blob: 88e9849da30a6447f224d02e0370c630b52bac90 [file] [log] [blame]
/*
* Copyright (c) 2012-2014,2017-2018,2020 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2004-2006 The Regents of The University of Michigan
* Copyright (c) 2013 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_O3_LSQ_UNIT_HH__
#define __CPU_O3_LSQ_UNIT_HH__
#include <algorithm>
#include <cstring>
#include <map>
#include <memory>
#include <queue>
#include "arch/generic/debugfaults.hh"
#include "arch/generic/vec_reg.hh"
#include "arch/locked_mem.hh"
#include "base/circular_queue.hh"
#include "config/the_isa.hh"
#include "cpu/base.hh"
#include "cpu/inst_seq.hh"
#include "cpu/o3/comm.hh"
#include "cpu/o3/cpu.hh"
#include "cpu/o3/dyn_inst_ptr.hh"
#include "cpu/o3/lsq.hh"
#include "cpu/timebuf.hh"
#include "debug/HtmCpu.hh"
#include "debug/LSQUnit.hh"
#include "mem/packet.hh"
#include "mem/port.hh"
namespace gem5
{
struct O3CPUParams;
namespace o3
{
class IEW;
/**
* Class that implements the actual LQ and SQ for each specific
* thread. Both are circular queues; load entries are freed upon
* committing, while store entries are freed once they writeback. The
* LSQUnit tracks if there are memory ordering violations, and also
* detects partial load to store forwarding cases (a store only has
* part of a load's data) that requires the load to wait until the
* store writes back. In the former case it holds onto the instruction
* until the dependence unit looks at it, and in the latter it stalls
* the LSQ until the store writes back. At that point the load is
* replayed.
*/
class LSQUnit
{
public:
static constexpr auto MaxDataBytes = MaxVecRegLenInBytes;
using LSQSenderState = LSQ::LSQSenderState;
using LSQRequest = LSQ::LSQRequest;
private:
class LSQEntry
{
private:
/** The instruction. */
DynInstPtr inst;
/** The request. */
LSQRequest* req = nullptr;
/** The size of the operation. */
uint32_t _size = 0;
/** Valid entry. */
bool _valid = false;
public:
~LSQEntry()
{
if (req != nullptr) {
req->freeLSQEntry();
req = nullptr;
}
}
void
clear()
{
inst = nullptr;
if (req != nullptr) {
req->freeLSQEntry();
}
req = nullptr;
_valid = false;
_size = 0;
}
void
set(const DynInstPtr& new_inst)
{
assert(!_valid);
inst = new_inst;
_valid = true;
_size = 0;
}
LSQRequest* request() { return req; }
void setRequest(LSQRequest* r) { req = r; }
bool hasRequest() { return req != nullptr; }
/** Member accessors. */
/** @{ */
bool valid() const { return _valid; }
uint32_t& size() { return _size; }
const uint32_t& size() const { return _size; }
const DynInstPtr& instruction() const { return inst; }
/** @} */
};
class SQEntry : public LSQEntry
{
private:
/** The store data. */
char _data[MaxDataBytes];
/** Whether or not the store can writeback. */
bool _canWB = false;
/** Whether or not the store is committed. */
bool _committed = false;
/** Whether or not the store is completed. */
bool _completed = false;
/** Does this request write all zeros and thus doesn't
* have any data attached to it. Used for cache block zero
* style instructs (ARM DC ZVA; ALPHA WH64)
*/
bool _isAllZeros = false;
public:
static constexpr size_t DataSize = sizeof(_data);
/** Constructs an empty store queue entry. */
SQEntry()
{
std::memset(_data, 0, DataSize);
}
void set(const DynInstPtr& inst) { LSQEntry::set(inst); }
void
clear()
{
LSQEntry::clear();
_canWB = _completed = _committed = _isAllZeros = false;
}
/** Member accessors. */
/** @{ */
bool& canWB() { return _canWB; }
const bool& canWB() const { return _canWB; }
bool& completed() { return _completed; }
const bool& completed() const { return _completed; }
bool& committed() { return _committed; }
const bool& committed() const { return _committed; }
bool& isAllZeros() { return _isAllZeros; }
const bool& isAllZeros() const { return _isAllZeros; }
char* data() { return _data; }
const char* data() const { return _data; }
/** @} */
};
using LQEntry = LSQEntry;
/** Coverage of one address range with another */
enum class AddrRangeCoverage
{
PartialAddrRangeCoverage, /* Two ranges partly overlap */
FullAddrRangeCoverage, /* One range fully covers another */
NoAddrRangeCoverage /* Two ranges are disjoint */
};
public:
using LoadQueue = CircularQueue<LQEntry>;
using StoreQueue = CircularQueue<SQEntry>;
public:
/** Constructs an LSQ unit. init() must be called prior to use. */
LSQUnit(uint32_t lqEntries, uint32_t sqEntries);
/** We cannot copy LSQUnit because it has stats for which copy
* contructor is deleted explicitly. However, STL vector requires
* a valid copy constructor for the base type at compile time.
*/
LSQUnit(const LSQUnit &l): stats(nullptr)
{
panic("LSQUnit is not copy-able");
}
/** Initializes the LSQ unit with the specified number of entries. */
void init(CPU *cpu_ptr, IEW *iew_ptr, const O3CPUParams &params,
LSQ *lsq_ptr, unsigned id);
/** Returns the name of the LSQ unit. */
std::string name() const;
/** Sets the pointer to the dcache port. */
void setDcachePort(RequestPort *dcache_port);
/** Perform sanity checks after a drain. */
void drainSanityCheck() const;
/** Takes over from another CPU's thread. */
void takeOverFrom();
/** Inserts an instruction. */
void insert(const DynInstPtr &inst);
/** Inserts a load instruction. */
void insertLoad(const DynInstPtr &load_inst);
/** Inserts a store instruction. */
void insertStore(const DynInstPtr &store_inst);
/** Check for ordering violations in the LSQ. For a store squash if we
* ever find a conflicting load. For a load, only squash if we
* an external snoop invalidate has been seen for that load address
* @param load_idx index to start checking at
* @param inst the instruction to check
*/
Fault checkViolations(typename LoadQueue::iterator& loadIt,
const DynInstPtr& inst);
/** Check if an incoming invalidate hits in the lsq on a load
* that might have issued out of order wrt another load beacuse
* of the intermediate invalidate.
*/
void checkSnoop(PacketPtr pkt);
/** Executes a load instruction. */
Fault executeLoad(const DynInstPtr &inst);
Fault executeLoad(int lq_idx) { panic("Not implemented"); return NoFault; }
/** Executes a store instruction. */
Fault executeStore(const DynInstPtr &inst);
/** Commits the head load. */
void commitLoad();
/** Commits loads older than a specific sequence number. */
void commitLoads(InstSeqNum &youngest_inst);
/** Commits stores older than a specific sequence number. */
void commitStores(InstSeqNum &youngest_inst);
/** Writes back stores. */
void writebackStores();
/** Completes the data access that has been returned from the
* memory system. */
void completeDataAccess(PacketPtr pkt);
/** Squashes all instructions younger than a specific sequence number. */
void squash(const InstSeqNum &squashed_num);
/** Returns if there is a memory ordering violation. Value is reset upon
* call to getMemDepViolator().
*/
bool violation() { return memDepViolator; }
/** Returns the memory ordering violator. */
DynInstPtr getMemDepViolator();
/** Returns the number of free LQ entries. */
unsigned numFreeLoadEntries();
/** Returns the number of free SQ entries. */
unsigned numFreeStoreEntries();
/** Returns the number of loads in the LQ. */
int numLoads() { return loads; }
/** Returns the number of stores in the SQ. */
int numStores() { return stores; }
// hardware transactional memory
int numHtmStarts() const { return htmStarts; }
int numHtmStops() const { return htmStops; }
void resetHtmStartsStops() { htmStarts = htmStops = 0; }
uint64_t getLatestHtmUid() const;
void
setLastRetiredHtmUid(uint64_t htm_uid)
{
assert(htm_uid >= lastRetiredHtmUid);
lastRetiredHtmUid = htm_uid;
}
/** Returns if either the LQ or SQ is full. */
bool isFull() { return lqFull() || sqFull(); }
/** Returns if both the LQ and SQ are empty. */
bool isEmpty() const { return lqEmpty() && sqEmpty(); }
/** Returns if the LQ is full. */
bool lqFull() { return loadQueue.full(); }
/** Returns if the SQ is full. */
bool sqFull() { return storeQueue.full(); }
/** Returns if the LQ is empty. */
bool lqEmpty() const { return loads == 0; }
/** Returns if the SQ is empty. */
bool sqEmpty() const { return stores == 0; }
/** Returns the number of instructions in the LSQ. */
unsigned getCount() { return loads + stores; }
/** Returns if there are any stores to writeback. */
bool hasStoresToWB() { return storesToWB; }
/** Returns the number of stores to writeback. */
int numStoresToWB() { return storesToWB; }
/** Returns if the LSQ unit will writeback on this cycle. */
bool
willWB()
{
return storeWBIt.dereferenceable() &&
storeWBIt->valid() &&
storeWBIt->canWB() &&
!storeWBIt->completed() &&
!isStoreBlocked;
}
/** Handles doing the retry. */
void recvRetry();
unsigned int cacheLineSize();
private:
/** Reset the LSQ state */
void resetState();
/** Writes back the instruction, sending it to IEW. */
void writeback(const DynInstPtr &inst, PacketPtr pkt);
/** Try to finish a previously blocked write back attempt */
void writebackBlockedStore();
/** Completes the store at the specified index. */
void completeStore(typename StoreQueue::iterator store_idx);
/** Handles completing the send of a store to memory. */
void storePostSend();
public:
/** Attempts to send a packet to the cache.
* Check if there are ports available. Return true if
* there are, false if there are not.
*/
bool trySendPacket(bool isLoad, PacketPtr data_pkt);
/** Debugging function to dump instructions in the LSQ. */
void dumpInsts() const;
/** Schedule event for the cpu. */
void schedule(Event& ev, Tick when);
BaseMMU *getMMUPtr();
private:
/** Pointer to the CPU. */
CPU *cpu;
/** Pointer to the IEW stage. */
IEW *iewStage;
/** Pointer to the LSQ. */
LSQ *lsq;
/** Pointer to the dcache port. Used only for sending. */
RequestPort *dcachePort;
/** Particularisation of the LSQSenderState to the LQ. */
class LQSenderState : public LSQSenderState
{
using LSQSenderState::alive;
public:
LQSenderState(typename LoadQueue::iterator idx_)
: LSQSenderState(idx_->request(), true), idx(idx_) { }
/** The LQ index of the instruction. */
typename LoadQueue::iterator idx;
//virtual LSQRequest* request() { return idx->request(); }
virtual void
complete()
{
//if (alive())
// idx->request()->senderState(nullptr);
}
};
/** Particularisation of the LSQSenderState to the SQ. */
class SQSenderState : public LSQSenderState
{
using LSQSenderState::alive;
public:
SQSenderState(typename StoreQueue::iterator idx_)
: LSQSenderState(idx_->request(), false), idx(idx_) { }
/** The SQ index of the instruction. */
typename StoreQueue::iterator idx;
//virtual LSQRequest* request() { return idx->request(); }
virtual void
complete()
{
//if (alive())
// idx->request()->senderState(nullptr);
}
};
/** Writeback event, specifically for when stores forward data to loads. */
class WritebackEvent : public Event
{
public:
/** Constructs a writeback event. */
WritebackEvent(const DynInstPtr &_inst, PacketPtr pkt,
LSQUnit *lsq_ptr);
/** Processes the writeback event. */
void process();
/** Returns the description of this event. */
const char *description() const;
private:
/** Instruction whose results are being written back. */
DynInstPtr inst;
/** The packet that would have been sent to memory. */
PacketPtr pkt;
/** The pointer to the LSQ unit that issued the store. */
LSQUnit *lsqPtr;
};
public:
/**
* Handles writing back and completing the load or store that has
* returned from memory.
*
* @param pkt Response packet from the memory sub-system
*/
bool recvTimingResp(PacketPtr pkt);
private:
/** The LSQUnit thread id. */
ThreadID lsqID;
public:
/** The store queue. */
CircularQueue<SQEntry> storeQueue;
/** The load queue. */
LoadQueue loadQueue;
private:
/** The number of places to shift addresses in the LSQ before checking
* for dependency violations
*/
unsigned depCheckShift;
/** Should loads be checked for dependency issues */
bool checkLoads;
/** The number of load instructions in the LQ. */
int loads;
/** The number of store instructions in the SQ. */
int stores;
/** The number of store instructions in the SQ waiting to writeback. */
int storesToWB;
// hardware transactional memory
// nesting depth
int htmStarts;
int htmStops;
// sanity checks and debugging
uint64_t lastRetiredHtmUid;
/** The index of the first instruction that may be ready to be
* written back, and has not yet been written back.
*/
typename StoreQueue::iterator storeWBIt;
/** Address Mask for a cache block (e.g. ~(cache_block_size-1)) */
Addr cacheBlockMask;
/** Wire to read information from the issue stage time queue. */
typename TimeBuffer<IssueStruct>::wire fromIssue;
/** Whether or not the LSQ is stalled. */
bool stalled;
/** The store that causes the stall due to partial store to load
* forwarding.
*/
InstSeqNum stallingStoreIsn;
/** The index of the above store. */
int stallingLoadIdx;
/** The packet that needs to be retried. */
PacketPtr retryPkt;
/** Whehter or not a store is blocked due to the memory system. */
bool isStoreBlocked;
/** Whether or not a store is in flight. */
bool storeInFlight;
/** The oldest load that caused a memory ordering violation. */
DynInstPtr memDepViolator;
/** Flag for memory model. */
bool needsTSO;
protected:
// Will also need how many read/write ports the Dcache has. Or keep track
// of that in stage that is one level up, and only call executeLoad/Store
// the appropriate number of times.
struct LSQUnitStats : public statistics::Group
{
LSQUnitStats(statistics::Group *parent);
/** Total number of loads forwaded from LSQ stores. */
statistics::Scalar forwLoads;
/** Total number of squashed loads. */
statistics::Scalar squashedLoads;
/** Total number of responses from the memory system that are
* ignored due to the instruction already being squashed. */
statistics::Scalar ignoredResponses;
/** Tota number of memory ordering violations. */
statistics::Scalar memOrderViolation;
/** Total number of squashed stores. */
statistics::Scalar squashedStores;
/** Number of loads that were rescheduled. */
statistics::Scalar rescheduledLoads;
/** Number of times the LSQ is blocked due to the cache. */
statistics::Scalar blockedByCache;
/** Distribution of cycle latency between the first time a load
* is issued and its completion */
statistics::Distribution loadToUse;
} stats;
public:
/** Executes the load at the given index. */
Fault read(LSQRequest *req, int load_idx);
/** Executes the store at the given index. */
Fault write(LSQRequest *req, uint8_t *data, int store_idx);
/** Returns the index of the head load instruction. */
int getLoadHead() { return loadQueue.head(); }
/** Returns the sequence number of the head load instruction. */
InstSeqNum getLoadHeadSeqNum();
/** Returns the index of the head store instruction. */
int getStoreHead() { return storeQueue.head(); }
/** Returns the sequence number of the head store instruction. */
InstSeqNum getStoreHeadSeqNum();
/** Returns whether or not the LSQ unit is stalled. */
bool isStalled() { return stalled; }
public:
typedef typename CircularQueue<LQEntry>::iterator LQIterator;
typedef typename CircularQueue<SQEntry>::iterator SQIterator;
typedef CircularQueue<LQEntry> LQueue;
typedef CircularQueue<SQEntry> SQueue;
};
} // namespace o3
} // namespace gem5
#endif // __CPU_O3_LSQ_UNIT_HH__