blob: 4a175d8414f690154886b525102ae2870f566eed [file] [log] [blame]
/*****************************************************************************
* McPAT
* SOFTWARE LICENSE AGREEMENT
* Copyright 2012 Hewlett-Packard Development Company, L.P.
* Copyright (c) 2010-2013 Advanced Micro Devices, Inc.
* All Rights Reserved
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
***************************************************************************/
#include <algorithm>
#include <cassert>
#include <cmath>
#include <iostream>
#include <string>
#include "basic_circuit.h"
#include "common.h"
#include "const.h"
#include "io.h"
#include "iocontrollers.h"
#include "logic.h"
/*
SUN Niagara 2 I/O power analysis:
total signal bits: 711
Total FBDIMM bits: (14+10)*2*8= 384
PCIe bits: (8 + 8)*2 = 32
10Gb NIC: (4*2+4*2)*2 = 32
Debug I/Os: 168
Other I/Os: 711- 32-32 - 384 - 168 = 95
According to "Implementation of an 8-Core, 64-Thread, Power-Efficient SPARC Server on a Chip"
90% of I/Os are SerDers (the calucaltion is 384+64/(711-168)=83% about the same as the 90% reported in the paper)
--> around 80Pins are common I/Os.
Common I/Os consumes 71mW/Gb/s according to Cadence ChipEstimate @65nm
Niagara 2 I/O clock is 1/4 of core clock. --> 87pin (<--((711-168)*17%)) * 71mW/Gb/s *0.25*1.4Ghz = 2.17W
Total dynamic power of FBDIMM, NIC, PCIe = 84*0.132 + 84*0.049*0.132 = 11.14 - 2.17 = 8.98
Further, if assuming I/O logic power is about 50% of I/Os then Total energy of FBDIMM, NIC, PCIe = 11.14 - 2.17*1.5 = 7.89
*/
/*
* A bug in Cadence ChipEstimator: After update the clock rate in the clock tab, a user
* need to re-select the IP clock (the same clk) and then click Estimate. if not reselect
* the new clock rate may not be propogate into the IPs.
*
*/
NIUController::NIUController(XMLNode* _xml_data,InputParameter* interface_ip_)
: McPATComponent(_xml_data, interface_ip_) {
name = "NIU";
set_niu_param();
}
void NIUController::computeArea() {
double mac_area;
double frontend_area;
double SerDer_area;
if (niup.type == 0) { //high performance NIU
//Area estimation based on average of die photo from Niagara 2 and
//Cadence ChipEstimate using 65nm.
mac_area = (1.53 + 0.3) / 2 * (interface_ip.F_sz_um / 0.065) *
(interface_ip.F_sz_um / 0.065);
//Area estimation based on average of die photo from Niagara 2, ISSCC
//"An 800mW 10Gb Ethernet Transceiver in 0.13μm CMOS"
//and"A 1.2-V-Only 900-mW 10 Gb Ethernet Transceiver and XAUI Interface
//With Robust VCO Tuning Technique" Frontend is PCS
frontend_area = (9.8 + (6 + 18) * 65 / 130 * 65 / 130) / 3 *
(interface_ip.F_sz_um / 0.065) * (interface_ip.F_sz_um / 0.065);
//Area estimation based on average of die photo from Niagara 2 and
//Cadence ChipEstimate hard IP @65nm.
//SerDer is very hard to scale
SerDer_area = (1.39 + 0.36) * (interface_ip.F_sz_um /
0.065);//* (interface_ip.F_sz_um/0.065);
} else {
//Low power implementations are mostly from Cadence ChipEstimator;
//Ignore the multiple IP effect
// ---When there are multiple IP (same kind or not) selected, Cadence
//ChipEstimator results are not a simple summation of all IPs.
//Ignore this effect
mac_area = 0.24 * (interface_ip.F_sz_um / 0.065) *
(interface_ip.F_sz_um / 0.065);
frontend_area = 0.1 * (interface_ip.F_sz_um / 0.065) *
(interface_ip.F_sz_um / 0.065);//Frontend is the PCS layer
SerDer_area = 0.35 * (interface_ip.F_sz_um / 0.065) *
(interface_ip.F_sz_um/0.065);
//Compare 130um implementation in "A 1.2-V-Only 900-mW 10 Gb Ethernet
//Transceiver and XAUI Interface With Robust VCO Tuning Technique"
//and the ChipEstimator XAUI PHY hard IP, confirm that even PHY can
//scale perfectly with the technology
}
//total area
output_data.area = (mac_area + frontend_area + SerDer_area) * 1e6;
}
void NIUController::computeEnergy() {
double mac_dyn;
double frontend_dyn;
double SerDer_dyn;
double frontend_gates;
double mac_gates;
double SerDer_gates;
double NMOS_sizing;
double PMOS_sizing;
double pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio();
if (niup.type == 0) { //high performance NIU
//Power
//Cadence ChipEstimate using 65nm (mac, front_end are all energy.
//E=P*T = P/F = 1.37/1Ghz = 1.37e-9);
//2.19W@1GHz fully active according to Cadence ChipEstimate @65nm
mac_dyn = 2.19e-9 * g_tp.peri_global.Vdd / 1.1 * g_tp.peri_global.Vdd /
1.1 * (interface_ip.F_sz_nm / 65.0);//niup.clockRate;
//Cadence ChipEstimate using 65nm soft IP;
frontend_dyn = 0.27e-9 * g_tp.peri_global.Vdd / 1.1 *
g_tp.peri_global.Vdd / 1.1 * (interface_ip.F_sz_nm / 65.0);
//according to "A 100mW 9.6Gb/s Transceiver in 90nm CMOS..." ISSCC 2006
//SerDer_dyn is power not energy, scaling from 10mw/Gb/s @90nm
SerDer_dyn = 0.01 * 10 * sqrt(interface_ip.F_sz_um / 0.09) *
g_tp.peri_global.Vdd / 1.2 * g_tp.peri_global.Vdd / 1.2;
//Cadence ChipEstimate using 65nm
mac_gates = 111700;
frontend_gates = 320000;
SerDer_gates = 200000;
NMOS_sizing = 5 * g_tp.min_w_nmos_;
PMOS_sizing = 5 * g_tp.min_w_nmos_ * pmos_to_nmos_sizing_r;
} else {
//Power
//Cadence ChipEstimate using 65nm (mac, front_end are all energy.
///E=P*T = P/F = 1.37/1Ghz = 1.37e-9);
//2.19W@1GHz fully active according to Cadence ChipEstimate @65nm
mac_dyn = 1.257e-9 * g_tp.peri_global.Vdd / 1.1 * g_tp.peri_global.Vdd
/ 1.1 * (interface_ip.F_sz_nm / 65.0);//niup.clockRate;
//Cadence ChipEstimate using 65nm soft IP;
frontend_dyn = 0.6e-9 * g_tp.peri_global.Vdd / 1.1 *
g_tp.peri_global.Vdd / 1.1 * (interface_ip.F_sz_nm / 65.0);
//SerDer_dyn is power not energy, scaling from 216mw/10Gb/s @130nm
SerDer_dyn = 0.0216 * 10 * (interface_ip.F_sz_um / 0.13) *
g_tp.peri_global.Vdd / 1.2 * g_tp.peri_global.Vdd / 1.2;
mac_gates = 111700;
frontend_gates = 52000;
SerDer_gates = 199260;
NMOS_sizing = g_tp.min_w_nmos_;
PMOS_sizing = g_tp.min_w_nmos_ * pmos_to_nmos_sizing_r;
}
//covert to energy per clock cycle of whole NIU
SerDer_dyn /= niup.clockRate;
power.readOp.dynamic = mac_dyn + frontend_dyn + SerDer_dyn;
power.readOp.leakage = (mac_gates + frontend_gates + frontend_gates) *
cmos_Isub_leakage(NMOS_sizing, PMOS_sizing, 2, nand) *
g_tp.peri_global.Vdd;//unit W
double long_channel_device_reduction =
longer_channel_device_reduction(Uncore_device);
power.readOp.longer_channel_leakage =
power.readOp.leakage * long_channel_device_reduction;
power.readOp.gate_leakage = (mac_gates + frontend_gates + frontend_gates) *
cmos_Ig_leakage(NMOS_sizing, PMOS_sizing, 2, nand) *
g_tp.peri_global.Vdd;//unit W
// Output power
output_data.subthreshold_leakage_power =
longer_channel_device ? power.readOp.longer_channel_leakage :
power.readOp.leakage;
output_data.gate_leakage_power = power.readOp.gate_leakage;
output_data.peak_dynamic_power = power.readOp.dynamic * nius.duty_cycle;
output_data.runtime_dynamic_energy = power.readOp.dynamic * nius.perc_load;
}
void NIUController::set_niu_param() {
int num_children = xml_data->nChildNode("param");
int i;
for (i = 0; i < num_children; i++) {
XMLNode* paramNode = xml_data->getChildNodePtr("param", &i);
XMLCSTR node_name = paramNode->getAttribute("name");
XMLCSTR value = paramNode->getAttribute("value");
if (!node_name)
warnMissingParamName(paramNode->getAttribute("id"));
ASSIGN_FP_IF("niu_clockRate", niup.clockRate);
ASSIGN_INT_IF("num_units", niup.num_units);
ASSIGN_INT_IF("type", niup.type);
else {
warnUnrecognizedParam(node_name);
}
}
// Change from MHz to Hz
niup.clockRate *= 1e6;
num_children = xml_data->nChildNode("stat");
for (i = 0; i < num_children; i++) {
XMLNode* statNode = xml_data->getChildNodePtr("stat", &i);
XMLCSTR node_name = statNode->getAttribute("name");
XMLCSTR value = statNode->getAttribute("value");
if (!node_name)
warnMissingStatName(statNode->getAttribute("id"));
ASSIGN_FP_IF("duty_cycle", nius.duty_cycle);
ASSIGN_FP_IF("perc_load", nius.perc_load);
else {
warnUnrecognizedStat(node_name);
}
}
}
PCIeController::PCIeController(XMLNode* _xml_data,
InputParameter* interface_ip_)
: McPATComponent(_xml_data, interface_ip_) {
name = "PCIe";
set_pcie_param();
}
void PCIeController::computeArea() {
double ctrl_area;
double SerDer_area;
/* Assuming PCIe is bit-slice based architecture
* This is the reason for /8 in both area and power calculation
* to get per lane numbers
*/
if (pciep.type == 0) { //high performance PCIe
//Area estimation based on average of die photo from Niagara 2 and
//Cadence ChipEstimate @ 65nm.
ctrl_area = (5.2 + 0.5) / 2 * (interface_ip.F_sz_um / 0.065) *
(interface_ip.F_sz_um / 0.065);
//Area estimation based on average of die photo from Niagara 2 and
//Cadence ChipEstimate hard IP @65nm.
//SerDer is very hard to scale
SerDer_area = (3.03 + 0.36) * (interface_ip.F_sz_um /
0.065);//* (interface_ip.F_sz_um/0.065);
} else {
ctrl_area = 0.412 * (interface_ip.F_sz_um / 0.065) *
(interface_ip.F_sz_um / 0.065);
//Area estimation based on average of die photo from Niagara 2, and
//Cadence ChipEstimate @ 65nm.
SerDer_area = 0.36 * (interface_ip.F_sz_um / 0.065) *
(interface_ip.F_sz_um / 0.065);
}
// Total area
output_data.area = ((ctrl_area + (pciep.withPHY ? SerDer_area : 0)) / 8 *
pciep.num_channels) * 1e6;
}
void PCIeController::computeEnergy() {
double ctrl_dyn;
double SerDer_dyn;
double ctrl_gates;
double SerDer_gates = 0;
double pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio();
double NMOS_sizing;
double PMOS_sizing;
/* Assuming PCIe is bit-slice based architecture
* This is the reason for /8 in both area and power calculation
* to get per lane numbers
*/
if (pciep.type == 0) { //high performance PCIe
//Power
//Cadence ChipEstimate using 65nm the controller includes everything: the PHY, the data link and transaction layer
ctrl_dyn = 3.75e-9 / 8 * g_tp.peri_global.Vdd / 1.1 *
g_tp.peri_global.Vdd / 1.1 * (interface_ip.F_sz_nm / 65.0);
// //Cadence ChipEstimate using 65nm soft IP;
// frontend_dyn = 0.27e-9/8*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0);
//SerDer_dyn is power not energy, scaling from 10mw/Gb/s @90nm
//PCIe 2.0 max per lane speed is 4Gb/s
SerDer_dyn = 0.01 * 4 * (interface_ip.F_sz_um /0.09) *
g_tp.peri_global.Vdd / 1.2 * g_tp.peri_global.Vdd /1.2;
//Cadence ChipEstimate using 65nm
ctrl_gates = 900000 / 8 * pciep.num_channels;
// frontend_gates = 120000/8;
// SerDer_gates = 200000/8;
NMOS_sizing = 5 * g_tp.min_w_nmos_;
PMOS_sizing = 5 * g_tp.min_w_nmos_ * pmos_to_nmos_sizing_r;
} else {
//Power
//Cadence ChipEstimate using 65nm the controller includes everything: the PHY, the data link and transaction layer
ctrl_dyn = 2.21e-9 / 8 * g_tp.peri_global.Vdd / 1.1 *
g_tp.peri_global.Vdd / 1.1 * (interface_ip.F_sz_nm / 65.0);
// //Cadence ChipEstimate using 65nm soft IP;
// frontend_dyn = 0.27e-9/8*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0);
//SerDer_dyn is power not energy, scaling from 10mw/Gb/s @90nm
//PCIe 2.0 max per lane speed is 4Gb/s
SerDer_dyn = 0.01 * 4 * (interface_ip.F_sz_um / 0.09) *
g_tp.peri_global.Vdd / 1.2 * g_tp.peri_global.Vdd /1.2;
//Cadence ChipEstimate using 65nm
ctrl_gates = 200000 / 8 * pciep.num_channels;
// frontend_gates = 120000/8;
SerDer_gates = 200000 / 8 * pciep.num_channels;
NMOS_sizing = g_tp.min_w_nmos_;
PMOS_sizing = g_tp.min_w_nmos_ * pmos_to_nmos_sizing_r;
}
//covert to energy per clock cycle
SerDer_dyn /= pciep.clockRate;
power.readOp.dynamic = (ctrl_dyn + (pciep.withPHY ? SerDer_dyn : 0)) *
pciep.num_channels;
power.readOp.leakage = (ctrl_gates + (pciep.withPHY ? SerDer_gates : 0)) *
cmos_Isub_leakage(NMOS_sizing, PMOS_sizing, 2, nand) *
g_tp.peri_global.Vdd;//unit W
double long_channel_device_reduction =
longer_channel_device_reduction(Uncore_device);
power.readOp.longer_channel_leakage =
power.readOp.leakage * long_channel_device_reduction;
power.readOp.gate_leakage = (ctrl_gates +
(pciep.withPHY ? SerDer_gates : 0)) *
cmos_Ig_leakage(NMOS_sizing, PMOS_sizing, 2, nand) *
g_tp.peri_global.Vdd;//unit W
// Output power
output_data.subthreshold_leakage_power =
longer_channel_device ? power.readOp.longer_channel_leakage :
power.readOp.leakage;
output_data.gate_leakage_power = power.readOp.gate_leakage;
output_data.peak_dynamic_power = power.readOp.dynamic * pcies.duty_cycle;
output_data.runtime_dynamic_energy =
power.readOp.dynamic * pcies.perc_load;
}
void PCIeController::set_pcie_param() {
int num_children = xml_data->nChildNode("param");
int i;
for (i = 0; i < num_children; i++) {
XMLNode* paramNode = xml_data->getChildNodePtr("param", &i);
XMLCSTR node_name = paramNode->getAttribute("name");
XMLCSTR value = paramNode->getAttribute("value");
if (!node_name)
warnMissingParamName(paramNode->getAttribute("id"));
ASSIGN_FP_IF("pcie_clockRate", pciep.clockRate);
ASSIGN_INT_IF("num_units", pciep.num_units);
ASSIGN_INT_IF("num_channels", pciep.num_channels);
ASSIGN_INT_IF("type", pciep.type);
ASSIGN_ENUM_IF("withPHY", pciep.withPHY, bool);
else {
warnUnrecognizedParam(node_name);
}
}
// Change from MHz to Hz
pciep.clockRate *= 1e6;
num_children = xml_data->nChildNode("stat");
for (i = 0; i < num_children; i++) {
XMLNode* statNode = xml_data->getChildNodePtr("stat", &i);
XMLCSTR node_name = statNode->getAttribute("name");
XMLCSTR value = statNode->getAttribute("value");
if (!node_name)
warnMissingStatName(statNode->getAttribute("id"));
ASSIGN_FP_IF("duty_cycle", pcies.duty_cycle);
ASSIGN_FP_IF("perc_load", pcies.perc_load);
else {
warnUnrecognizedStat(node_name);
}
}
}
FlashController::FlashController(XMLNode* _xml_data,
InputParameter* interface_ip_)
: McPATComponent(_xml_data, interface_ip_) {
name = "Flash Controller";
set_fc_param();
}
void FlashController::computeArea() {
double ctrl_area;
double SerDer_area;
/* Assuming Flash is bit-slice based architecture
* This is the reason for /8 in both area and power calculation
* to get per lane numbers
*/
if (fcp.type == 0) { //high performance flash controller
cout << "Current McPAT does not support high performance flash "
<< "controller since even low power designs are enough for "
<< "maintain throughput" <<endl;
exit(0);
} else {
ctrl_area = 0.243 * (interface_ip.F_sz_um / 0.065) *
(interface_ip.F_sz_um / 0.065);
//Area estimation based on Cadence ChipEstimate @ 65nm: NANDFLASH-CTRL
//from CAST
SerDer_area = 0.36 / 8 * (interface_ip.F_sz_um / 0.065) *
(interface_ip.F_sz_um / 0.065);
}
double number_channel = 1 + (fcp.num_channels - 1) * 0.2;
output_data.area = (ctrl_area + (fcp.withPHY ? SerDer_area : 0)) *
1e6 * number_channel;
}
void FlashController::computeEnergy() {
double ctrl_dyn;
double SerDer_dyn;
double ctrl_gates;
double SerDer_gates;
double pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio();
double NMOS_sizing;
double PMOS_sizing;
/* Assuming Flash is bit-slice based architecture
* This is the reason for /8 in both area and power calculation
* to get per lane numbers
*/
if (fcp.type == 0) { //high performance flash controller
cout << "Current McPAT does not support high performance flash "
<< "controller since even low power designs are enough for "
<< "maintain throughput" <<endl;
exit(0);
NMOS_sizing = 5 * g_tp.min_w_nmos_;
PMOS_sizing = 5 * g_tp.min_w_nmos_ * pmos_to_nmos_sizing_r;
} else {
//based On PCIe PHY TSMC65GP from Cadence ChipEstimate @ 65nm, it
//support 8x lanes with each lane speed up to 250MB/s (PCIe1.1x).
//This is already saturate the 200MB/s of the flash controller core
//above.
ctrl_gates = 129267;
SerDer_gates = 200000 / 8;
NMOS_sizing = g_tp.min_w_nmos_;
PMOS_sizing = g_tp.min_w_nmos_ * pmos_to_nmos_sizing_r;
//Power
//Cadence ChipEstimate using 65nm the controller 125mW for every
//200MB/s This is power not energy!
ctrl_dyn = 0.125 * g_tp.peri_global.Vdd / 1.1 * g_tp.peri_global.Vdd /
1.1 * (interface_ip.F_sz_nm / 65.0);
//SerDer_dyn is power not energy, scaling from 10mw/Gb/s @90nm
SerDer_dyn = 0.01 * 1.6 * (interface_ip.F_sz_um / 0.09) *
g_tp.peri_global.Vdd / 1.2 * g_tp.peri_global.Vdd / 1.2;
//max Per controller speed is 1.6Gb/s (200MB/s)
}
double number_channel = 1 + (fcp.num_channels - 1) * 0.2;
power.readOp.dynamic = (ctrl_dyn + (fcp.withPHY ? SerDer_dyn : 0)) *
number_channel;
power.readOp.leakage = ((ctrl_gates + (fcp.withPHY ? SerDer_gates : 0)) *
number_channel) *
cmos_Isub_leakage(NMOS_sizing, PMOS_sizing, 2, nand) *
g_tp.peri_global.Vdd;//unit W
double long_channel_device_reduction =
longer_channel_device_reduction(Uncore_device);
power.readOp.longer_channel_leakage =
power.readOp.leakage * long_channel_device_reduction;
power.readOp.gate_leakage =
((ctrl_gates + (fcp.withPHY ? SerDer_gates : 0)) * number_channel) *
cmos_Ig_leakage(NMOS_sizing, PMOS_sizing, 2, nand) *
g_tp.peri_global.Vdd;//unit W
// Output power
output_data.subthreshold_leakage_power =
longer_channel_device ? power.readOp.longer_channel_leakage :
power.readOp.leakage;
output_data.gate_leakage_power = power.readOp.gate_leakage;
output_data.peak_dynamic_power = power.readOp.dynamic * fcs.duty_cycle;
output_data.runtime_dynamic_energy = power.readOp.dynamic * fcs.perc_load;
}
void FlashController::set_fc_param()
{
int num_children = xml_data->nChildNode("param");
int i;
for (i = 0; i < num_children; i++) {
XMLNode* paramNode = xml_data->getChildNodePtr("param", &i);
XMLCSTR node_name = paramNode->getAttribute("name");
XMLCSTR value = paramNode->getAttribute("value");
if (!node_name)
warnMissingParamName(paramNode->getAttribute("id"));
ASSIGN_INT_IF("num_channels", fcp.num_channels);
ASSIGN_INT_IF("type", fcp.type);
ASSIGN_ENUM_IF("withPHY", fcp.withPHY, bool);
else {
warnUnrecognizedParam(node_name);
}
}
num_children = xml_data->nChildNode("stat");
for (i = 0; i < num_children; i++) {
XMLNode* statNode = xml_data->getChildNodePtr("stat", &i);
XMLCSTR node_name = statNode->getAttribute("name");
XMLCSTR value = statNode->getAttribute("value");
if (!node_name)
warnMissingStatName(statNode->getAttribute("id"));
ASSIGN_FP_IF("duty_cycle", fcs.duty_cycle);
ASSIGN_FP_IF("perc_load", fcs.perc_load);
else {
warnUnrecognizedStat(node_name);
}
}
}