blob: a3e4db839d46536d55670785c2e50ab5454b002a [file] [log] [blame]
/*
* Copyright (c) 2010-2012,2017-2019 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2001-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "mem/abstract_mem.hh"
#include <vector>
#include "arch/locked_mem.hh"
#include "base/loader/memory_image.hh"
#include "base/loader/object_file.hh"
#include "cpu/thread_context.hh"
#include "debug/LLSC.hh"
#include "debug/MemoryAccess.hh"
#include "mem/packet_access.hh"
#include "sim/system.hh"
AbstractMemory::AbstractMemory(const Params &p) :
ClockedObject(p), range(p.range), pmemAddr(NULL),
backdoor(params().range, nullptr,
(MemBackdoor::Flags)(MemBackdoor::Readable |
MemBackdoor::Writeable)),
confTableReported(p.conf_table_reported), inAddrMap(p.in_addr_map),
kvmMap(p.kvm_map), _system(NULL),
stats(*this)
{
panic_if(!range.valid() || !range.size(),
"Memory range %s must be valid with non-zero size.",
range.to_string());
}
void
AbstractMemory::initState()
{
ClockedObject::initState();
const auto &file = params().image_file;
if (file == "")
return;
auto *object = Loader::createObjectFile(file, true);
fatal_if(!object, "%s: Could not load %s.", name(), file);
Loader::debugSymbolTable.insert(*object->symtab().globals());
Loader::MemoryImage image = object->buildImage();
AddrRange image_range(image.minAddr(), image.maxAddr());
if (!range.contains(image_range.start())) {
warn("%s: Moving image from %s to memory address range %s.",
name(), image_range.to_string(), range.to_string());
image = image.offset(range.start());
image_range = AddrRange(image.minAddr(), image.maxAddr());
}
panic_if(!image_range.isSubset(range), "%s: memory image %s doesn't fit.",
name(), file);
PortProxy proxy([this](PacketPtr pkt) { functionalAccess(pkt); },
system()->cacheLineSize());
panic_if(!image.write(proxy), "%s: Unable to write image.");
}
void
AbstractMemory::setBackingStore(uint8_t* pmem_addr)
{
// If there was an existing backdoor, let everybody know it's going away.
if (backdoor.ptr())
backdoor.invalidate();
// The back door can't handle interleaved memory.
backdoor.ptr(range.interleaved() ? nullptr : pmem_addr);
pmemAddr = pmem_addr;
}
AbstractMemory::MemStats::MemStats(AbstractMemory &_mem)
: Stats::Group(&_mem), mem(_mem),
ADD_STAT(bytesRead, UNIT_BYTE, "Number of bytes read from this memory"),
ADD_STAT(bytesInstRead, UNIT_BYTE,
"Number of instructions bytes read from this memory"),
ADD_STAT(bytesWritten, UNIT_BYTE,
"Number of bytes written to this memory"),
ADD_STAT(numReads, UNIT_COUNT,
"Number of read requests responded to by this memory"),
ADD_STAT(numWrites, UNIT_COUNT,
"Number of write requests responded to by this memory"),
ADD_STAT(numOther, UNIT_COUNT,
"Number of other requests responded to by this memory"),
ADD_STAT(bwRead, UNIT_RATE(Stats::Units::Byte, Stats::Units::Second),
"Total read bandwidth from this memory"),
ADD_STAT(bwInstRead, UNIT_RATE(Stats::Units::Byte, Stats::Units::Second),
"Instruction read bandwidth from this memory"),
ADD_STAT(bwWrite, UNIT_RATE(Stats::Units::Byte, Stats::Units::Second),
"Write bandwidth from this memory"),
ADD_STAT(bwTotal, UNIT_RATE(Stats::Units::Byte, Stats::Units::Second),
"Total bandwidth to/from this memory")
{
}
void
AbstractMemory::MemStats::regStats()
{
using namespace Stats;
Stats::Group::regStats();
System *sys = mem.system();
assert(sys);
const auto max_requestors = sys->maxRequestors();
bytesRead
.init(max_requestors)
.flags(total | nozero | nonan)
;
for (int i = 0; i < max_requestors; i++) {
bytesRead.subname(i, sys->getRequestorName(i));
}
bytesInstRead
.init(max_requestors)
.flags(total | nozero | nonan)
;
for (int i = 0; i < max_requestors; i++) {
bytesInstRead.subname(i, sys->getRequestorName(i));
}
bytesWritten
.init(max_requestors)
.flags(total | nozero | nonan)
;
for (int i = 0; i < max_requestors; i++) {
bytesWritten.subname(i, sys->getRequestorName(i));
}
numReads
.init(max_requestors)
.flags(total | nozero | nonan)
;
for (int i = 0; i < max_requestors; i++) {
numReads.subname(i, sys->getRequestorName(i));
}
numWrites
.init(max_requestors)
.flags(total | nozero | nonan)
;
for (int i = 0; i < max_requestors; i++) {
numWrites.subname(i, sys->getRequestorName(i));
}
numOther
.init(max_requestors)
.flags(total | nozero | nonan)
;
for (int i = 0; i < max_requestors; i++) {
numOther.subname(i, sys->getRequestorName(i));
}
bwRead
.precision(0)
.prereq(bytesRead)
.flags(total | nozero | nonan)
;
for (int i = 0; i < max_requestors; i++) {
bwRead.subname(i, sys->getRequestorName(i));
}
bwInstRead
.precision(0)
.prereq(bytesInstRead)
.flags(total | nozero | nonan)
;
for (int i = 0; i < max_requestors; i++) {
bwInstRead.subname(i, sys->getRequestorName(i));
}
bwWrite
.precision(0)
.prereq(bytesWritten)
.flags(total | nozero | nonan)
;
for (int i = 0; i < max_requestors; i++) {
bwWrite.subname(i, sys->getRequestorName(i));
}
bwTotal
.precision(0)
.prereq(bwTotal)
.flags(total | nozero | nonan)
;
for (int i = 0; i < max_requestors; i++) {
bwTotal.subname(i, sys->getRequestorName(i));
}
bwRead = bytesRead / simSeconds;
bwInstRead = bytesInstRead / simSeconds;
bwWrite = bytesWritten / simSeconds;
bwTotal = (bytesRead + bytesWritten) / simSeconds;
}
AddrRange
AbstractMemory::getAddrRange() const
{
return range;
}
// Add load-locked to tracking list. Should only be called if the
// operation is a load and the LLSC flag is set.
void
AbstractMemory::trackLoadLocked(PacketPtr pkt)
{
const RequestPtr &req = pkt->req;
Addr paddr = LockedAddr::mask(req->getPaddr());
// first we check if we already have a locked addr for this
// xc. Since each xc only gets one, we just update the
// existing record with the new address.
std::list<LockedAddr>::iterator i;
for (i = lockedAddrList.begin(); i != lockedAddrList.end(); ++i) {
if (i->matchesContext(req)) {
DPRINTF(LLSC, "Modifying lock record: context %d addr %#x\n",
req->contextId(), paddr);
i->addr = paddr;
return;
}
}
// no record for this xc: need to allocate a new one
DPRINTF(LLSC, "Adding lock record: context %d addr %#x\n",
req->contextId(), paddr);
lockedAddrList.push_front(LockedAddr(req));
backdoor.invalidate();
}
// Called on *writes* only... both regular stores and
// store-conditional operations. Check for conventional stores which
// conflict with locked addresses, and for success/failure of store
// conditionals.
bool
AbstractMemory::checkLockedAddrList(PacketPtr pkt)
{
const RequestPtr &req = pkt->req;
Addr paddr = LockedAddr::mask(req->getPaddr());
bool isLLSC = pkt->isLLSC();
// Initialize return value. Non-conditional stores always
// succeed. Assume conditional stores will fail until proven
// otherwise.
bool allowStore = !isLLSC;
// Iterate over list. Note that there could be multiple matching records,
// as more than one context could have done a load locked to this location.
// Only remove records when we succeed in finding a record for (xc, addr);
// then, remove all records with this address. Failed store-conditionals do
// not blow unrelated reservations.
std::list<LockedAddr>::iterator i = lockedAddrList.begin();
if (isLLSC) {
while (i != lockedAddrList.end()) {
if (i->addr == paddr && i->matchesContext(req)) {
// it's a store conditional, and as far as the memory system can
// tell, the requesting context's lock is still valid.
DPRINTF(LLSC, "StCond success: context %d addr %#x\n",
req->contextId(), paddr);
allowStore = true;
break;
}
// If we didn't find a match, keep searching! Someone else may well
// have a reservation on this line here but we may find ours in just
// a little while.
i++;
}
req->setExtraData(allowStore ? 1 : 0);
}
// LLSCs that succeeded AND non-LLSC stores both fall into here:
if (allowStore) {
// We write address paddr. However, there may be several entries with a
// reservation on this address (for other contextIds) and they must all
// be removed.
i = lockedAddrList.begin();
while (i != lockedAddrList.end()) {
if (i->addr == paddr) {
DPRINTF(LLSC, "Erasing lock record: context %d addr %#x\n",
i->contextId, paddr);
ContextID owner_cid = i->contextId;
assert(owner_cid != InvalidContextID);
ContextID requestor_cid = req->hasContextId() ?
req->contextId() :
InvalidContextID;
if (owner_cid != requestor_cid) {
ThreadContext* ctx = system()->threads[owner_cid];
TheISA::globalClearExclusive(ctx);
}
i = lockedAddrList.erase(i);
} else {
i++;
}
}
}
return allowStore;
}
#if TRACING_ON
static inline void
tracePacket(System *sys, const char *label, PacketPtr pkt)
{
int size = pkt->getSize();
if (size == 1 || size == 2 || size == 4 || size == 8) {
ByteOrder byte_order = sys->getGuestByteOrder();
DPRINTF(MemoryAccess, "%s from %s of size %i on address %#x data "
"%#x %c\n", label, sys->getRequestorName(pkt->req->
requestorId()), size, pkt->getAddr(),
size, pkt->getAddr(), pkt->getUintX(byte_order),
pkt->req->isUncacheable() ? 'U' : 'C');
return;
}
DPRINTF(MemoryAccess, "%s from %s of size %i on address %#x %c\n",
label, sys->getRequestorName(pkt->req->requestorId()),
size, pkt->getAddr(), pkt->req->isUncacheable() ? 'U' : 'C');
DDUMP(MemoryAccess, pkt->getConstPtr<uint8_t>(), pkt->getSize());
}
# define TRACE_PACKET(A) tracePacket(system(), A, pkt)
#else
# define TRACE_PACKET(A)
#endif
void
AbstractMemory::access(PacketPtr pkt)
{
if (pkt->cacheResponding()) {
DPRINTF(MemoryAccess, "Cache responding to %#llx: not responding\n",
pkt->getAddr());
return;
}
if (pkt->cmd == MemCmd::CleanEvict || pkt->cmd == MemCmd::WritebackClean) {
DPRINTF(MemoryAccess, "CleanEvict on 0x%x: not responding\n",
pkt->getAddr());
return;
}
assert(pkt->getAddrRange().isSubset(range));
uint8_t *host_addr = toHostAddr(pkt->getAddr());
if (pkt->cmd == MemCmd::SwapReq) {
if (pkt->isAtomicOp()) {
if (pmemAddr) {
pkt->setData(host_addr);
(*(pkt->getAtomicOp()))(host_addr);
}
} else {
std::vector<uint8_t> overwrite_val(pkt->getSize());
uint64_t condition_val64;
uint32_t condition_val32;
panic_if(!pmemAddr, "Swap only works if there is real memory " \
"(i.e. null=False)");
bool overwrite_mem = true;
// keep a copy of our possible write value, and copy what is at the
// memory address into the packet
pkt->writeData(&overwrite_val[0]);
pkt->setData(host_addr);
if (pkt->req->isCondSwap()) {
if (pkt->getSize() == sizeof(uint64_t)) {
condition_val64 = pkt->req->getExtraData();
overwrite_mem = !std::memcmp(&condition_val64, host_addr,
sizeof(uint64_t));
} else if (pkt->getSize() == sizeof(uint32_t)) {
condition_val32 = (uint32_t)pkt->req->getExtraData();
overwrite_mem = !std::memcmp(&condition_val32, host_addr,
sizeof(uint32_t));
} else
panic("Invalid size for conditional read/write\n");
}
if (overwrite_mem)
std::memcpy(host_addr, &overwrite_val[0], pkt->getSize());
assert(!pkt->req->isInstFetch());
TRACE_PACKET("Read/Write");
stats.numOther[pkt->req->requestorId()]++;
}
} else if (pkt->isRead()) {
assert(!pkt->isWrite());
if (pkt->isLLSC()) {
assert(!pkt->fromCache());
// if the packet is not coming from a cache then we have
// to do the LL/SC tracking here
trackLoadLocked(pkt);
}
if (pmemAddr) {
pkt->setData(host_addr);
}
TRACE_PACKET(pkt->req->isInstFetch() ? "IFetch" : "Read");
stats.numReads[pkt->req->requestorId()]++;
stats.bytesRead[pkt->req->requestorId()] += pkt->getSize();
if (pkt->req->isInstFetch())
stats.bytesInstRead[pkt->req->requestorId()] += pkt->getSize();
} else if (pkt->isInvalidate() || pkt->isClean()) {
assert(!pkt->isWrite());
// in a fastmem system invalidating and/or cleaning packets
// can be seen due to cache maintenance requests
// no need to do anything
} else if (pkt->isWrite()) {
if (writeOK(pkt)) {
if (pmemAddr) {
pkt->writeData(host_addr);
DPRINTF(MemoryAccess, "%s write due to %s\n",
__func__, pkt->print());
}
assert(!pkt->req->isInstFetch());
TRACE_PACKET("Write");
stats.numWrites[pkt->req->requestorId()]++;
stats.bytesWritten[pkt->req->requestorId()] += pkt->getSize();
}
} else {
panic("Unexpected packet %s", pkt->print());
}
if (pkt->needsResponse()) {
pkt->makeResponse();
}
}
void
AbstractMemory::functionalAccess(PacketPtr pkt)
{
assert(pkt->getAddrRange().isSubset(range));
uint8_t *host_addr = toHostAddr(pkt->getAddr());
if (pkt->isRead()) {
if (pmemAddr) {
pkt->setData(host_addr);
}
TRACE_PACKET("Read");
pkt->makeResponse();
} else if (pkt->isWrite()) {
if (pmemAddr) {
pkt->writeData(host_addr);
}
TRACE_PACKET("Write");
pkt->makeResponse();
} else if (pkt->isPrint()) {
Packet::PrintReqState *prs =
dynamic_cast<Packet::PrintReqState*>(pkt->senderState);
assert(prs);
// Need to call printLabels() explicitly since we're not going
// through printObj().
prs->printLabels();
// Right now we just print the single byte at the specified address.
ccprintf(prs->os, "%s%#x\n", prs->curPrefix(), *host_addr);
} else {
panic("AbstractMemory: unimplemented functional command %s",
pkt->cmdString());
}
}