqAsserted = simIRQ;
DPRINTF(KvmInt, "KVM: Update IRQ state: %i\n", simIRQ);
vm->setIRQLine(interruptVcpuIrq(vcpuID), simIRQ);
}
return BaseKvmCPU::kvmRun(ticks);
}
void
ArmKvmCPU::dump()
{
dumpKvmStateCore();
dumpKvmStateMisc();
}
void
ArmKvmCPU::updateKvmState()
{
DPRINTF(KvmContext, "Updating KVM state...\n");
updateKvmStateCore();
updateKvmStateMisc();
}
void
ArmKvmCPU::updateThreadContext()
{
DPRINTF(KvmContext, "Updating gem5 state...\n");
updateTCStateCore();
updateTCStateMisc();
}
const ArmKvmCPU::RegIndexVector &
ArmKvmCPU::getRegList() const
{
if (_regIndexList.size() == 0) {
std::unique_ptr<struct kvm_reg_list, void(*)(void *p)>
regs(nullptr, [](void *p) { operator delete(p); });
uint64_t i = 1;
do {
i <<= 1;
regs.reset((struct kvm_reg_list *)
operator new(sizeof(struct kvm_reg_list) +
i * sizeof(uint64_t)));
regs->n = i;
} while (!getRegList(*regs));
_regIndexList.assign(regs->reg,
regs->reg + regs->n);
}
return _regIndexList;
}
void
ArmKvmCPU::kvmArmVCpuInit(uint32_t target)
{
struct kvm_vcpu_init init;
memset(&init, 0, sizeof(init));
init.target = target;
kvmArmVCpuInit(init);
}
void
ArmKvmCPU::kvmArmVCpuInit(const struct kvm_vcpu_init &init)
{
if (ioctl(KVM_ARM_VCPU_INIT, (void *)&init) == -1)
panic("KVM: Failed to initialize vCPU\n");
}
MiscRegIndex
ArmKvmCPU::decodeCoProcReg(uint64_t id) const
{
const unsigned cp = regCp(id);
const bool is_reg32 = regIs32Bit(id);
const bool is_reg64 = regIs64Bit(id);
// CP numbers larger than 15 are reserved for KVM extensions
if (cp > 15)
return NUM_MISCREGS;
const unsigned crm = regCrm(id);
const unsigned crn = regCrn(id);
const unsigned opc1 = regOpc1(id);
const unsigned opc2 = regOpc2(id);
if (is_reg32) {
switch (cp) {
case 14:
return decodeCP14Reg(crn, opc1, crm, opc2);
case 15:
return decodeCP15Reg(crn, opc1, crm, opc2);
default:
return NUM_MISCREGS;
}
} else if (is_reg64) {
return NUM_MISCREGS;
} else {
warn("Unhandled register length, register (0x%x) ignored.\n");
return NUM_MISCREGS;
}
}
ArmISA::MiscRegIndex
ArmKvmCPU::decodeVFPCtrlReg(uint64_t id) const
{
if (!regIsArm(id) || !regIsVfp(id) || !regIsVfpCtrl(id))
return NUM_MISCREGS;
const unsigned vfp_reg = regVfpReg(id);
switch (vfp_reg) {
case KVM_REG_ARM_VFP_FPSID: return MISCREG_FPSID;
case KVM_REG_ARM_VFP_FPSCR: return MISCREG_FPSCR;
case KVM_REG_ARM_VFP_MVFR0: return MISCREG_MVFR0;
case KVM_REG_ARM_VFP_MVFR1: return MISCREG_MVFR1;
case KVM_REG_ARM_VFP_FPEXC: return MISCREG_FPEXC;
case KVM_REG_ARM_VFP_FPINST:
case KVM_REG_ARM_VFP_FPINST2:
warn_once("KVM: FPINST not implemented.\n");
return NUM_MISCREGS;
default:
return NUM_MISCREGS;
}
}
bool
ArmKvmCPU::isInvariantReg(uint64_t id)
{
/* Mask away the value field from multiplexed registers, we assume
* that entire groups of multiplexed registers can be treated as
* invariant. */
if (regIsArm(id) && regIsDemux(id))
id &= ~KVM_REG_ARM_DEMUX_VAL_MASK;
return invariant_regs.find(id) != invariant_regs.end();
}
bool
ArmKvmCPU::getRegList(struct kvm_reg_list &regs) const
{
if (ioctl(KVM_GET_REG_LIST, (void *)&regs) == -1) {
if (errno == E2BIG) {
return false;
} else {
panic("KVM: Failed to get vCPU register list (errno: %i)\n",
errno);
}
} else {
return true;
}
}
void
ArmKvmCPU::dumpKvmStateCore()
{
/* Print core registers */
uint32_t pc = getOneRegU32(REG_CORE32(usr_regs.ARM_pc));
inform("PC: 0x%x\n", pc);
for (const KvmIntRegInfo *ri(kvmIntRegs);
ri->idx != int_reg::NumRegs; ++ri) {
uint32_t value(getOneRegU32(ri->id));
inform("%s: 0x%x\n", ri->name, value);
}
for (const KvmCoreMiscRegInfo *ri(kvmCoreMiscRegs);
ri->idx != NUM_MISCREGS; ++ri) {
uint32_t value(getOneRegU32(ri->id));
inform("%s: 0x%x\n", miscRegName[ri->idx], value);
}
}
void
ArmKvmCPU::dumpKvmStateMisc()
{
/* Print co-processor registers */
const RegIndexVector &reg_ids = getRegList();
for (RegIndexVector::const_iterator it(reg_ids.begin());
it != reg_ids.end(); ++it) {
uint64_t id = *it;
if (regIsArm(id) && regCp(id) <= 15) {
dumpKvmStateCoProc(id);
} else if (regIsArm(id) && regIsVfp(id)) {
dumpKvmStateVFP(id);
} else if (regIsArm(id) && regIsDemux(id)) {
switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
case KVM_REG_ARM_DEMUX_ID_CCSIDR:
inform("CCSIDR [0x%x]: %s\n",
extractField(id, KVM_REG_ARM_DEMUX_VAL_MASK,
KVM_REG_ARM_DEMUX_VAL_SHIFT),
getAndFormatOneReg(id));
break;
default:
inform("DEMUX [0x%x, 0x%x]: %s\n",
extractField(id, KVM_REG_ARM_DEMUX_ID_MASK,
KVM_REG_ARM_DEMUX_ID_SHIFT),
extractField(id, KVM_REG_ARM_DEMUX_VAL_MASK,
KVM_REG_ARM_DEMUX_VAL_SHIFT),
getAndFormatOneReg(id));
break;
}
} else if (!regIsCore(id)) {
inform("0x%x: %s\n", id, getAndFormatOneReg(id));
}
}
}
void
ArmKvmCPU::dumpKvmStateCoProc(uint64_t id)
{
assert(regIsArm(id));
assert(regCp(id) <= 15);
if (regIs32Bit(id)) {
// 32-bit co-proc registers
MiscRegIndex idx = decodeCoProcReg(id);
uint32_t value = getOneRegU32(id);
if (idx != NUM_MISCREGS &&
!(idx >= MISCREG_CP15_UNIMP_START && idx < MISCREG_CP15_END)) {
const char *name = miscRegName[idx];
const unsigned m5_ne = tc->readMiscRegNoEffect(idx);
const unsigned m5_e = tc->readMiscReg(idx);
inform("CP%i: [CRn: c%i opc1: %.2i CRm: c%i opc2: %i inv: %i]: "
"[%s]: 0x%x/0x%x\n",
regCp(id), regCrn(id), regOpc1(id), regCrm(id),
regOpc2(id), isInvariantReg(id),
name, value, m5_e);
if (m5_e != m5_ne) {
inform("readMiscReg: %x, readMiscRegNoEffect: %x\n",
m5_e, m5_ne);
}
} else {
const char *name = idx != NUM_MISCREGS ? miscRegName[idx] : "-";
inform("CP%i: [CRn: c%i opc1: %.2i CRm: c%i opc2: %i inv: %i]: "
"[%s]: 0x%x\n",
regCp(id), regCrn(id), regOpc1(id), regCrm(id),
regOpc2(id), isInvariantReg(id), name, value);
}
} else {
inform("CP%i: [CRn: c%i opc1: %.2i CRm: c%i opc2: %i inv: %i "
"len: 0x%x]: %s\n",
regCp(id), regCrn(id), regOpc1(id), regCrm(id),
regOpc2(id), isInvariantReg(id),
extractField(id, KVM_REG_SIZE_MASK, KVM_REG_SIZE_SHIFT),
getAndFormatOneReg(id));
}
}
void
ArmKvmCPU::dumpKvmStateVFP(uint64_t id)
{
assert(regIsArm(id));
assert(regIsVfp(id));
if (regIsVfpReg(id)) {
const unsigned idx = id & KVM_REG_ARM_VFP_MASK;
inform("VFP reg %i: %s", idx, getAndFormatOneReg(id));
} else if (regIsVfpCtrl(id)) {
MiscRegIndex idx = decodeVFPCtrlReg(id);
if (idx != NUM_MISCREGS) {
inform("VFP [%s]: %s", miscRegName[idx], getAndFormatOneReg(id));
} else {
inform("VFP [0x%x]: %s", id, getAndFormatOneReg(id));
}
} else {
inform("VFP [0x%x]: %s", id, getAndFormatOneReg(id));
}
}
void
ArmKvmCPU::updateKvmStateCore()
{
for (const KvmIntRegInfo *ri(kvmIntRegs);
ri->idx != init_reg::NumRegs; ++ri) {
uint64_t value = tc->getRegFlat(RegId(IntRegClass, ri->idx));
DPRINTF(KvmContext, "kvm(%s) := 0x%x\n", ri->name, value);
setOneReg(ri->id, value);
}
DPRINTF(KvmContext, "kvm(PC) := 0x%x\n", tc->pcState().instAddr());
setOneReg(REG_CORE32(usr_regs.ARM_pc), tc->pcState().instAddr());
for (const KvmCoreMiscRegInfo *ri(kvmCoreMiscRegs);
ri->idx != NUM_MISCREGS; ++ri) {
uint64_t value = tc->readMiscReg(ri->idx);
DPRINTF(KvmContext, "kvm(%s) := 0x%x\n", ri->name, value);
setOneReg(ri->id, value);
}
if (debug::KvmContext)
dumpKvmStateCore();
}
void
ArmKvmCPU::updateKvmStateMisc()
{
static bool warned = false; // We can't use warn_once since we want
// to show /all/ registers
const RegIndexVector &regs = getRegList();
for (RegIndexVector::const_iterator it(regs.begin());
it != regs.end();
++it) {
if (!regIsArm(*it)) {
if (!warned)
warn("Skipping non-ARM register: 0x%x\n", *it);
} else if (isInvariantReg(*it)) {
DPRINTF(Kvm, "Skipping invariant register: 0x%x\n", *it);
} else if (regIsCore(*it)) {
// Core registers are handled in updateKvmStateCore
continue;
} else if (regCp(*it) <= 15) {
updateKvmStateCoProc(*it, !warned);
} else if (regIsVfp(*it)) {
updateKvmStateVFP(*it, !warned);
} else {
if (!warned) {
warn("Skipping register with unknown CP (%i) id: 0x%x\n",
regCp(*it), *it);
}
}
}
warned = true;
if (debug::KvmContext)
dumpKvmStateMisc();
}
void
ArmKvmCPU::updateKvmStateCoProc(uint64_t id, bool show_warnings)
{
MiscRegIndex reg = decodeCoProcReg(id);
assert(regIsArm(id));
assert(regCp(id) <= 15);
if (id == KVM_REG64_TTBR0 || id == KVM_REG64_TTBR1) {
// HACK HACK HACK: Workaround for 64-bit TTBRx
reg = (id == KVM_REG64_TTBR0 ? MISCREG_TTBR0 : MISCREG_TTBR1);
if (show_warnings)
hack("KVM: 64-bit TTBBRx workaround\n");
}
if (reg == NUM_MISCREGS) {
if (show_warnings) {
warn("KVM: Ignoring unknown KVM co-processor register (0x%.8x):\n",
id);
warn("\t0x%x: [CP: %i 64: %i CRn: c%i opc1: %.2i CRm: c%i"
" opc2: %i]\n",
id, regCp(id), regIs64Bit(id), regCrn(id),
regOpc1(id), regCrm(id), regOpc2(id));
}
} else if (reg >= MISCREG_CP15_UNIMP_START && reg < MISCREG_CP15_END) {
if (show_warnings)
warn("KVM: Co-processor reg. %s not implemented by gem5.\n",
miscRegName[reg]);
} else {
setOneReg(id, tc->readMiscRegNoEffect(reg));
}
}
void
ArmKvmCPU::updateKvmStateVFP(uint64_t id, bool show_warnings)
{
assert(regIsArm(id));
assert(regIsVfp(id));
if (regIsVfpReg(id)) {
if (!regIs64Bit(id)) {
if (show_warnings)
warn("Unexpected VFP register length (reg: 0x%x).\n", id);
return;
}
const unsigned idx = id & KVM_REG_ARM_VFP_MASK;
const unsigned idx_base = idx << 1;
const unsigned idx_hi = idx_base + 1;
const unsigned idx_lo = idx_base + 0;
uint64_t value =
((uint64_t)tc->readFloatRegFlat(idx_hi) << 32) |
tc->readFloatRegFlat(idx_lo);
setOneReg(id, value);
} else if (regIsVfpCtrl(id)) {
MiscRegIndex idx = decodeVFPCtrlReg(id);
if (idx == NUM_MISCREGS) {
if (show_warnings)
warn("Unhandled VFP control register: 0x%x\n", id);
return;
}
if (!regIs32Bit(id)) {
if (show_warnings)
warn("Ignoring VFP control register (%s) with "
"unexpected size.\n",
miscRegName[idx]);
return;
}
setOneReg(id, (uint32_t)tc->readMiscReg(idx));
} else {
if (show_warnings)
warn("Unhandled VFP register: 0x%x\n", id);
}
}
void
ArmKvmCPU::updateTCStateCore()
{
for (const KvmIntRegInfo *ri(kvmIntRegs);
ri->idx != int_reg::NumRegs; ++ri) {
tc->setRegFlat(RegId(IntRegClass, ri->idx), getOneRegU32(ri->id));
}
for (const KvmCoreMiscRegInfo *ri(kvmCoreMiscRegs);
ri->idx != NUM_MISCREGS; ++ri) {
tc->setMiscRegNoEffect(ri->idx, getOneRegU32(ri->id));
}
/* We want the simulator to execute all side-effects of the CPSR
* update since this updates PC state and register maps.
*/
tc->setMiscReg(MISCREG_CPSR, tc->readMiscRegNoEffect(MISCREG_CPSR));
// We update the PC state after we have updated the CPSR the
// contents of the CPSR affects how the npc is updated.
PCState pc = tc->pcState().as<PCState>();
pc.set(getOneRegU32(REG_CORE32(usr_regs.ARM_pc)));
tc->pcState(pc);
if (debug::KvmContext)
dumpKvmStateCore();
}
void
ArmKvmCPU::updateTCStateMisc()
{
static bool warned(false); // We can't use warn_once since we want
// to show /all/ registers
const RegIndexVector &reg_ids = getRegList();
for (RegIndexVector::const_iterator it(reg_ids.begin());
it != reg_ids.end(); ++it) {
if (!regIsArm(*it)) {
if (!warned)
warn("Skipping non-ARM register: 0x%x\n", *it);
} else if (regIsCore(*it)) {
// Core registers are handled in updateKvmStateCore
} else if (regCp(*it) <= 15) {
updateTCStateCoProc(*it, !warned);
} else if (regIsVfp(*it)) {
updateTCStateVFP(*it, !warned);
} else {
if (!warned) {
warn("Skipping register with unknown CP (%i) id: 0x%x\n",
regCp(*it), *it);
}
}
}
warned = true;
if (debug::KvmContext)
dumpKvmStateMisc();
}
void
ArmKvmCPU::updateTCStateCoProc(uint64_t id, bool show_warnings)
{
MiscRegIndex reg = decodeCoProcReg(id);
assert(regIsArm(id));
assert(regCp(id) <= 15);
if (id == KVM_REG64_TTBR0 || id == KVM_REG64_TTBR1) {
// HACK HACK HACK: We don't currently support 64-bit TTBR0/TTBR1
hack_once("KVM: 64-bit TTBRx workaround\n");
tc->setMiscRegNoEffect(
id == KVM_REG64_TTBR0 ? MISCREG_TTBR0 : MISCREG_TTBR1,
(uint32_t)(getOneRegU64(id) & 0xFFFFFFFF));
} else if (reg == MISCREG_TTBCR) {
uint32_t value = getOneRegU64(id);
if (value & 0x80000000)
panic("KVM: Guest tried to enable LPAE.\n");
tc->setMiscRegNoEffect(reg, value);
} else if (reg == NUM_MISCREGS) {
if (show_warnings) {
warn("KVM: Ignoring unknown KVM co-processor register:\n", id);
warn("\t0x%x: [CP: %i 64: %i CRn: c%i opc1: %.2i CRm: c%i"
" opc2: %i]\n",
id, regCp(id), regIs64Bit(id), regCrn(id),
regOpc1(id), regCrm(id), regOpc2(id));
}
} else if (reg >= MISCREG_CP15_UNIMP_START && reg < MISCREG_CP15_END) {
if (show_warnings)
warn_once("KVM: Co-processor reg. %s not implemented by gem5.\n",
miscRegName[reg]);
} else {
tc->setMiscRegNoEffect(reg, getOneRegU32(id));
}
}
void
ArmKvmCPU::updateTCStateVFP(uint64_t id, bool show_warnings)
{
assert(regIsArm(id));
assert(regIsVfp(id));
if (regIsVfpReg(id)) {
if (!regIs64Bit(id)) {
if (show_warnings)
warn("Unexpected VFP register length (reg: 0x%x).\n", id);
return;
}
const unsigned idx = id & KVM_REG_ARM_VFP_MASK;
const unsigned idx_base = idx << 1;
const unsigned idx_hi = idx_base + 1;
const unsigned idx_lo = idx_base + 0;
uint64_t value = getOneRegU64(id);
tc->setFloatRegFlat(idx_hi, (value >> 32) & 0xFFFFFFFF);
tc->setFloatRegFlat(idx_lo, value & 0xFFFFFFFF);
} else if (regIsVfpCtrl(id)) {
MiscRegIndex idx = decodeVFPCtrlReg(id);
if (idx == NUM_MISCREGS) {
if (show_warnings)
warn("Unhandled VFP control register: 0x%x\n", id);
return;
}
if (!regIs32Bit(id)) {
if (show_warnings)
warn("Ignoring VFP control register (%s) with "
"unexpected size.\n",
miscRegName[idx]);
return;
}
tc->setMiscReg(idx, getOneRegU64(id));
} else {
if (show_warnings)
warn("Unhandled VFP register: 0x%x\n", id);
}
}
} // namespace gem5