blob: fe922a10be007f189a62f0a1aed73e7f917cecfb [file] [log] [blame]
/*
* Copyright (c) 2012, 2015, 2017 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "arch/arm/kvm/base_cpu.hh"
#include <linux/kvm.h>
#include <mutex>
#include "arch/arm/interrupts.hh"
#include "base/uncontended_mutex.hh"
#include "debug/KvmInt.hh"
#include "dev/arm/generic_timer.hh"
#include "params/BaseArmKvmCPU.hh"
#include "params/GenericTimer.hh"
namespace gem5
{
using namespace ArmISA;
#define INTERRUPT_ID(type, vcpu, irq) ( \
((type) << KVM_ARM_IRQ_TYPE_SHIFT) | \
((vcpu) << KVM_ARM_IRQ_VCPU_SHIFT) | \
((irq) << KVM_ARM_IRQ_NUM_SHIFT))
#define INTERRUPT_VCPU_IRQ(vcpu) \
INTERRUPT_ID(KVM_ARM_IRQ_TYPE_CPU, vcpu, KVM_ARM_IRQ_CPU_IRQ)
#define INTERRUPT_VCPU_FIQ(vcpu) \
INTERRUPT_ID(KVM_ARM_IRQ_TYPE_CPU, vcpu, KVM_ARM_IRQ_CPU_FIQ)
namespace {
/**
* When the simulator returns from KVM for simulating other models, the
* in-kernel timer doesn't stop. We have to save the virtual time and
* restore before going into KVM next time. Moreover, setting virtual time
* affacts all vcpus according to the kvm implementation. We maintain a global
* virtual time here, restore it before the first vcpu going into KVM, and save
* it after the last vcpu back from KVM.
*/
uint64_t vtime = 0;
uint64_t vtime_counter = 0;
UncontendedMutex vtime_mutex;
} // namespace
BaseArmKvmCPU::BaseArmKvmCPU(const BaseArmKvmCPUParams &params)
: BaseKvmCPU(params),
irqAsserted(false), fiqAsserted(false),
virtTimerPin(nullptr), prevDeviceIRQLevel(0)
{
}
BaseArmKvmCPU::~BaseArmKvmCPU()
{
}
void
BaseArmKvmCPU::startup()
{
BaseKvmCPU::startup();
/* TODO: This needs to be moved when we start to support VMs with
* multiple threads since kvmArmVCpuInit requires that all CPUs in
* the VM have been created.
*/
struct kvm_vcpu_init target_config;
memset(&target_config, 0, sizeof(target_config));
vm.kvmArmPreferredTarget(target_config);
if (!((ArmSystem *)system)->highestELIs64()) {
target_config.features[0] |= (1 << KVM_ARM_VCPU_EL1_32BIT);
}
kvmArmVCpuInit(target_config);
if (!vm.hasKernelIRQChip())
virtTimerPin = static_cast<ArmSystem *>(system)\
->getGenericTimer()->params().int_virt->get(tc);
}
Tick
BaseArmKvmCPU::kvmRun(Tick ticks)
{
auto interrupt = static_cast<ArmISA::Interrupts *>(interrupts[0]);
const bool simFIQ(interrupt->checkRaw(INT_FIQ));
const bool simIRQ(interrupt->checkRaw(INT_IRQ));
if (!vm.hasKernelIRQChip()) {
if (fiqAsserted != simFIQ) {
DPRINTF(KvmInt, "KVM: Update FIQ state: %i\n", simFIQ);
vm.setIRQLine(INTERRUPT_VCPU_FIQ(vcpuID), simFIQ);
}
if (irqAsserted != simIRQ) {
DPRINTF(KvmInt, "KVM: Update IRQ state: %i\n", simIRQ);
vm.setIRQLine(INTERRUPT_VCPU_IRQ(vcpuID), simIRQ);
}
} else {
warn_if(simFIQ && !fiqAsserted,
"FIQ raised by the simulated interrupt controller " \
"despite in-kernel GIC emulation. This is probably a bug.");
warn_if(simIRQ && !irqAsserted,
"IRQ raised by the simulated interrupt controller " \
"despite in-kernel GIC emulation. This is probably a bug.");
}
irqAsserted = simIRQ;
fiqAsserted = simFIQ;
Tick kvmRunTicks = BaseKvmCPU::kvmRun(ticks);
if (!vm.hasKernelIRQChip()) {
uint64_t device_irq_level =
getKvmRunState()->s.regs.device_irq_level;
if (!(prevDeviceIRQLevel & KVM_ARM_DEV_EL1_VTIMER) &&
(device_irq_level & KVM_ARM_DEV_EL1_VTIMER)) {
DPRINTF(KvmInt, "In-kernel vtimer IRQ asserted\n");
prevDeviceIRQLevel |= KVM_ARM_DEV_EL1_VTIMER;
virtTimerPin->raise();
} else if ((prevDeviceIRQLevel & KVM_ARM_DEV_EL1_VTIMER) &&
!(device_irq_level & KVM_ARM_DEV_EL1_VTIMER)) {
DPRINTF(KvmInt, "In-kernel vtimer IRQ disasserted\n");
prevDeviceIRQLevel &= ~KVM_ARM_DEV_EL1_VTIMER;
virtTimerPin->clear();
}
}
return kvmRunTicks;
}
void
BaseArmKvmCPU::ioctlRun()
{
// Check if it's the first vcpu going into KVM. If yes, it should restore
// the virtual time.
{
std::lock_guard<UncontendedMutex> l(vtime_mutex);
if (vtime_counter++ == 0)
setOneReg(KVM_REG_ARM_TIMER_CNT, vtime);
}
BaseKvmCPU::ioctlRun();
// Check if it's the last vcpu back from KVM. If yes, it should save the
// virtual time.
{
std::lock_guard<UncontendedMutex> l(vtime_mutex);
if (--vtime_counter == 0)
getOneReg(KVM_REG_ARM_TIMER_CNT, &vtime);
}
}
const BaseArmKvmCPU::RegIndexVector &
BaseArmKvmCPU::getRegList() const
{
// Do we need to request a list of registers from the kernel?
if (_regIndexList.size() == 0) {
// Start by probing for the size of the list. We do this
// calling the ioctl with a struct size of 0. The kernel will
// return the number of elements required to hold the list.
kvm_reg_list regs_probe;
regs_probe.n = 0;
getRegList(regs_probe);
// Request the actual register list now that we know how many
// register we need to allocate space for.
std::unique_ptr<kvm_reg_list, void(*)(void *p)>
regs(nullptr, [](void *p) { operator delete(p); });
const size_t size(sizeof(kvm_reg_list) +
regs_probe.n * sizeof(uint64_t));
regs.reset((kvm_reg_list *)operator new(size));
regs->n = regs_probe.n;
if (!getRegList(*regs))
panic("Failed to determine register list size.\n");
_regIndexList.assign(regs->reg, regs->reg + regs->n);
}
return _regIndexList;
}
void
BaseArmKvmCPU::kvmArmVCpuInit(const struct kvm_vcpu_init &init)
{
if (ioctl(KVM_ARM_VCPU_INIT, (void *)&init) == -1)
panic("KVM: Failed to initialize vCPU\n");
}
bool
BaseArmKvmCPU::getRegList(kvm_reg_list &regs) const
{
if (ioctl(KVM_GET_REG_LIST, (void *)&regs) == -1) {
if (errno == E2BIG) {
return false;
} else {
panic("KVM: Failed to get vCPU register list (errno: %i)\n",
errno);
}
} else {
return true;
}
}
} // namespace gem5