blob: aa3fc668140a17798ef4239335d55ad61c579872 [file] [log] [blame]
/*
* Copyright (c) 2021 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2008 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "mem/ruby/system/DMASequencer.hh"
#include <memory>
#include "debug/RubyDma.hh"
#include "debug/RubyStats.hh"
#include "mem/ruby/protocol/SequencerMsg.hh"
#include "mem/ruby/protocol/SequencerRequestType.hh"
#include "mem/ruby/system/RubySystem.hh"
namespace gem5
{
namespace ruby
{
DMARequest::DMARequest(uint64_t start_paddr, int len, bool write,
int bytes_completed, int bytes_issued, uint8_t *data,
PacketPtr pkt)
: start_paddr(start_paddr), len(len), write(write),
bytes_completed(bytes_completed), bytes_issued(bytes_issued), data(data),
pkt(pkt)
{
}
DMASequencer::DMASequencer(const Params &p)
: RubyPort(p), m_outstanding_count(0),
m_max_outstanding_requests(p.max_outstanding_requests)
{
}
void
DMASequencer::init()
{
RubyPort::init();
m_data_block_mask = mask(RubySystem::getBlockSizeBits());
}
RequestStatus
DMASequencer::makeRequest(PacketPtr pkt)
{
if (m_outstanding_count == m_max_outstanding_requests) {
return RequestStatus_BufferFull;
}
Addr paddr = pkt->getAddr();
uint8_t* data = pkt->getPtr<uint8_t>();
int len = pkt->getSize();
bool write = pkt->isWrite();
// Should DMA be allowed to generate this ?
assert(!pkt->isMaskedWrite());
assert(m_outstanding_count < m_max_outstanding_requests);
Addr line_addr = makeLineAddress(paddr);
auto emplace_pair =
m_RequestTable.emplace(std::piecewise_construct,
std::forward_as_tuple(line_addr),
std::forward_as_tuple(paddr, len, write, 0,
0, data, pkt));
DMARequest& active_request = emplace_pair.first->second;
// This is pretty conservative. A regular Sequencer with a more beefy
// request table that can track multiple requests for a cache line should
// be used if a more aggressive policy is needed.
if (!emplace_pair.second) {
DPRINTF(RubyDma, "DMA aliased: addr %p, len %d\n", line_addr, len);
return RequestStatus_Aliased;
}
DPRINTF(RubyDma, "DMA req created: addr %p, len %d\n", line_addr, len);
std::shared_ptr<SequencerMsg> msg =
std::make_shared<SequencerMsg>(clockEdge());
msg->getPhysicalAddress() = paddr;
msg->getLineAddress() = line_addr;
if (pkt->req->isAtomic()) {
msg->setType(SequencerRequestType_ATOMIC);
// While regular LD/ST can support DMAs spanning multiple cache lines,
// atomic requests are only supported within a single cache line. The
// atomic request will end upon atomicCallback and not call issueNext.
int block_size = m_ruby_system->getBlockSizeBytes();
int atomic_offset = pkt->getAddr() - line_addr;
std::vector<bool> access_mask(block_size, false);
assert(atomic_offset + pkt->getSize() <= block_size);
for (int idx = 0; idx < pkt->getSize(); ++idx) {
access_mask[atomic_offset + idx] = true;
}
std::vector<std::pair<int, AtomicOpFunctor*>> atomic_ops;
std::pair<int, AtomicOpFunctor*>
atomic_op(atomic_offset, pkt->getAtomicOp());
atomic_ops.emplace_back(atomic_op);
msg->getwriteMask().setAtomicOps(atomic_ops);
} else if (write) {
msg->setType(SequencerRequestType_ST);
} else {
assert(pkt->isRead());
msg->setType(SequencerRequestType_LD);
}
int offset = paddr & m_data_block_mask;
msg->getLen() = (offset + len) <= RubySystem::getBlockSizeBytes() ?
len : RubySystem::getBlockSizeBytes() - offset;
if (write && (data != NULL)) {
if (active_request.data != NULL) {
msg->getDataBlk().setData(data, offset, msg->getLen());
}
}
m_outstanding_count++;
assert(m_mandatory_q_ptr != NULL);
m_mandatory_q_ptr->enqueue(msg, clockEdge(), cyclesToTicks(Cycles(1)));
active_request.bytes_issued += msg->getLen();
return RequestStatus_Issued;
}
void
DMASequencer::issueNext(const Addr& address)
{
RequestTable::iterator i = m_RequestTable.find(address);
assert(i != m_RequestTable.end());
DMARequest &active_request = i->second;
assert(m_outstanding_count <= m_max_outstanding_requests);
active_request.bytes_completed = active_request.bytes_issued;
if (active_request.len == active_request.bytes_completed) {
DPRINTF(RubyDma, "DMA request completed: addr %p, size %d\n",
address, active_request.len);
m_outstanding_count--;
PacketPtr pkt = active_request.pkt;
m_RequestTable.erase(i);
ruby_hit_callback(pkt);
return;
}
std::shared_ptr<SequencerMsg> msg =
std::make_shared<SequencerMsg>(clockEdge());
msg->getPhysicalAddress() = active_request.start_paddr +
active_request.bytes_completed;
assert((msg->getPhysicalAddress() & m_data_block_mask) == 0);
msg->getLineAddress() = makeLineAddress(msg->getPhysicalAddress());
msg->getType() = (active_request.write ? SequencerRequestType_ST :
SequencerRequestType_LD);
msg->getLen() =
(active_request.len -
active_request.bytes_completed < RubySystem::getBlockSizeBytes() ?
active_request.len - active_request.bytes_completed :
RubySystem::getBlockSizeBytes());
if (active_request.write) {
msg->getDataBlk().
setData(&active_request.data[active_request.bytes_completed],
0, msg->getLen());
}
assert(m_mandatory_q_ptr != NULL);
m_mandatory_q_ptr->enqueue(msg, clockEdge(), cyclesToTicks(Cycles(1)));
active_request.bytes_issued += msg->getLen();
DPRINTF(RubyDma,
"DMA request bytes issued %d, bytes completed %d, total len %d\n",
active_request.bytes_issued, active_request.bytes_completed,
active_request.len);
}
void
DMASequencer::dataCallback(const DataBlock & dblk, const Addr& address)
{
RequestTable::iterator i = m_RequestTable.find(address);
assert(i != m_RequestTable.end());
DMARequest &active_request = i->second;
int len = active_request.bytes_issued - active_request.bytes_completed;
int offset = 0;
if (active_request.bytes_completed == 0)
offset = active_request.start_paddr & m_data_block_mask;
assert(!active_request.write);
if (active_request.data != NULL) {
memcpy(&active_request.data[active_request.bytes_completed],
dblk.getData(offset, len), len);
}
issueNext(address);
}
void
DMASequencer::ackCallback(const Addr& address)
{
assert(m_RequestTable.find(address) != m_RequestTable.end());
issueNext(address);
}
void
DMASequencer::atomicCallback(const DataBlock& dblk, const Addr& address)
{
RequestTable::iterator i = m_RequestTable.find(address);
assert(i != m_RequestTable.end());
DMARequest &active_request = i->second;
PacketPtr pkt = active_request.pkt;
int offset = active_request.start_paddr & m_data_block_mask;
memcpy(pkt->getPtr<uint8_t>(), dblk.getData(offset, pkt->getSize()),
pkt->getSize());
ruby_hit_callback(pkt);
m_outstanding_count--;
m_RequestTable.erase(i);
}
void
DMASequencer::recordRequestType(DMASequencerRequestType requestType)
{
DPRINTF(RubyStats, "Recorded statistic: %s\n",
DMASequencerRequestType_to_string(requestType));
}
} // namespace ruby
} // namespace gem5