blob: edd1435bead76f51b62c37970612e32dbf9e6aec [file] [log] [blame]
/*
* Copyright (c) 2019-2020 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 1999-2013 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
machine(MachineType:L1Cache, "L1 cache protocol")
: Sequencer * sequencer;
CacheMemory * L1Icache;
CacheMemory * L1Dcache;
Cycles request_latency := 1;
Cycles response_latency := 1;
Cycles use_timeout_latency := 50;
bool send_evictions;
// Message Queues
// From this node's L1 cache TO the network
// a local L1 -> this L2 bank, currently ordered with directory forwarded requests
MessageBuffer * requestFromL1Cache, network="To", virtual_network="0",
vnet_type="request";
// a local L1 -> this L2 bank
MessageBuffer * responseFromL1Cache, network="To", virtual_network="2",
vnet_type="response";
// To this node's L1 cache FROM the network
// a L2 bank -> this L1
MessageBuffer * requestToL1Cache, network="From", virtual_network="0",
vnet_type="request";
// a L2 bank -> this L1
MessageBuffer * responseToL1Cache, network="From", virtual_network="2",
vnet_type="response";
MessageBuffer * triggerQueue;
MessageBuffer * mandatoryQueue;
{
// STATES
state_declaration(State, desc="Cache states", default="L1Cache_State_I") {
// Base states
I, AccessPermission:Invalid, desc="Idle";
S, AccessPermission:Read_Only, desc="Shared";
O, AccessPermission:Read_Only, desc="Owned";
M, AccessPermission:Read_Write, desc="Modified (dirty)";
M_W, AccessPermission:Read_Write, desc="Modified (dirty)";
MM, AccessPermission:Read_Write, desc="Modified (dirty and locally modified)";
MM_W, AccessPermission:Read_Write, desc="Modified (dirty and locally modified)";
// Transient States
// Notice we still have a valid copy of the block in most states
IM, AccessPermission:Busy, "IM", desc="Issued GetX";
IS, AccessPermission:Busy, "IS", desc="Issued GetS";
SM, AccessPermission:Read_Only, "SM", desc="Issued GetX, we still have an old copy of the line";
OM, AccessPermission:Read_Only, "SM", desc="Issued GetX, received data";
SI, AccessPermission:Read_Only, "OI", desc="Issued PutS, waiting for ack";
OI, AccessPermission:Read_Only, "OI", desc="Issued PutO, waiting for ack";
MI, AccessPermission:Read_Write, "MI", desc="Issued PutX, waiting for ack";
II, AccessPermission:Busy, "II", desc="Issued PutX/O, saw Fwd_GETS or Fwd_GETX, waiting for ack";
}
// EVENTS
enumeration(Event, desc="Cache events") {
Load, desc="Load request from the processor";
Ifetch, desc="I-fetch request from the processor";
Store, desc="Store request from the processor";
L1_Replacement, desc="Replacement";
// Requests
Own_GETX, desc="We observe our own GetX forwarded back to us";
Fwd_GETX, desc="A GetX from another processor";
Fwd_GETS, desc="A GetS from another processor";
Fwd_DMA, desc="A GetS from another processor";
Inv, desc="Invalidations from the directory";
// Responses
Ack, desc="Received an ack message";
Data, desc="Received a data message, responder has a shared copy";
Exclusive_Data, desc="Received a data message";
Writeback_Ack, desc="Writeback O.K. from directory";
Writeback_Ack_Data, desc="Writeback O.K. from directory";
Writeback_Nack, desc="Writeback not O.K. from directory";
// Triggers
All_acks, desc="Received all required data and message acks";
// Timeouts
Use_Timeout, desc="lockout period ended";
}
// TYPES
// CacheEntry
structure(Entry, desc="...", interface="AbstractCacheEntry") {
State CacheState, desc="cache state";
bool Dirty, desc="Is the data dirty (different than memory)?";
DataBlock DataBlk, desc="data for the block";
}
// TBE fields
structure(TBE, desc="...") {
Addr addr, desc="Physical address for this TBE";
State TBEState, desc="Transient state";
DataBlock DataBlk, desc="data for the block, required for concurrent writebacks";
bool Dirty, desc="Is the data dirty (different than memory)?";
int NumPendingMsgs, default="0", desc="Number of acks/data messages that this processor is waiting for";
}
structure(TBETable, external ="yes") {
TBE lookup(Addr);
void allocate(Addr);
void deallocate(Addr);
bool isPresent(Addr);
}
Tick clockEdge();
Tick cyclesToTicks(Cycles c);
void set_cache_entry(AbstractCacheEntry b);
void unset_cache_entry();
void set_tbe(TBE b);
void unset_tbe();
MachineID mapAddressToMachine(Addr addr, MachineType mtype);
TBETable TBEs, template="<L1Cache_TBE>", constructor="m_number_of_TBEs";
TimerTable useTimerTable;
Entry getCacheEntry(Addr addr), return_by_pointer="yes" {
Entry L1Dcache_entry := static_cast(Entry, "pointer", L1Dcache.lookup(addr));
if(is_valid(L1Dcache_entry)) {
return L1Dcache_entry;
}
Entry L1Icache_entry := static_cast(Entry, "pointer", L1Icache.lookup(addr));
return L1Icache_entry;
}
Entry getL1DCacheEntry(Addr addr), return_by_pointer="yes" {
return static_cast(Entry, "pointer", L1Dcache.lookup(addr));
}
Entry getL1ICacheEntry(Addr addr), return_by_pointer="yes" {
return static_cast(Entry, "pointer", L1Icache.lookup(addr));
}
State getState(TBE tbe, Entry cache_entry, Addr addr) {
if(is_valid(tbe)) {
return tbe.TBEState;
} else if (is_valid(cache_entry)) {
return cache_entry.CacheState;
}
return State:I;
}
// L1 hit latency
Cycles mandatoryQueueLatency(RubyRequestType type) {
if (type == RubyRequestType:IFETCH) {
return L1Icache.getTagLatency();
} else {
return L1Dcache.getTagLatency();
}
}
// Latency for responses that fetch data from cache
Cycles cacheResponseLatency() {
if (L1Dcache.getTagLatency() > response_latency) {
return L1Dcache.getTagLatency();
} else {
return response_latency;
}
}
void setState(TBE tbe, Entry cache_entry, Addr addr, State state) {
assert((L1Dcache.isTagPresent(addr) && L1Icache.isTagPresent(addr)) == false);
if (is_valid(tbe)) {
tbe.TBEState := state;
}
if (is_valid(cache_entry)) {
if ( ((cache_entry.CacheState != State:M) && (state == State:M)) ||
((cache_entry.CacheState != State:MM) && (state == State:MM)) ||
((cache_entry.CacheState != State:S) && (state == State:S)) ||
((cache_entry.CacheState != State:O) && (state == State:O)) ) {
cache_entry.CacheState := state;
}
else {
cache_entry.CacheState := state;
}
}
}
AccessPermission getAccessPermission(Addr addr) {
TBE tbe := TBEs[addr];
if(is_valid(tbe)) {
DPRINTF(RubySlicc, "%s,%s\n", tbe.TBEState, L1Cache_State_to_permission(tbe.TBEState));
return L1Cache_State_to_permission(tbe.TBEState);
}
Entry cache_entry := getCacheEntry(addr);
if(is_valid(cache_entry)) {
DPRINTF(RubySlicc, "%s,%s\n", cache_entry.CacheState, L1Cache_State_to_permission(cache_entry.CacheState));
return L1Cache_State_to_permission(cache_entry.CacheState);
}
DPRINTF(RubySlicc, "AccessPermission_NotPresent\n");
return AccessPermission:NotPresent;
}
void setAccessPermission(Entry cache_entry, Addr addr, State state) {
if (is_valid(cache_entry)) {
cache_entry.changePermission(L1Cache_State_to_permission(state));
}
}
void functionalRead(Addr addr, Packet *pkt) {
Entry cache_entry := getCacheEntry(addr);
if(is_valid(cache_entry)) {
testAndRead(addr, cache_entry.DataBlk, pkt);
} else {
TBE tbe := TBEs[addr];
if(is_valid(tbe)) {
testAndRead(addr, tbe.DataBlk, pkt);
} else {
error("Data block missing!");
}
}
}
int functionalWrite(Addr addr, Packet *pkt) {
int num_functional_writes := 0;
Entry cache_entry := getCacheEntry(addr);
if(is_valid(cache_entry)) {
num_functional_writes := num_functional_writes +
testAndWrite(addr, cache_entry.DataBlk, pkt);
return num_functional_writes;
}
TBE tbe := TBEs[addr];
if (is_valid(tbe)){
num_functional_writes := num_functional_writes +
testAndWrite(addr, tbe.DataBlk, pkt);
}
return num_functional_writes;
}
Event mandatory_request_type_to_event(RubyRequestType type) {
if (type == RubyRequestType:LD) {
return Event:Load;
} else if (type == RubyRequestType:IFETCH) {
return Event:Ifetch;
} else if ((type == RubyRequestType:ST) || (type == RubyRequestType:ATOMIC)) {
return Event:Store;
} else {
error("Invalid RubyRequestType");
}
}
// ** OUT_PORTS **
out_port(requestNetwork_out, RequestMsg, requestFromL1Cache);
out_port(responseNetwork_out, ResponseMsg, responseFromL1Cache);
out_port(triggerQueue_out, TriggerMsg, triggerQueue);
// ** IN_PORTS **
// Use Timer
in_port(useTimerTable_in, Addr, useTimerTable, rank=4) {
if (useTimerTable_in.isReady(clockEdge())) {
Addr readyAddress := useTimerTable.nextAddress();
trigger(Event:Use_Timeout, readyAddress, getCacheEntry(readyAddress),
TBEs.lookup(readyAddress));
}
}
// Trigger Queue
in_port(triggerQueue_in, TriggerMsg, triggerQueue, rank=3) {
if (triggerQueue_in.isReady(clockEdge())) {
peek(triggerQueue_in, TriggerMsg) {
if (in_msg.Type == TriggerType:ALL_ACKS) {
trigger(Event:All_acks, in_msg.addr,
getCacheEntry(in_msg.addr), TBEs[in_msg.addr]);
} else {
error("Unexpected message");
}
}
}
}
// Response Network
in_port(responseToL1Cache_in, ResponseMsg, responseToL1Cache, rank=2) {
if (responseToL1Cache_in.isReady(clockEdge())) {
peek(responseToL1Cache_in, ResponseMsg, block_on="addr") {
if (in_msg.Type == CoherenceResponseType:ACK) {
trigger(Event:Ack, in_msg.addr,
getCacheEntry(in_msg.addr), TBEs[in_msg.addr]);
} else if (in_msg.Type == CoherenceResponseType:DATA) {
trigger(Event:Data, in_msg.addr,
getCacheEntry(in_msg.addr), TBEs[in_msg.addr]);
} else if (in_msg.Type == CoherenceResponseType:DATA_EXCLUSIVE) {
trigger(Event:Exclusive_Data, in_msg.addr,
getCacheEntry(in_msg.addr), TBEs[in_msg.addr]);
} else if (in_msg.Type == CoherenceResponseType:WB_ACK) {
trigger(Event:Writeback_Ack, in_msg.addr,
getCacheEntry(in_msg.addr), TBEs[in_msg.addr]);
} else if (in_msg.Type == CoherenceResponseType:WB_ACK_DATA) {
trigger(Event:Writeback_Ack_Data, in_msg.addr,
getCacheEntry(in_msg.addr), TBEs[in_msg.addr]);
} else if (in_msg.Type == CoherenceResponseType:WB_NACK) {
trigger(Event:Writeback_Nack, in_msg.addr,
getCacheEntry(in_msg.addr), TBEs[in_msg.addr]);
} else {
error("Unexpected message");
}
}
}
}
// Request Network
in_port(requestNetwork_in, RequestMsg, requestToL1Cache, rank=1) {
if (requestNetwork_in.isReady(clockEdge())) {
peek(requestNetwork_in, RequestMsg, block_on="addr") {
assert(in_msg.Destination.isElement(machineID));
DPRINTF(RubySlicc, "L1 received: %s\n", in_msg.Type);
if (in_msg.Type == CoherenceRequestType:GETX || in_msg.Type == CoherenceRequestType:DMA_WRITE) {
if (in_msg.Requestor == machineID && in_msg.RequestorMachine == MachineType:L1Cache) {
trigger(Event:Own_GETX, in_msg.addr,
getCacheEntry(in_msg.addr), TBEs[in_msg.addr]);
} else {
trigger(Event:Fwd_GETX, in_msg.addr,
getCacheEntry(in_msg.addr), TBEs[in_msg.addr]);
}
} else if (in_msg.Type == CoherenceRequestType:GETS) {
trigger(Event:Fwd_GETS, in_msg.addr,
getCacheEntry(in_msg.addr), TBEs[in_msg.addr]);
} else if (in_msg.Type == CoherenceRequestType:DMA_READ) {
trigger(Event:Fwd_DMA, in_msg.addr,
getCacheEntry(in_msg.addr), TBEs[in_msg.addr]);
} else if (in_msg.Type == CoherenceRequestType:INV) {
trigger(Event:Inv, in_msg.addr,
getCacheEntry(in_msg.addr), TBEs[in_msg.addr]);
} else {
error("Unexpected message");
}
}
}
}
// Mandatory Queue betweens Node's CPU and it's L1 caches
in_port(mandatoryQueue_in, RubyRequest, mandatoryQueue, rank=0) {
if (mandatoryQueue_in.isReady(clockEdge())) {
peek(mandatoryQueue_in, RubyRequest, block_on="LineAddress") {
// Check for data access to blocks in I-cache and ifetchs to blocks in D-cache
if (in_msg.Type == RubyRequestType:IFETCH) {
// ** INSTRUCTION ACCESS ***
Entry L1Icache_entry := getL1ICacheEntry(in_msg.LineAddress);
if (is_valid(L1Icache_entry)) {
// The tag matches for the L1, so the L1 asks the L2 for it.
trigger(mandatory_request_type_to_event(in_msg.Type),
in_msg.LineAddress, L1Icache_entry,
TBEs[in_msg.LineAddress]);
} else {
Entry L1Dcache_entry := getL1DCacheEntry(in_msg.LineAddress);
// Check to see if it is in the OTHER L1
if (is_valid(L1Dcache_entry)) {
// The block is in the wrong L1, put the request on the queue to the shared L2
trigger(Event:L1_Replacement, in_msg.LineAddress, L1Dcache_entry,
TBEs[in_msg.LineAddress]);
}
if (L1Icache.cacheAvail(in_msg.LineAddress)) {
// L1 does't have the line, but we have space for it in the L1 so let's see if the L2 has it
trigger(mandatory_request_type_to_event(in_msg.Type),
in_msg.LineAddress, L1Icache_entry,
TBEs[in_msg.LineAddress]);
} else {
// No room in the L1, so we need to make room in the L1
// Check if the line we want to evict is not locked
Addr addr := L1Icache.cacheProbe(in_msg.LineAddress);
check_on_cache_probe(mandatoryQueue_in, addr);
trigger(Event:L1_Replacement,
addr,
getL1ICacheEntry(addr),
TBEs[addr]);
}
}
} else {
// *** DATA ACCESS ***
Entry L1Dcache_entry := getL1DCacheEntry(in_msg.LineAddress);
if (is_valid(L1Dcache_entry)) {
// The tag matches for the L1, so the L1 ask the L2 for it
trigger(mandatory_request_type_to_event(in_msg.Type),
in_msg.LineAddress, L1Dcache_entry,
TBEs[in_msg.LineAddress]);
} else {
Entry L1Icache_entry := getL1ICacheEntry(in_msg.LineAddress);
// Check to see if it is in the OTHER L1
if (is_valid(L1Icache_entry)) {
// The block is in the wrong L1, put the request on the queue to the shared L2
trigger(Event:L1_Replacement, in_msg.LineAddress,
L1Icache_entry, TBEs[in_msg.LineAddress]);
}
if (L1Dcache.cacheAvail(in_msg.LineAddress)) {
// L1 does't have the line, but we have space for it in the L1 let's see if the L2 has it
trigger(mandatory_request_type_to_event(in_msg.Type),
in_msg.LineAddress, L1Dcache_entry,
TBEs[in_msg.LineAddress]);
} else {
// No room in the L1, so we need to make room in the L1
// Check if the line we want to evict is not locked
Addr addr := L1Dcache.cacheProbe(in_msg.LineAddress);
check_on_cache_probe(mandatoryQueue_in, addr);
trigger(Event:L1_Replacement,
addr,
getL1DCacheEntry(addr),
TBEs[addr]);
}
}
}
}
}
}
// ACTIONS
action(a_issueGETS, "a", desc="Issue GETS") {
peek(mandatoryQueue_in, RubyRequest) {
enqueue(requestNetwork_out, RequestMsg, request_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:GETS;
out_msg.Requestor := machineID;
out_msg.RequestorMachine := MachineType:L1Cache;
out_msg.Destination.add(mapAddressToMachine(address,
MachineType:L2Cache));
out_msg.MessageSize := MessageSizeType:Request_Control;
out_msg.AccessMode := in_msg.AccessMode;
out_msg.Prefetch := in_msg.Prefetch;
}
}
}
action(b_issueGETX, "b", desc="Issue GETX") {
peek(mandatoryQueue_in, RubyRequest) {
enqueue(requestNetwork_out, RequestMsg, request_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:GETX;
out_msg.Requestor := machineID;
out_msg.RequestorMachine := MachineType:L1Cache;
out_msg.Destination.add(mapAddressToMachine(address,
MachineType:L2Cache));
out_msg.MessageSize := MessageSizeType:Request_Control;
out_msg.AccessMode := in_msg.AccessMode;
out_msg.Prefetch := in_msg.Prefetch;
}
}
}
action(d_issuePUTX, "d", desc="Issue PUTX") {
enqueue(requestNetwork_out, RequestMsg, request_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:PUTX;
out_msg.Requestor := machineID;
out_msg.RequestorMachine := MachineType:L1Cache;
out_msg.Destination.add(mapAddressToMachine(address,
MachineType:L2Cache));
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
action(dd_issuePUTO, "\d", desc="Issue PUTO") {
enqueue(requestNetwork_out, RequestMsg, request_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:PUTO;
out_msg.Requestor := machineID;
out_msg.RequestorMachine := MachineType:L1Cache;
out_msg.Destination.add(mapAddressToMachine(address,
MachineType:L2Cache));
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
action(dd_issuePUTS, "\ds", desc="Issue PUTS") {
enqueue(requestNetwork_out, RequestMsg, request_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceRequestType:PUTS;
out_msg.Requestor := machineID;
out_msg.RequestorMachine := MachineType:L1Cache;
out_msg.Destination.add(mapAddressToMachine(address,
MachineType:L2Cache));
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
action(e_sendData, "e", desc="Send data from cache to requestor") {
peek(requestNetwork_in, RequestMsg) {
assert(is_valid(cache_entry));
if (in_msg.RequestorMachine == MachineType:L2Cache) {
enqueue(responseNetwork_out, ResponseMsg, cacheResponseLatency()) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.Sender := machineID;
out_msg.SenderMachine := MachineType:L1Cache;
out_msg.Destination.add(mapAddressToMachine(address,
MachineType:L2Cache));
out_msg.DataBlk := cache_entry.DataBlk;
// out_msg.Dirty := cache_entry.Dirty;
out_msg.Dirty := false;
out_msg.Acks := in_msg.Acks;
out_msg.MessageSize := MessageSizeType:Response_Data;
}
DPRINTF(RubySlicc, "Sending data to L2: %#x\n", in_msg.addr);
}
else {
enqueue(responseNetwork_out, ResponseMsg, cacheResponseLatency()) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.Sender := machineID;
out_msg.SenderMachine := MachineType:L1Cache;
out_msg.Destination.add(in_msg.Requestor);
out_msg.DataBlk := cache_entry.DataBlk;
// out_msg.Dirty := cache_entry.Dirty;
out_msg.Dirty := false;
out_msg.Acks := in_msg.Acks;
out_msg.MessageSize := MessageSizeType:ResponseLocal_Data;
}
DPRINTF(RubySlicc, "Sending data to L1\n");
}
}
}
action(ee_sendDataExclusive, "\e", desc="Send data from cache to requestor, don't keep a shared copy") {
peek(requestNetwork_in, RequestMsg) {
assert(is_valid(cache_entry));
if (in_msg.RequestorMachine == MachineType:L2Cache) {
enqueue(responseNetwork_out, ResponseMsg, cacheResponseLatency()) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE;
out_msg.Sender := machineID;
out_msg.SenderMachine := MachineType:L1Cache;
out_msg.Destination.add(mapAddressToMachine(address,
MachineType:L2Cache));
out_msg.DataBlk := cache_entry.DataBlk;
out_msg.Dirty := cache_entry.Dirty;
out_msg.Acks := in_msg.Acks;
out_msg.MessageSize := MessageSizeType:Response_Data;
}
DPRINTF(RubySlicc, "Sending exclusive data to L2\n");
}
else {
enqueue(responseNetwork_out, ResponseMsg, cacheResponseLatency()) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE;
out_msg.Sender := machineID;
out_msg.SenderMachine := MachineType:L1Cache;
out_msg.Destination.add(in_msg.Requestor);
out_msg.DataBlk := cache_entry.DataBlk;
out_msg.Dirty := cache_entry.Dirty;
out_msg.Acks := in_msg.Acks;
out_msg.MessageSize := MessageSizeType:ResponseLocal_Data;
}
DPRINTF(RubySlicc, "Sending exclusive data to L1\n");
}
}
}
action(f_sendAck, "f", desc="Send ack from cache to requestor") {
peek(requestNetwork_in, RequestMsg) {
if (in_msg.RequestorMachine == MachineType:L1Cache) {
enqueue(responseNetwork_out, ResponseMsg, response_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:ACK;
out_msg.Sender := machineID;
out_msg.SenderMachine := MachineType:L1Cache;
out_msg.Destination.add(in_msg.Requestor);
out_msg.Acks := 0 - 1; // -1
out_msg.MessageSize := MessageSizeType:Response_Control;
}
}
else {
enqueue(responseNetwork_out, ResponseMsg, response_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:ACK;
out_msg.Sender := machineID;
out_msg.SenderMachine := MachineType:L1Cache;
out_msg.Destination.add(mapAddressToMachine(address,
MachineType:L2Cache));
out_msg.Acks := 0 - 1; // -1
out_msg.MessageSize := MessageSizeType:Response_Control;
}
}
}
}
action(g_sendUnblock, "g", desc="Send unblock to memory") {
enqueue(responseNetwork_out, ResponseMsg, response_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:UNBLOCK;
out_msg.Sender := machineID;
out_msg.SenderMachine := MachineType:L1Cache;
out_msg.Destination.add(mapAddressToMachine(address,
MachineType:L2Cache));
out_msg.MessageSize := MessageSizeType:Unblock_Control;
}
}
action(gg_sendUnblockExclusive, "\g", desc="Send unblock exclusive to memory") {
enqueue(responseNetwork_out, ResponseMsg, response_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:UNBLOCK_EXCLUSIVE;
out_msg.Sender := machineID;
out_msg.SenderMachine := MachineType:L1Cache;
out_msg.Destination.add(mapAddressToMachine(address,
MachineType:L2Cache));
out_msg.MessageSize := MessageSizeType:Unblock_Control;
}
}
action(h_load_hit, "hd", desc="Notify sequencer the load completed.") {
assert(is_valid(cache_entry));
DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk);
L1Dcache.setMRU(cache_entry);
sequencer.readCallback(address, cache_entry.DataBlk);
}
action(h_ifetch_hit, "hi", desc="Notify the sequencer about ifetch completion.") {
assert(is_valid(cache_entry));
DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk);
L1Icache.setMRU(cache_entry);
sequencer.readCallback(address, cache_entry.DataBlk);
}
action(hx_load_hit, "hx", desc="Notify sequencer the load completed.") {
assert(is_valid(cache_entry));
DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk);
L1Icache.setMRU(address);
L1Dcache.setMRU(address);
sequencer.readCallback(address, cache_entry.DataBlk, true);
}
action(hh_store_hit, "\h", desc="Notify sequencer that store completed.") {
assert(is_valid(cache_entry));
DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk);
L1Dcache.setMRU(cache_entry);
sequencer.writeCallback(address, cache_entry.DataBlk);
cache_entry.Dirty := true;
}
action(xx_store_hit, "\xx", desc="Notify sequencer that store completed.") {
assert(is_valid(cache_entry));
DPRINTF(RubySlicc, "%s\n", cache_entry.DataBlk);
L1Icache.setMRU(address);
L1Dcache.setMRU(address);
sequencer.writeCallback(address, cache_entry.DataBlk, true);
cache_entry.Dirty := true;
}
action(i_allocateTBE, "i", desc="Allocate TBE") {
check_allocate(TBEs);
TBEs.allocate(address);
set_tbe(TBEs[address]);
assert(is_valid(cache_entry));
tbe.DataBlk := cache_entry.DataBlk; // Data only used for writebacks
tbe.Dirty := cache_entry.Dirty;
}
action(j_popTriggerQueue, "j", desc="Pop trigger queue.") {
triggerQueue_in.dequeue(clockEdge());
}
action(jj_unsetUseTimer, "\jj", desc="Unset use timer.") {
useTimerTable.unset(address);
}
action(k_popMandatoryQueue, "k", desc="Pop mandatory queue.") {
mandatoryQueue_in.dequeue(clockEdge());
}
action(l_popForwardQueue, "l", desc="Pop forwarded request queue.") {
requestNetwork_in.dequeue(clockEdge());
}
action(m_decrementNumberOfMessages, "m", desc="Decrement the number of messages for which we're waiting") {
peek(responseToL1Cache_in, ResponseMsg) {
assert(is_valid(tbe));
DPRINTF(RubySlicc, "L1 decrementNumberOfMessages: %d\n", in_msg.Acks);
tbe.NumPendingMsgs := tbe.NumPendingMsgs - in_msg.Acks;
}
}
action(mm_decrementNumberOfMessages, "\m", desc="Decrement the number of messages for which we're waiting") {
peek(requestNetwork_in, RequestMsg) {
assert(is_valid(tbe));
tbe.NumPendingMsgs := tbe.NumPendingMsgs - in_msg.Acks;
}
}
action(n_popResponseQueue, "n", desc="Pop response queue") {
responseToL1Cache_in.dequeue(clockEdge());
}
action(o_checkForCompletion, "o", desc="Check if we have received all the messages required for completion") {
assert(is_valid(tbe));
if (tbe.NumPendingMsgs == 0) {
enqueue(triggerQueue_out, TriggerMsg) {
out_msg.addr := address;
out_msg.Type := TriggerType:ALL_ACKS;
}
}
}
action(o_scheduleUseTimeout, "oo", desc="Schedule a use timeout.") {
useTimerTable.set(address,
clockEdge() + cyclesToTicks(use_timeout_latency));
}
action(ub_dmaUnblockL2Cache, "ub", desc="Send dma ack to l2 cache") {
peek(requestNetwork_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, response_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DMA_ACK;
out_msg.Sender := machineID;
out_msg.SenderMachine := MachineType:L1Cache;
out_msg.Destination.add(mapAddressToMachine(address,
MachineType:L2Cache));
out_msg.Dirty := false;
out_msg.Acks := 1;
out_msg.MessageSize := MessageSizeType:Response_Control;
}
}
}
action(q_sendDataFromTBEToCache, "q", desc="Send data from TBE to cache") {
peek(requestNetwork_in, RequestMsg) {
assert(is_valid(tbe));
if (in_msg.RequestorMachine == MachineType:L1Cache ||
in_msg.RequestorMachine == MachineType:DMA) {
enqueue(responseNetwork_out, ResponseMsg, response_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.Sender := machineID;
out_msg.SenderMachine := MachineType:L1Cache;
out_msg.Destination.add(in_msg.Requestor);
out_msg.DataBlk := tbe.DataBlk;
// out_msg.Dirty := tbe.Dirty;
out_msg.Dirty := false;
out_msg.Acks := in_msg.Acks;
out_msg.MessageSize := MessageSizeType:ResponseLocal_Data;
}
}
else {
enqueue(responseNetwork_out, ResponseMsg, response_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.Sender := machineID;
out_msg.SenderMachine := MachineType:L1Cache;
out_msg.Destination.add(mapAddressToMachine(address,
MachineType:L2Cache));
out_msg.DataBlk := tbe.DataBlk;
// out_msg.Dirty := tbe.Dirty;
out_msg.Dirty := false;
out_msg.Acks := in_msg.Acks;
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
}
}
action(q_sendExclusiveDataFromTBEToCache, "qq", desc="Send data from TBE to cache") {
peek(requestNetwork_in, RequestMsg) {
assert(is_valid(tbe));
if (in_msg.RequestorMachine == MachineType:L1Cache) {
enqueue(responseNetwork_out, ResponseMsg, response_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE;
out_msg.Sender := machineID;
out_msg.SenderMachine := MachineType:L1Cache;
out_msg.Destination.add(in_msg.Requestor);
out_msg.DataBlk := tbe.DataBlk;
out_msg.Dirty := tbe.Dirty;
out_msg.Acks := in_msg.Acks;
out_msg.MessageSize := MessageSizeType:ResponseLocal_Data;
}
}
else {
enqueue(responseNetwork_out, ResponseMsg, response_latency) {
out_msg.addr := address;
out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE;
out_msg.Sender := machineID;
out_msg.SenderMachine := MachineType:L1Cache;
out_msg.Destination.add(mapAddressToMachine(address,
MachineType:L2Cache));
out_msg.DataBlk := tbe.DataBlk;
out_msg.Dirty := tbe.Dirty;
out_msg.Acks := in_msg.Acks;
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
}
}
// L2 will usually request data for a writeback
action(qq_sendWBDataFromTBEToL2, "\q", desc="Send data from TBE to L2") {
enqueue(requestNetwork_out, RequestMsg, request_latency) {
assert(is_valid(tbe));
out_msg.addr := address;
out_msg.Requestor := machineID;
out_msg.RequestorMachine := MachineType:L1Cache;
out_msg.Destination.add(mapAddressToMachine(address,
MachineType:L2Cache));
if (tbe.Dirty) {
out_msg.Type := CoherenceRequestType:WRITEBACK_DIRTY_DATA;
} else {
out_msg.Type := CoherenceRequestType:WRITEBACK_CLEAN_DATA;
}
out_msg.DataBlk := tbe.DataBlk;
out_msg.MessageSize := MessageSizeType:Writeback_Data;
}
}
action(s_deallocateTBE, "s", desc="Deallocate TBE") {
TBEs.deallocate(address);
unset_tbe();
}
action(u_writeDataToCache, "u", desc="Write data to cache") {
peek(responseToL1Cache_in, ResponseMsg) {
assert(is_valid(cache_entry));
cache_entry.DataBlk := in_msg.DataBlk;
cache_entry.Dirty := in_msg.Dirty;
if (in_msg.Type == CoherenceResponseType:DATA) {
//assert(in_msg.Dirty == false);
}
}
}
action(kk_deallocateL1CacheBlock, "\k", desc="Deallocate cache block. Sets the cache to invalid, allowing a replacement in parallel with a fetch.") {
if (L1Dcache.isTagPresent(address)) {
L1Dcache.deallocate(address);
} else {
L1Icache.deallocate(address);
}
unset_cache_entry();
}
action(ii_allocateL1DCacheBlock, "\i", desc="Set L1 D-cache tag equal to tag of block B.") {
if ((is_invalid(cache_entry))) {
set_cache_entry(L1Dcache.allocate(address, new Entry));
}
}
action(jj_allocateL1ICacheBlock, "\j", desc="Set L1 I-cache tag equal to tag of block B.") {
if ((is_invalid(cache_entry))) {
set_cache_entry(L1Icache.allocate(address, new Entry));
}
}
action(forward_eviction_to_cpu, "\cc", desc="sends eviction information to the processor") {
if (send_evictions) {
DPRINTF(RubySlicc, "Sending invalidation for %#x to the CPU\n", address);
sequencer.evictionCallback(address);
}
}
action(uu_profileInstMiss, "\uim", desc="Profile the demand miss") {
L1Icache.profileDemandMiss();
}
action(uu_profileInstHit, "\uih", desc="Profile the demand hit") {
L1Icache.profileDemandHit();
}
action(uu_profileDataMiss, "\udm", desc="Profile the demand miss") {
L1Dcache.profileDemandMiss();
}
action(uu_profileDataHit, "\udh", desc="Profile the demand hit") {
L1Dcache.profileDemandHit();
}
action(z_recycleRequestQueue, "z", desc="Send the head of the mandatory queue to the back of the queue.") {
requestNetwork_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
}
action(zz_recycleMandatoryQueue, "\z", desc="Send the head of the mandatory queue to the back of the queue.") {
mandatoryQueue_in.recycle(clockEdge(), cyclesToTicks(recycle_latency));
}
//*****************************************************
// TRANSITIONS
//*****************************************************
// Transitions for Load/Store/L2_Replacement from transient states
transition({IM, SM, OM, IS, OI, SI, MI, II}, {Store, L1_Replacement}) {
zz_recycleMandatoryQueue;
}
transition({M_W, MM_W}, L1_Replacement) {
zz_recycleMandatoryQueue;
}
transition({M_W, MM_W}, {Fwd_GETS, Fwd_DMA, Fwd_GETX, Own_GETX, Inv}) {
z_recycleRequestQueue;
}
transition({IM, IS, OI, MI, SI, II}, {Load, Ifetch}) {
zz_recycleMandatoryQueue;
}
// Transitions from Idle
transition(I, Load, IS) {
ii_allocateL1DCacheBlock;
i_allocateTBE;
a_issueGETS;
uu_profileDataMiss;
k_popMandatoryQueue;
}
transition(I, Ifetch, IS) {
jj_allocateL1ICacheBlock;
i_allocateTBE;
a_issueGETS;
uu_profileInstMiss;
k_popMandatoryQueue;
}
transition(I, Store, IM) {
ii_allocateL1DCacheBlock;
i_allocateTBE;
b_issueGETX;
uu_profileDataMiss;
k_popMandatoryQueue;
}
transition(I, L1_Replacement) {
kk_deallocateL1CacheBlock;
}
transition(I, Inv) {
f_sendAck;
l_popForwardQueue;
}
transition({S, SM, O, OM, MM, MM_W, M, M_W}, Load) {
h_load_hit;
uu_profileDataHit;
k_popMandatoryQueue;
}
transition({S, SM, O, OM, MM, MM_W, M, M_W}, Ifetch) {
h_ifetch_hit;
uu_profileInstHit;
k_popMandatoryQueue;
}
// Transitions from Shared
transition(S, Store, SM) {
i_allocateTBE;
b_issueGETX;
uu_profileDataMiss;
k_popMandatoryQueue;
}
transition(S, L1_Replacement, SI) {
i_allocateTBE;
dd_issuePUTS;
forward_eviction_to_cpu;
kk_deallocateL1CacheBlock;
}
transition(S, Inv, I) {
f_sendAck;
forward_eviction_to_cpu;
l_popForwardQueue;
}
transition(S, Fwd_GETS) {
e_sendData;
l_popForwardQueue;
}
transition(S, Fwd_DMA) {
e_sendData;
ub_dmaUnblockL2Cache;
l_popForwardQueue;
}
// Transitions from Owned
transition(O, Store, OM) {
i_allocateTBE;
b_issueGETX;
uu_profileDataMiss;
k_popMandatoryQueue;
}
transition(O, L1_Replacement, OI) {
i_allocateTBE;
dd_issuePUTO;
forward_eviction_to_cpu;
kk_deallocateL1CacheBlock;
}
transition(O, Fwd_GETX, I) {
ee_sendDataExclusive;
forward_eviction_to_cpu;
l_popForwardQueue;
}
transition(O, Fwd_GETS) {
e_sendData;
l_popForwardQueue;
}
transition(O, Fwd_DMA) {
e_sendData;
ub_dmaUnblockL2Cache;
l_popForwardQueue;
}
// Transitions from MM
transition({MM, MM_W}, Store) {
hh_store_hit;
uu_profileDataHit;
k_popMandatoryQueue;
}
transition(MM, L1_Replacement, MI) {
i_allocateTBE;
d_issuePUTX;
forward_eviction_to_cpu;
kk_deallocateL1CacheBlock;
}
transition(MM, Fwd_GETX, I) {
ee_sendDataExclusive;
forward_eviction_to_cpu;
l_popForwardQueue;
}
transition(MM, Fwd_GETS, I) {
ee_sendDataExclusive;
forward_eviction_to_cpu;
l_popForwardQueue;
}
transition(MM, Fwd_DMA, MM) {
e_sendData;
ub_dmaUnblockL2Cache;
l_popForwardQueue;
}
// Transitions from M
transition(M, Store, MM) {
hh_store_hit;
uu_profileDataHit;
k_popMandatoryQueue;
}
transition(M_W, Store, MM_W) {
hh_store_hit;
uu_profileDataHit;
k_popMandatoryQueue;
}
transition(M, L1_Replacement, MI) {
i_allocateTBE;
d_issuePUTX;
forward_eviction_to_cpu;
kk_deallocateL1CacheBlock;
}
transition(M, Fwd_GETX, I) {
// e_sendData;
ee_sendDataExclusive;
forward_eviction_to_cpu;
l_popForwardQueue;
}
transition(M, Fwd_GETS, O) {
e_sendData;
l_popForwardQueue;
}
transition(M, Fwd_DMA) {
e_sendData;
ub_dmaUnblockL2Cache;
l_popForwardQueue;
}
// Transitions from IM
transition(IM, Inv) {
f_sendAck;
l_popForwardQueue;
}
transition(IM, Ack) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(IM, {Exclusive_Data, Data}, OM) {
u_writeDataToCache;
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
// Transitions from SM
transition(SM, Inv, IM) {
f_sendAck;
forward_eviction_to_cpu;
l_popForwardQueue;
}
transition(SM, Ack) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(SM, {Data, Exclusive_Data}, OM) {
// v_writeDataToCacheVerify;
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(SM, Fwd_GETS) {
e_sendData;
l_popForwardQueue;
}
transition(SM, Fwd_DMA) {
e_sendData;
ub_dmaUnblockL2Cache;
l_popForwardQueue;
}
// Transitions from OM
transition(OM, Own_GETX) {
mm_decrementNumberOfMessages;
o_checkForCompletion;
l_popForwardQueue;
}
// transition(OM, Fwd_GETX, OMF) {
transition(OM, Fwd_GETX, IM) {
ee_sendDataExclusive;
forward_eviction_to_cpu;
l_popForwardQueue;
}
transition(OM, Fwd_GETS) {
e_sendData;
l_popForwardQueue;
}
transition(OM, Fwd_DMA) {
e_sendData;
ub_dmaUnblockL2Cache;
l_popForwardQueue;
}
//transition({OM, OMF}, Ack) {
transition(OM, Ack) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(OM, All_acks, MM_W) {
xx_store_hit;
gg_sendUnblockExclusive;
s_deallocateTBE;
o_scheduleUseTimeout;
j_popTriggerQueue;
}
transition(MM_W, Use_Timeout, MM) {
jj_unsetUseTimer;
}
// Transitions from IS
transition(IS, Inv) {
f_sendAck;
l_popForwardQueue;
}
transition(IS, Data, S) {
u_writeDataToCache;
m_decrementNumberOfMessages;
hx_load_hit;
g_sendUnblock;
s_deallocateTBE;
n_popResponseQueue;
}
transition(IS, Exclusive_Data, M_W) {
u_writeDataToCache;
m_decrementNumberOfMessages;
hx_load_hit;
gg_sendUnblockExclusive;
o_scheduleUseTimeout;
s_deallocateTBE;
n_popResponseQueue;
}
transition(M_W, Use_Timeout, M) {
jj_unsetUseTimer;
}
// Transitions from OI/MI
transition(MI, Fwd_GETS, OI) {
q_sendDataFromTBEToCache;
l_popForwardQueue;
}
transition(MI, Fwd_DMA) {
q_sendDataFromTBEToCache;
ub_dmaUnblockL2Cache;
l_popForwardQueue;
}
transition(MI, Fwd_GETX, II) {
q_sendExclusiveDataFromTBEToCache;
l_popForwardQueue;
}
transition({SI, OI}, Fwd_GETS) {
q_sendDataFromTBEToCache;
l_popForwardQueue;
}
transition({SI, OI}, Fwd_DMA) {
q_sendDataFromTBEToCache;
ub_dmaUnblockL2Cache;
l_popForwardQueue;
}
transition(OI, Fwd_GETX, II) {
q_sendExclusiveDataFromTBEToCache;
l_popForwardQueue;
}
transition({SI, OI, MI}, Writeback_Ack_Data, I) {
qq_sendWBDataFromTBEToL2; // always send data
s_deallocateTBE;
n_popResponseQueue;
}
transition({SI, OI, MI}, Writeback_Ack, I) {
g_sendUnblock;
s_deallocateTBE;
n_popResponseQueue;
}
transition({MI, OI}, Writeback_Nack, OI) {
// FIXME: This might cause deadlock by re-using the writeback
// channel, we should handle this case differently.
dd_issuePUTO;
n_popResponseQueue;
}
// Transitions from II
transition(II, {Writeback_Ack, Writeback_Ack_Data}, I) {
g_sendUnblock;
s_deallocateTBE;
n_popResponseQueue;
}
// transition({II, SI}, Writeback_Nack, I) {
transition(II, Writeback_Nack, I) {
s_deallocateTBE;
n_popResponseQueue;
}
transition(SI, Writeback_Nack) {
dd_issuePUTS;
n_popResponseQueue;
}
transition(II, Inv) {
f_sendAck;
l_popForwardQueue;
}
transition(SI, Inv, II) {
f_sendAck;
l_popForwardQueue;
}
}