blob: c2832809807bd81370543df84d801cd60cd8416c [file] [log] [blame]
/*
* Copyright (c) 2018-2020 Inria
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** @file
* Definition of a dictionary based cache compressor. Each entry is compared
* against a dictionary to search for matches.
*
* The dictionary is composed of 32-bit entries, and the comparison is done
* byte per byte.
*
* The patterns are implemented as individual classes that have a checking
* function isPattern(), to determine if the data fits the pattern, and a
* decompress() function, which decompresses the contents of a pattern.
* Every new pattern must inherit from the Pattern class and be added to the
* patternFactory.
*/
#ifndef __MEM_CACHE_COMPRESSORS_DICTIONARY_COMPRESSOR_HH__
#define __MEM_CACHE_COMPRESSORS_DICTIONARY_COMPRESSOR_HH__
#include <array>
#include <cstdint>
#include <map>
#include <memory>
#include <string>
#include <type_traits>
#include <vector>
#include "base/bitfield.hh"
#include "base/statistics.hh"
#include "base/types.hh"
#include "mem/cache/compressors/base.hh"
namespace gem5
{
struct BaseDictionaryCompressorParams;
GEM5_DEPRECATED_NAMESPACE(Compressor, compression);
namespace compression
{
class BaseDictionaryCompressor : public Base
{
protected:
/** Dictionary size. */
const std::size_t dictionarySize;
/** Number of valid entries in the dictionary. */
std::size_t numEntries;
struct DictionaryStats : public statistics::Group
{
const BaseDictionaryCompressor& compressor;
DictionaryStats(BaseStats &base_group,
BaseDictionaryCompressor& _compressor);
void regStats() override;
/** Number of data entries that were compressed to each pattern. */
statistics::Vector patterns;
} dictionaryStats;
/**
* Trick function to get the number of patterns.
*
* @return The number of defined patterns.
*/
virtual uint64_t getNumPatterns() const = 0;
/**
* Get meta-name assigned to the given pattern.
*
* @param number The number of the pattern.
* @return The meta-name of the pattern.
*/
virtual std::string getName(int number) const = 0;
public:
typedef BaseDictionaryCompressorParams Params;
BaseDictionaryCompressor(const Params &p);
~BaseDictionaryCompressor() = default;
};
/**
* A template version of the dictionary compressor that allows to choose the
* dictionary size.
*
* @tparam The type of a dictionary entry (e.g., uint16_t, uint32_t, etc).
*/
template <class T>
class DictionaryCompressor : public BaseDictionaryCompressor
{
protected:
/** Convenience typedef for a dictionary entry. */
typedef std::array<uint8_t, sizeof(T)> DictionaryEntry;
/**
* Compression data for the dictionary compressor. It consists of a vector
* of patterns.
*/
class CompData;
// Forward declaration of a pattern
class Pattern;
class UncompressedPattern;
template <T mask>
class MaskedPattern;
template <T value, T mask>
class MaskedValuePattern;
template <T mask, int location>
class LocatedMaskedPattern;
template <class RepT>
class RepeatedValuePattern;
template <std::size_t DeltaSizeBits>
class DeltaPattern;
template <unsigned N>
class SignExtendedPattern;
/**
* Create a factory to determine if input matches a pattern. The if else
* chains are constructed by recursion. The patterns should be explored
* sorted by size for correct behaviour.
*/
template <class Head, class... Tail>
struct Factory
{
static std::unique_ptr<Pattern> getPattern(
const DictionaryEntry& bytes, const DictionaryEntry& dict_bytes,
const int match_location)
{
// If match this pattern, instantiate it. If a negative match
// location is used, the patterns that use the dictionary bytes
// must return false. This is used when there are no dictionary
// entries yet
if (Head::isPattern(bytes, dict_bytes, match_location)) {
return std::unique_ptr<Pattern>(
new Head(bytes, match_location));
// Otherwise, go for next pattern
} else {
return Factory<Tail...>::getPattern(bytes, dict_bytes,
match_location);
}
}
};
/**
* Specialization to end the recursion. This must be called when all
* other patterns failed, and there is no choice but to leave data
* uncompressed. As such, this pattern must inherit from the uncompressed
* pattern.
*/
template <class Head>
struct Factory<Head>
{
static_assert(std::is_base_of_v<UncompressedPattern, Head>,
"The last pattern must always be derived from the uncompressed "
"pattern.");
static std::unique_ptr<Pattern>
getPattern(const DictionaryEntry& bytes,
const DictionaryEntry& dict_bytes, const int match_location)
{
return std::unique_ptr<Pattern>(new Head(bytes, match_location));
}
};
/** The dictionary. */
std::vector<DictionaryEntry> dictionary;
/**
* Since the factory cannot be instantiated here, classes that inherit
* from this base class have to implement the call to their factory's
* getPattern.
*/
virtual std::unique_ptr<Pattern>
getPattern(const DictionaryEntry& bytes, const DictionaryEntry& dict_bytes,
const int match_location) const = 0;
/**
* Compress data.
*
* @param data Data to be compressed.
* @return The pattern this data matches.
*/
std::unique_ptr<Pattern> compressValue(const T data);
/**
* Decompress a pattern into a value that fits in a dictionary entry.
*
* @param pattern The pattern to be decompressed.
* @return The decompressed word.
*/
T decompressValue(const Pattern* pattern);
/** Clear all dictionary entries. */
virtual void resetDictionary();
/**
* Add an entry to the dictionary.
*
* @param data The new entry.
*/
virtual void addToDictionary(const DictionaryEntry data) = 0;
/**
* Instantiate a compression data of the sub-class compressor.
*
* @return The new compression data entry.
*/
virtual std::unique_ptr<DictionaryCompressor::CompData>
instantiateDictionaryCompData() const;
/**
* Apply compression.
*
* @param chunks The cache line to be compressed.
* @return Cache line after compression.
*/
std::unique_ptr<Base::CompressionData> compress(
const std::vector<Chunk>& chunks);
std::unique_ptr<Base::CompressionData> compress(
const std::vector<Chunk>& chunks,
Cycles& comp_lat, Cycles& decomp_lat) override;
using BaseDictionaryCompressor::compress;
void decompress(const CompressionData* comp_data, uint64_t* data) override;
/**
* Turn a value into a dictionary entry.
*
* @param value The value to turn.
* @return A dictionary entry containing the value.
*/
static DictionaryEntry toDictionaryEntry(T value);
/**
* Turn a dictionary entry into a value.
*
* @param The dictionary entry to turn.
* @return The value that the dictionary entry contained.
*/
static T fromDictionaryEntry(const DictionaryEntry& entry);
public:
typedef BaseDictionaryCompressorParams Params;
DictionaryCompressor(const Params &p);
~DictionaryCompressor() = default;
};
/**
* The compressed data is composed of multiple pattern entries. To add a new
* pattern one should inherit from this class and implement isPattern() and
* decompress(). Then the new pattern must be added to the PatternFactory
* declaration in crescent order of size (in the DictionaryCompressor class).
*/
template <class T>
class DictionaryCompressor<T>::Pattern
{
protected:
/** Pattern enum number. */
const int patternNumber;
/** Code associated to the pattern. */
const uint8_t code;
/** Length, in bits, of the code and match location. */
const uint8_t length;
/** Number of unmatched bits. */
const uint8_t numUnmatchedBits;
/** Index representing the the match location. */
const int matchLocation;
/** Wether the pattern allocates a dictionary entry or not. */
const bool allocate;
public:
/**
* Default constructor.
*
* @param number Pattern number.
* @param code Code associated to this pattern.
* @param metadata_length Length, in bits, of the code and match location.
* @param num_unmatched_bits Number of unmatched bits.
* @param match_location Index of the match location.
*/
Pattern(const int number, const uint64_t code,
const uint64_t metadata_length, const uint64_t num_unmatched_bits,
const int match_location, const bool allocate = true)
: patternNumber(number), code(code), length(metadata_length),
numUnmatchedBits(num_unmatched_bits),
matchLocation(match_location), allocate(allocate)
{
}
/** Default destructor. */
virtual ~Pattern() = default;
/**
* Get enum number associated to this pattern.
*
* @return The pattern enum number.
*/
int getPatternNumber() const { return patternNumber; };
/**
* Get code of this pattern.
*
* @return The code.
*/
uint8_t getCode() const { return code; }
/**
* Get the index of the dictionary match location.
*
* @return The index of the match location.
*/
uint8_t getMatchLocation() const { return matchLocation; }
/**
* Get size, in bits, of the pattern (excluding prefix). Corresponds to
* unmatched_data_size + code_length.
*
* @return The size.
*/
virtual std::size_t
getSizeBits() const
{
return numUnmatchedBits + length;
}
/**
* Determine if pattern allocates a dictionary entry.
*
* @return True if should allocate a dictionary entry.
*/
bool shouldAllocate() const { return allocate; }
/**
* Extract pattern's information to a string.
*
* @return A string containing the relevant pattern metadata.
*/
std::string
print() const
{
return csprintf("pattern %s (encoding %x, size %u bits)",
getPatternNumber(), getCode(), getSizeBits());
}
/**
* Decompress the pattern. Each pattern has its own way of interpreting
* its data.
*
* @param dict_bytes The bytes in the corresponding matching entry.
* @return The decompressed pattern.
*/
virtual DictionaryEntry decompress(
const DictionaryEntry dict_bytes) const = 0;
};
template <class T>
class DictionaryCompressor<T>::CompData : public CompressionData
{
public:
/** The patterns matched in the original line. */
std::vector<std::unique_ptr<Pattern>> entries;
CompData();
~CompData() = default;
/**
* Add a pattern entry to the list of patterns.
*
* @param entry The new pattern entry.
*/
virtual void addEntry(std::unique_ptr<Pattern>);
};
/**
* A pattern containing the original uncompressed data. This should be the
* worst case of every pattern factory, where if all other patterns fail,
* an instance of this pattern is created.
*/
template <class T>
class DictionaryCompressor<T>::UncompressedPattern
: public DictionaryCompressor<T>::Pattern
{
private:
/** A copy of the original data. */
const DictionaryEntry data;
public:
UncompressedPattern(const int number,
const uint64_t code,
const uint64_t metadata_length,
const int match_location,
const DictionaryEntry bytes)
: DictionaryCompressor<T>::Pattern(number, code, metadata_length,
sizeof(T) * 8, match_location, true),
data(bytes)
{
}
static bool
isPattern(const DictionaryEntry& bytes, const DictionaryEntry& dict_bytes,
const int match_location)
{
// An entry can always be uncompressed
return true;
}
DictionaryEntry
decompress(const DictionaryEntry dict_bytes) const override
{
return data;
}
};
/**
* A pattern that compares masked values against dictionary entries. If
* the masked dictionary entry matches perfectly the masked value to be
* compressed, there is a pattern match.
*
* For example, if the mask is 0xFF00 (that is, this pattern matches the MSB),
* the value (V) 0xFF20 is being compressed, and the dictionary contains
* the value (D) 0xFF03, this is a match (V & mask == 0xFF00 == D & mask),
* and 0x0020 is added to the list of unmatched bits.
*
* @tparam mask A mask containing the bits that must match.
*/
template <class T>
template <T mask>
class DictionaryCompressor<T>::MaskedPattern
: public DictionaryCompressor<T>::Pattern
{
private:
static_assert(mask != 0, "The pattern's value mask must not be zero. Use "
"the uncompressed pattern instead.");
/** A copy of the bits that do not belong to the mask. */
const T bits;
public:
MaskedPattern(const int number,
const uint64_t code,
const uint64_t metadata_length,
const int match_location,
const DictionaryEntry bytes,
const bool allocate = true)
: DictionaryCompressor<T>::Pattern(number, code, metadata_length,
popCount(static_cast<T>(~mask)), match_location, allocate),
bits(DictionaryCompressor<T>::fromDictionaryEntry(bytes) & ~mask)
{
}
static bool
isPattern(const DictionaryEntry& bytes, const DictionaryEntry& dict_bytes,
const int match_location)
{
const T masked_bytes =
DictionaryCompressor<T>::fromDictionaryEntry(bytes) & mask;
const T masked_dict_bytes =
DictionaryCompressor<T>::fromDictionaryEntry(dict_bytes) & mask;
return (match_location >= 0) && (masked_bytes == masked_dict_bytes);
}
DictionaryEntry
decompress(const DictionaryEntry dict_bytes) const override
{
const T masked_dict_bytes =
DictionaryCompressor<T>::fromDictionaryEntry(dict_bytes) & mask;
return DictionaryCompressor<T>::toDictionaryEntry(
bits | masked_dict_bytes);
}
};
/**
* A pattern that compares masked values to a masked portion of a fixed value.
* If all the masked bits match the provided non-dictionary value, there is a
* pattern match.
*
* For example, assume the mask is 0xFF00 (that is, this pattern matches the
* MSB), and we are searching for data containing only ones (i.e., the fixed
* value is 0xFFFF).
* If the value (V) 0xFF20 is being compressed, this is a match (V & mask ==
* 0xFF00 == 0xFFFF & mask), and 0x20 is added to the list of unmatched bits.
* If the value (V2) 0x0120 is being compressed, this is not a match
* ((V2 & mask == 0x0100) != (0xFF00 == 0xFFFF & mask).
*
* @tparam value The value that is being matched against.
* @tparam mask A mask containing the bits that must match the given value.
*/
template <class T>
template <T value, T mask>
class DictionaryCompressor<T>::MaskedValuePattern
: public MaskedPattern<mask>
{
private:
static_assert(mask != 0, "The pattern's value mask must not be zero.");
public:
MaskedValuePattern(const int number,
const uint64_t code,
const uint64_t metadata_length,
const int match_location,
const DictionaryEntry bytes,
const bool allocate = false)
: MaskedPattern<mask>(number, code, metadata_length, match_location,
bytes, allocate)
{
}
static bool
isPattern(const DictionaryEntry& bytes, const DictionaryEntry& dict_bytes,
const int match_location)
{
// Compare the masked fixed value to the value being checked for
// patterns. Since the dictionary is not being used the match_location
// is irrelevant.
const T masked_bytes =
DictionaryCompressor<T>::fromDictionaryEntry(bytes) & mask;
return ((value & mask) == masked_bytes);
}
DictionaryEntry
decompress(const DictionaryEntry dict_bytes) const override
{
return MaskedPattern<mask>::decompress(
DictionaryCompressor<T>::toDictionaryEntry(value));
}
};
/**
* A pattern that narrows the MaskedPattern by allowing a only single possible
* dictionary entry to be matched against.
*
* @tparam mask A mask containing the bits that must match.
* @tparam location The index of the single entry allowed to match.
*/
template <class T>
template <T mask, int location>
class DictionaryCompressor<T>::LocatedMaskedPattern
: public MaskedPattern<mask>
{
public:
LocatedMaskedPattern(const int number,
const uint64_t code,
const uint64_t metadata_length,
const int match_location,
const DictionaryEntry bytes,
const bool allocate = true)
: MaskedPattern<mask>(number, code, metadata_length, match_location,
bytes, allocate)
{
}
static bool
isPattern(const DictionaryEntry& bytes, const DictionaryEntry& dict_bytes,
const int match_location)
{
// Besides doing the regular masked pattern matching, the match
// location must match perfectly with this instance's
return (match_location == location) &&
MaskedPattern<mask>::isPattern(bytes, dict_bytes, match_location);
}
};
/**
* A pattern that checks if dictionary entry sized values are solely composed
* of multiple copies of a single value.
*
* For example, if we are looking for repeated bytes in a 1-byte granularity
* (RepT is uint8_t), the value 0x3232 would match, however 0x3332 wouldn't.
*
* @tparam RepT The type of the repeated value, which must fit in a dictionary
* entry.
*/
template <class T>
template <class RepT>
class DictionaryCompressor<T>::RepeatedValuePattern
: public DictionaryCompressor<T>::Pattern
{
private:
static_assert(sizeof(T) > sizeof(RepT), "The repeated value's type must "
"be smaller than the dictionary entry's type.");
/** The repeated value. */
RepT value;
public:
RepeatedValuePattern(const int number,
const uint64_t code,
const uint64_t metadata_length,
const int match_location,
const DictionaryEntry bytes,
const bool allocate = true)
: DictionaryCompressor<T>::Pattern(number, code, metadata_length,
8 * sizeof(RepT), match_location, allocate),
value(DictionaryCompressor<T>::fromDictionaryEntry(bytes))
{
}
static bool
isPattern(const DictionaryEntry& bytes, const DictionaryEntry& dict_bytes,
const int match_location)
{
// Parse the dictionary entry in a RepT granularity, and if all values
// are equal, this is a repeated value pattern. Since the dictionary
// is not being used, the match_location is irrelevant
T bytes_value = DictionaryCompressor<T>::fromDictionaryEntry(bytes);
const RepT rep_value = bytes_value;
for (int i = 0; i < (sizeof(T) / sizeof(RepT)); i++) {
RepT cur_value = bytes_value;
if (cur_value != rep_value) {
return false;
}
bytes_value >>= 8 * sizeof(RepT);
}
return true;
}
DictionaryEntry
decompress(const DictionaryEntry dict_bytes) const override
{
// The decompressed value is just multiple consecutive instances of
// the same value
T decomp_value = 0;
for (int i = 0; i < (sizeof(T) / sizeof(RepT)); i++) {
decomp_value <<= 8 * sizeof(RepT);
decomp_value |= value;
}
return DictionaryCompressor<T>::toDictionaryEntry(decomp_value);
}
};
/**
* A pattern that checks whether the difference of the value and the dictionary
* entries' is below a certain threshold. If so, the pattern is successful,
* and only the delta bits need to be stored.
*
* For example, if the delta can only contain up to 4 bits, and the dictionary
* contains the entry 0xA231, the value 0xA232 would be compressible, and
* the delta 0x1 would be stored. The value 0xA249, on the other hand, would
* not be compressible, since its delta (0x18) needs 5 bits to be stored.
*
* @tparam DeltaSizeBits Size of a delta entry, in number of bits, which
* determines the threshold. Must always be smaller
* than the dictionary entry type's size.
*/
template <class T>
template <std::size_t DeltaSizeBits>
class DictionaryCompressor<T>::DeltaPattern
: public DictionaryCompressor<T>::Pattern
{
private:
static_assert(DeltaSizeBits < (sizeof(T) * 8),
"Delta size must be smaller than base size");
/**
* The original value. In theory we should keep only the deltas, but
* the dictionary entry is not inserted in the dictionary before the
* call to the constructor, so the delta cannot be calculated then.
*/
const DictionaryEntry bytes;
public:
DeltaPattern(const int number,
const uint64_t code,
const uint64_t metadata_length,
const int match_location,
const DictionaryEntry bytes)
: DictionaryCompressor<T>::Pattern(number, code, metadata_length,
DeltaSizeBits, match_location, false),
bytes(bytes)
{
}
/**
* Compares a given value against a base to calculate their delta, and
* then determines whether it fits a limited sized container.
*
* @param bytes Value to be compared against base.
* @param base_bytes Base value.
* @return Whether the value fits in the container.
*/
static bool
isValidDelta(const DictionaryEntry& bytes,
const DictionaryEntry& base_bytes)
{
const typename std::make_signed<T>::type limit = DeltaSizeBits ?
mask(DeltaSizeBits - 1) : 0;
const T value =
DictionaryCompressor<T>::fromDictionaryEntry(bytes);
const T base =
DictionaryCompressor<T>::fromDictionaryEntry(base_bytes);
const typename std::make_signed<T>::type delta = value - base;
return (delta >= -limit) && (delta <= limit);
}
static bool
isPattern(const DictionaryEntry& bytes,
const DictionaryEntry& dict_bytes, const int match_location)
{
return (match_location >= 0) && isValidDelta(bytes, dict_bytes);
}
DictionaryEntry
decompress(const DictionaryEntry dict_bytes) const override
{
return bytes;
}
};
/**
* A pattern that checks whether the value is an N bits sign-extended value,
* that is, all the MSB starting from the Nth are equal to the (N-1)th bit.
*
* Therefore, if N = 8, and T has 16 bits, the values within the ranges
* [0x0000, 0x007F] and [0xFF80, 0xFFFF] would match this pattern.
*
* @tparam N The number of bits in the non-extended original value. It must
* fit in a dictionary entry.
*/
template <class T>
template <unsigned N>
class DictionaryCompressor<T>::SignExtendedPattern
: public DictionaryCompressor<T>::Pattern
{
private:
static_assert((N > 0) & (N <= (sizeof(T) * 8)),
"The original data's type size must be smaller than the dictionary's");
/** The non-extended original value. */
const T bits : N;
public:
SignExtendedPattern(const int number,
const uint64_t code,
const uint64_t metadata_length,
const DictionaryEntry bytes,
const bool allocate = false)
: DictionaryCompressor<T>::Pattern(number, code, metadata_length, N,
-1, allocate),
bits(fromDictionaryEntry(bytes) & mask(N))
{
}
static bool
isPattern(const DictionaryEntry& bytes,
const DictionaryEntry& dict_bytes, const int match_location)
{
const T data = DictionaryCompressor<T>::fromDictionaryEntry(bytes);
return data == (T)szext<N>(data);
}
DictionaryEntry
decompress(const DictionaryEntry dict_bytes) const override
{
return toDictionaryEntry(sext<N>(bits));
}
};
} // namespace compression
} // namespace gem5
#endif //__MEM_CACHE_COMPRESSORS_DICTIONARY_COMPRESSOR_HH__