blob: 06e578329e1941a94f4bad8a6740f6d0fc5ad699 [file] [log] [blame]
# -*- coding: utf-8 -*-
import re
import pytest
import env # noqa: F401
from pybind11_tests import numpy_dtypes as m
np = pytest.importorskip("numpy")
@pytest.fixture(scope="module")
def simple_dtype():
ld = np.dtype("longdouble")
return np.dtype(
{
"names": ["bool_", "uint_", "float_", "ldbl_"],
"formats": ["?", "u4", "f4", "f{}".format(ld.itemsize)],
"offsets": [0, 4, 8, (16 if ld.alignment > 4 else 12)],
}
)
@pytest.fixture(scope="module")
def packed_dtype():
return np.dtype([("bool_", "?"), ("uint_", "u4"), ("float_", "f4"), ("ldbl_", "g")])
def dt_fmt():
from sys import byteorder
e = "<" if byteorder == "little" else ">"
return (
"{{'names':['bool_','uint_','float_','ldbl_'],"
" 'formats':['?','" + e + "u4','" + e + "f4','" + e + "f{}'],"
" 'offsets':[0,4,8,{}], 'itemsize':{}}}"
)
def simple_dtype_fmt():
ld = np.dtype("longdouble")
simple_ld_off = 12 + 4 * (ld.alignment > 4)
return dt_fmt().format(ld.itemsize, simple_ld_off, simple_ld_off + ld.itemsize)
def packed_dtype_fmt():
from sys import byteorder
return "[('bool_', '?'), ('uint_', '{e}u4'), ('float_', '{e}f4'), ('ldbl_', '{e}f{}')]".format(
np.dtype("longdouble").itemsize, e="<" if byteorder == "little" else ">"
)
def partial_ld_offset():
return (
12
+ 4 * (np.dtype("uint64").alignment > 4)
+ 8
+ 8 * (np.dtype("longdouble").alignment > 8)
)
def partial_dtype_fmt():
ld = np.dtype("longdouble")
partial_ld_off = partial_ld_offset()
partial_size = partial_ld_off + ld.itemsize
partial_end_padding = partial_size % np.dtype("uint64").alignment
return dt_fmt().format(
ld.itemsize, partial_ld_off, partial_size + partial_end_padding
)
def partial_nested_fmt():
ld = np.dtype("longdouble")
partial_nested_off = 8 + 8 * (ld.alignment > 8)
partial_ld_off = partial_ld_offset()
partial_size = partial_ld_off + ld.itemsize
partial_end_padding = partial_size % np.dtype("uint64").alignment
partial_nested_size = partial_nested_off * 2 + partial_size + partial_end_padding
return "{{'names':['a'], 'formats':[{}], 'offsets':[{}], 'itemsize':{}}}".format(
partial_dtype_fmt(), partial_nested_off, partial_nested_size
)
def assert_equal(actual, expected_data, expected_dtype):
np.testing.assert_equal(actual, np.array(expected_data, dtype=expected_dtype))
def test_format_descriptors():
with pytest.raises(RuntimeError) as excinfo:
m.get_format_unbound()
assert re.match(
"^NumPy type info missing for .*UnboundStruct.*$", str(excinfo.value)
)
ld = np.dtype("longdouble")
ldbl_fmt = ("4x" if ld.alignment > 4 else "") + ld.char
ss_fmt = "^T{?:bool_:3xI:uint_:f:float_:" + ldbl_fmt + ":ldbl_:}"
dbl = np.dtype("double")
end_padding = ld.itemsize % np.dtype("uint64").alignment
partial_fmt = (
"^T{?:bool_:3xI:uint_:f:float_:"
+ str(4 * (dbl.alignment > 4) + dbl.itemsize + 8 * (ld.alignment > 8))
+ "xg:ldbl_:"
+ (str(end_padding) + "x}" if end_padding > 0 else "}")
)
nested_extra = str(max(8, ld.alignment))
assert m.print_format_descriptors() == [
ss_fmt,
"^T{?:bool_:I:uint_:f:float_:g:ldbl_:}",
"^T{" + ss_fmt + ":a:^T{?:bool_:I:uint_:f:float_:g:ldbl_:}:b:}",
partial_fmt,
"^T{" + nested_extra + "x" + partial_fmt + ":a:" + nested_extra + "x}",
"^T{3s:a:3s:b:}",
"^T{(3)4s:a:(2)i:b:(3)B:c:1x(4, 2)f:d:}",
"^T{q:e1:B:e2:}",
"^T{Zf:cflt:Zd:cdbl:}",
]
def test_dtype(simple_dtype):
from sys import byteorder
e = "<" if byteorder == "little" else ">"
assert m.print_dtypes() == [
simple_dtype_fmt(),
packed_dtype_fmt(),
"[('a', {}), ('b', {})]".format(simple_dtype_fmt(), packed_dtype_fmt()),
partial_dtype_fmt(),
partial_nested_fmt(),
"[('a', 'S3'), ('b', 'S3')]",
(
"{{'names':['a','b','c','d'], "
+ "'formats':[('S4', (3,)),('"
+ e
+ "i4', (2,)),('u1', (3,)),('"
+ e
+ "f4', (4, 2))], "
+ "'offsets':[0,12,20,24], 'itemsize':56}}"
).format(e=e),
"[('e1', '" + e + "i8'), ('e2', 'u1')]",
"[('x', 'i1'), ('y', '" + e + "u8')]",
"[('cflt', '" + e + "c8'), ('cdbl', '" + e + "c16')]",
]
d1 = np.dtype(
{
"names": ["a", "b"],
"formats": ["int32", "float64"],
"offsets": [1, 10],
"itemsize": 20,
}
)
d2 = np.dtype([("a", "i4"), ("b", "f4")])
assert m.test_dtype_ctors() == [
np.dtype("int32"),
np.dtype("float64"),
np.dtype("bool"),
d1,
d1,
np.dtype("uint32"),
d2,
]
assert m.test_dtype_methods() == [
np.dtype("int32"),
simple_dtype,
False,
True,
np.dtype("int32").itemsize,
simple_dtype.itemsize,
]
assert m.trailing_padding_dtype() == m.buffer_to_dtype(
np.zeros(1, m.trailing_padding_dtype())
)
assert m.test_dtype_kind() == list("iiiiiuuuuuffffcccbMmO")
assert m.test_dtype_char_() == list("bhilqBHILQefdgFDG?MmO")
def test_recarray(simple_dtype, packed_dtype):
elements = [(False, 0, 0.0, -0.0), (True, 1, 1.5, -2.5), (False, 2, 3.0, -5.0)]
for func, dtype in [
(m.create_rec_simple, simple_dtype),
(m.create_rec_packed, packed_dtype),
]:
arr = func(0)
assert arr.dtype == dtype
assert_equal(arr, [], simple_dtype)
assert_equal(arr, [], packed_dtype)
arr = func(3)
assert arr.dtype == dtype
assert_equal(arr, elements, simple_dtype)
assert_equal(arr, elements, packed_dtype)
# Show what recarray's look like in NumPy.
assert type(arr[0]) == np.void
assert type(arr[0].item()) == tuple
if dtype == simple_dtype:
assert m.print_rec_simple(arr) == [
"s:0,0,0,-0",
"s:1,1,1.5,-2.5",
"s:0,2,3,-5",
]
else:
assert m.print_rec_packed(arr) == [
"p:0,0,0,-0",
"p:1,1,1.5,-2.5",
"p:0,2,3,-5",
]
nested_dtype = np.dtype([("a", simple_dtype), ("b", packed_dtype)])
arr = m.create_rec_nested(0)
assert arr.dtype == nested_dtype
assert_equal(arr, [], nested_dtype)
arr = m.create_rec_nested(3)
assert arr.dtype == nested_dtype
assert_equal(
arr,
[
((False, 0, 0.0, -0.0), (True, 1, 1.5, -2.5)),
((True, 1, 1.5, -2.5), (False, 2, 3.0, -5.0)),
((False, 2, 3.0, -5.0), (True, 3, 4.5, -7.5)),
],
nested_dtype,
)
assert m.print_rec_nested(arr) == [
"n:a=s:0,0,0,-0;b=p:1,1,1.5,-2.5",
"n:a=s:1,1,1.5,-2.5;b=p:0,2,3,-5",
"n:a=s:0,2,3,-5;b=p:1,3,4.5,-7.5",
]
arr = m.create_rec_partial(3)
assert str(arr.dtype) == partial_dtype_fmt()
partial_dtype = arr.dtype
assert "" not in arr.dtype.fields
assert partial_dtype.itemsize > simple_dtype.itemsize
assert_equal(arr, elements, simple_dtype)
assert_equal(arr, elements, packed_dtype)
arr = m.create_rec_partial_nested(3)
assert str(arr.dtype) == partial_nested_fmt()
assert "" not in arr.dtype.fields
assert "" not in arr.dtype.fields["a"][0].fields
assert arr.dtype.itemsize > partial_dtype.itemsize
np.testing.assert_equal(arr["a"], m.create_rec_partial(3))
def test_array_constructors():
data = np.arange(1, 7, dtype="int32")
for i in range(8):
np.testing.assert_array_equal(m.test_array_ctors(10 + i), data.reshape((3, 2)))
np.testing.assert_array_equal(m.test_array_ctors(20 + i), data.reshape((3, 2)))
for i in range(5):
np.testing.assert_array_equal(m.test_array_ctors(30 + i), data)
np.testing.assert_array_equal(m.test_array_ctors(40 + i), data)
def test_string_array():
arr = m.create_string_array(True)
assert str(arr.dtype) == "[('a', 'S3'), ('b', 'S3')]"
assert m.print_string_array(arr) == [
"a='',b=''",
"a='a',b='a'",
"a='ab',b='ab'",
"a='abc',b='abc'",
]
dtype = arr.dtype
assert arr["a"].tolist() == [b"", b"a", b"ab", b"abc"]
assert arr["b"].tolist() == [b"", b"a", b"ab", b"abc"]
arr = m.create_string_array(False)
assert dtype == arr.dtype
def test_array_array():
from sys import byteorder
e = "<" if byteorder == "little" else ">"
arr = m.create_array_array(3)
assert str(arr.dtype) == (
"{{'names':['a','b','c','d'], "
+ "'formats':[('S4', (3,)),('"
+ e
+ "i4', (2,)),('u1', (3,)),('{e}f4', (4, 2))], "
+ "'offsets':[0,12,20,24], 'itemsize':56}}"
).format(e=e)
assert m.print_array_array(arr) == [
"a={{A,B,C,D},{K,L,M,N},{U,V,W,X}},b={0,1},"
+ "c={0,1,2},d={{0,1},{10,11},{20,21},{30,31}}",
"a={{W,X,Y,Z},{G,H,I,J},{Q,R,S,T}},b={1000,1001},"
+ "c={10,11,12},d={{100,101},{110,111},{120,121},{130,131}}",
"a={{S,T,U,V},{C,D,E,F},{M,N,O,P}},b={2000,2001},"
+ "c={20,21,22},d={{200,201},{210,211},{220,221},{230,231}}",
]
assert arr["a"].tolist() == [
[b"ABCD", b"KLMN", b"UVWX"],
[b"WXYZ", b"GHIJ", b"QRST"],
[b"STUV", b"CDEF", b"MNOP"],
]
assert arr["b"].tolist() == [[0, 1], [1000, 1001], [2000, 2001]]
assert m.create_array_array(0).dtype == arr.dtype
def test_enum_array():
from sys import byteorder
e = "<" if byteorder == "little" else ">"
arr = m.create_enum_array(3)
dtype = arr.dtype
assert dtype == np.dtype([("e1", e + "i8"), ("e2", "u1")])
assert m.print_enum_array(arr) == ["e1=A,e2=X", "e1=B,e2=Y", "e1=A,e2=X"]
assert arr["e1"].tolist() == [-1, 1, -1]
assert arr["e2"].tolist() == [1, 2, 1]
assert m.create_enum_array(0).dtype == dtype
def test_complex_array():
from sys import byteorder
e = "<" if byteorder == "little" else ">"
arr = m.create_complex_array(3)
dtype = arr.dtype
assert dtype == np.dtype([("cflt", e + "c8"), ("cdbl", e + "c16")])
assert m.print_complex_array(arr) == [
"c:(0,0.25),(0.5,0.75)",
"c:(1,1.25),(1.5,1.75)",
"c:(2,2.25),(2.5,2.75)",
]
assert arr["cflt"].tolist() == [0.0 + 0.25j, 1.0 + 1.25j, 2.0 + 2.25j]
assert arr["cdbl"].tolist() == [0.5 + 0.75j, 1.5 + 1.75j, 2.5 + 2.75j]
assert m.create_complex_array(0).dtype == dtype
def test_signature(doc):
assert (
doc(m.create_rec_nested)
== "create_rec_nested(arg0: int) -> numpy.ndarray[NestedStruct]"
)
def test_scalar_conversion():
n = 3
arrays = [
m.create_rec_simple(n),
m.create_rec_packed(n),
m.create_rec_nested(n),
m.create_enum_array(n),
]
funcs = [m.f_simple, m.f_packed, m.f_nested]
for i, func in enumerate(funcs):
for j, arr in enumerate(arrays):
if i == j and i < 2:
assert [func(arr[k]) for k in range(n)] == [k * 10 for k in range(n)]
else:
with pytest.raises(TypeError) as excinfo:
func(arr[0])
assert "incompatible function arguments" in str(excinfo.value)
def test_vectorize():
n = 3
array = m.create_rec_simple(n)
values = m.f_simple_vectorized(array)
np.testing.assert_array_equal(values, [0, 10, 20])
array_2 = m.f_simple_pass_thru_vectorized(array)
np.testing.assert_array_equal(array, array_2)
def test_cls_and_dtype_conversion(simple_dtype):
s = m.SimpleStruct()
assert s.astuple() == (False, 0, 0.0, 0.0)
assert m.SimpleStruct.fromtuple(s.astuple()).astuple() == s.astuple()
s.uint_ = 2
assert m.f_simple(s) == 20
# Try as recarray of shape==(1,).
s_recarray = np.array([(False, 2, 0.0, 0.0)], dtype=simple_dtype)
# Show that this will work for vectorized case.
np.testing.assert_array_equal(m.f_simple_vectorized(s_recarray), [20])
# Show as a scalar that inherits from np.generic.
s_scalar = s_recarray[0]
assert isinstance(s_scalar, np.void)
assert m.f_simple(s_scalar) == 20
# Show that an *array* scalar (np.ndarray.shape == ()) does not convert.
# More specifically, conversion to SimpleStruct is not implicit.
s_recarray_scalar = s_recarray.reshape(())
assert isinstance(s_recarray_scalar, np.ndarray)
assert s_recarray_scalar.dtype == simple_dtype
with pytest.raises(TypeError) as excinfo:
m.f_simple(s_recarray_scalar)
assert "incompatible function arguments" in str(excinfo.value)
# Explicitly convert to m.SimpleStruct.
assert m.f_simple(m.SimpleStruct.fromtuple(s_recarray_scalar.item())) == 20
# Show that an array of dtype=object does *not* convert.
s_array_object = np.array([s])
assert s_array_object.dtype == object
with pytest.raises(TypeError) as excinfo:
m.f_simple_vectorized(s_array_object)
assert "incompatible function arguments" in str(excinfo.value)
# Explicitly convert to `np.array(..., dtype=simple_dtype)`
s_array = np.array([s.astuple()], dtype=simple_dtype)
np.testing.assert_array_equal(m.f_simple_vectorized(s_array), [20])
def test_register_dtype():
with pytest.raises(RuntimeError) as excinfo:
m.register_dtype()
assert "dtype is already registered" in str(excinfo.value)
@pytest.mark.xfail("env.PYPY")
def test_str_leak():
from sys import getrefcount
fmt = "f4"
pytest.gc_collect()
start = getrefcount(fmt)
d = m.dtype_wrapper(fmt)
assert d is np.dtype("f4")
del d
pytest.gc_collect()
assert getrefcount(fmt) == start
def test_compare_buffer_info():
assert all(m.compare_buffer_info())