blob: 07eaeaafcaa91d15ee8a899f3a8c4fd45b2634f1 [file] [log] [blame]
/* Copyright (c) 2012 Massachusetts Institute of Technology
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "model/std_cells/BUF.h"
#include <cmath>
#include "model/PortInfo.h"
#include "model/TransitionInfo.h"
#include "model/EventInfo.h"
#include "model/std_cells/StdCellLib.h"
#include "model/std_cells/CellMacros.h"
#include "model/timing_graph/ElectricalNet.h"
#include "model/timing_graph/ElectricalDriver.h"
#include "model/timing_graph/ElectricalLoad.h"
#include "model/timing_graph/ElectricalDelay.h"
namespace DSENT
{
using std::max;
BUF::BUF(const String& instance_name_, const TechModel* tech_model_)
: StdCell(instance_name_, tech_model_)
{
initProperties();
}
BUF::~BUF()
{}
void BUF::initProperties()
{
return;
}
void BUF::constructModel()
{
createInputPort("A");
createOutputPort("Y");
createLoad("A_Cap");
createDelay("A_to_Y_delay");
createDriver("Y_Ron", true);
ElectricalLoad* a_cap = getLoad("A_Cap");
ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay");
ElectricalDriver* y_ron = getDriver("Y_Ron");
getNet("A")->addDownstreamNode(a_cap);
a_cap->addDownstreamNode(a_to_y_delay);
a_to_y_delay->addDownstreamNode(y_ron);
y_ron->addDownstreamNode(getNet("Y"));
// Create Area result
// Create NDD Power result
createElectricalAtomicResults();
// Create OR Event Energy Result
createElectricalEventAtomicResult("BUF");
getEventInfo("Idle")->setStaticTransitionInfos();
return;
}
void BUF::updateModel()
{
// Get parameters
double drive_strength = getDrivingStrength();
Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
// Standard cell cache string
const String& cell_name = "BUF_X" + (String) drive_strength;
// Get timing parameters
getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A"));
getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y"));
getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y"));
// Set the cell area
getAreaResult("Active")->setValue(cache->get(cell_name + "->ActiveArea"));
getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->ActiveArea"));
return;
}
void BUF::evaluateModel()
{
return;
}
void BUF::useModel()
{
// Get parameters
double drive_strength = getDrivingStrength();
Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
// Stadard cell cache string
const String& cell_name = "BUF_X" + (String) drive_strength;
// Propagate the transition info and get the 0->1 transtion count
propagateTransitionInfo();
double P_A = getInputPort("A")->getTransitionInfo().getProbability1();
double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01();
// Calculate leakage
double leakage = 0;
leakage += cache->get(cell_name + "->Leakage->!A") * (1 - P_A);
leakage += cache->get(cell_name + "->Leakage->A") * P_A;
getNddPowerResult("Leakage")->setValue(leakage);
// Get VDD
double vdd = getTechModel()->get("Vdd");
// Get capacitances
double y_b_cap = cache->get(cell_name + "->Cap->Y_b");
double y_cap = cache->get(cell_name + "->Cap->Y");
double y_load_cap = getNet("Y")->getTotalDownstreamCap();
// Calculate BUFEvent energy
double energy_per_trans_01 = (y_b_cap + y_cap + y_load_cap) * vdd * vdd;
getEventResult("BUF")->setValue(energy_per_trans_01 * Y_num_trans_01);
return;
}
void BUF::propagateTransitionInfo()
{
// Get input signal transition info
const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo();
getOutputPort("Y")->setTransitionInfo(trans_A);
return;
}
// Creates the standard cell, characterizes and abstracts away the details
void BUF::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
{
// Get parameters
double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
Map<double>* cache = cell_lib_->getStdCellCache();
// Stadard cell cache string
const String& cell_name = "BUF_X" + (String) drive_strength_;
Log::printLine("=== " + cell_name + " ===");
// Now actually build the full standard cell model
createInputPort("A");
createOutputPort("Y");
createNet("Y_b");
// Adds macros
CellMacros::addInverter(this, "INV0", false, true, "A", "Y_b");
CellMacros::addInverter(this, "INV1", false, true, "Y_b", "Y");
// Update macros
CellMacros::updateInverter(this, "INV0", drive_strength_ * 0.367);
CellMacros::updateInverter(this, "INV1", drive_strength_ * 1.0);
// Cache area result
double area = 0.0;
area += gate_pitch * getTotalHeight() * 1;
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV0_GatePitches").toDouble();
area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble();
cache->set(cell_name + "->ActiveArea", area);
Log::printLine(cell_name + "->ActiveArea=" + (String)area);
// --------------------------------------------------------------------
// Leakage Model Calculation
// --------------------------------------------------------------------
// Cache leakage power results (for every single signal combination)
double leakage_0 = 0.0; // !A
double leakage_1 = 0.0; // A
leakage_0 += getGenProperties()->get("INV0_LeakagePower_0").toDouble();
leakage_0 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
leakage_1 += getGenProperties()->get("INV0_LeakagePower_1").toDouble();
leakage_1 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
cache->set(cell_name + "->Leakage->!A", leakage_0);
cache->set(cell_name + "->Leakage->A", leakage_1);
Log::printLine(cell_name + "->Leakage->!A=" + (String) leakage_0);
Log::printLine(cell_name + "->Leakage->A=" + (String) leakage_1);
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// Get Node Capacitances
// --------------------------------------------------------------------
double a_cap = getNet("A")->getTotalDownstreamCap();
double y_b_cap = getNet("Y_b")->getTotalDownstreamCap();
double y_cap = getNet("Y")->getTotalDownstreamCap();
cache->set(cell_name + "->Cap->A", a_cap);
cache->set(cell_name + "->Cap->Y_b", y_b_cap);
cache->set(cell_name + "->Cap->Y", y_cap);
Log::printLine(cell_name + "->Cap->A_Cap=" + (String) a_cap);
Log::printLine(cell_name + "->Cap->Y_b_Cap=" + (String) y_b_cap);
Log::printLine(cell_name + "->Cap->Y_Cap=" + (String) y_cap);
// --------------------------------------------------------------------
// --------------------------------------------------------------------
// Build Internal Delay Model
// --------------------------------------------------------------------
double y_ron = getDriver("INV1_RonZN")->getOutputRes();
double a_to_y_delay = getDriver("INV0_RonZN")->calculateDelay() +
getDriver("INV1_RonZN")->calculateDelay();
cache->set(cell_name + "->DriveRes->Y", y_ron);
cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay);
Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron);
Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay);
// --------------------------------------------------------------------
return;
}
} // namespace DSENT