blob: ff255d5f70ed74ad8783ca5ef0d4b55fe34011cf [file] [log] [blame]
/*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali Saidi
*/
/* @file
* Device model for Intel's 8254x line of gigabit ethernet controllers.
* In particular an 82547 revision 2 (82547GI) MAC because it seems to have the
* fewest workarounds in the driver. It will probably work with most of the
* other MACs with slight modifications.
*/
/*
* @todo really there are multiple dma engines.. we should implement them.
*/
#include <algorithm>
#include "base/inet.hh"
#include "base/trace.hh"
#include "dev/i8254xGBe.hh"
#include "mem/packet.hh"
#include "mem/packet_access.hh"
#include "params/IGbE.hh"
#include "sim/stats.hh"
#include "sim/system.hh"
using namespace iGbReg;
using namespace Net;
IGbE::IGbE(const Params *p)
: EtherDevice(p), etherInt(NULL), drainEvent(NULL), useFlowControl(p->use_flow_control),
rxFifo(p->rx_fifo_size), txFifo(p->tx_fifo_size), rxTick(false),
txTick(false), txFifoTick(false), rxDmaPacket(false), rdtrEvent(this), radvEvent(this),
tadvEvent(this), tidvEvent(this), tickEvent(this), interEvent(this),
rxDescCache(this, name()+".RxDesc", p->rx_desc_cache_size),
txDescCache(this, name()+".TxDesc", p->tx_desc_cache_size), clock(p->clock)
{
etherInt = new IGbEInt(name() + ".int", this);
// Initialized internal registers per Intel documentation
// All registers intialized to 0 by per register constructor
regs.ctrl.fd(1);
regs.ctrl.lrst(1);
regs.ctrl.speed(2);
regs.ctrl.frcspd(1);
regs.sts.speed(3); // Say we're 1000Mbps
regs.sts.fd(1); // full duplex
regs.sts.lu(1); // link up
regs.eecd.fwe(1);
regs.eecd.ee_type(1);
regs.imr = 0;
regs.iam = 0;
regs.rxdctl.gran(1);
regs.rxdctl.wthresh(1);
regs.fcrth(1);
regs.pba.rxa(0x30);
regs.pba.txa(0x10);
eeOpBits = 0;
eeAddrBits = 0;
eeDataBits = 0;
eeOpcode = 0;
// clear all 64 16 bit words of the eeprom
memset(&flash, 0, EEPROM_SIZE*2);
// Set the MAC address
memcpy(flash, p->hardware_address.bytes(), ETH_ADDR_LEN);
for (int x = 0; x < ETH_ADDR_LEN/2; x++)
flash[x] = htobe(flash[x]);
uint16_t csum = 0;
for (int x = 0; x < EEPROM_SIZE; x++)
csum += htobe(flash[x]);
// Magic happy checksum value
flash[EEPROM_SIZE-1] = htobe((uint16_t)(EEPROM_CSUM - csum));
rxFifo.clear();
txFifo.clear();
}
EtherInt*
IGbE::getEthPort(const std::string &if_name, int idx)
{
if (if_name == "interface") {
if (etherInt->getPeer())
panic("Port already connected to\n");
return etherInt;
}
return NULL;
}
Tick
IGbE::writeConfig(PacketPtr pkt)
{
int offset = pkt->getAddr() & PCI_CONFIG_SIZE;
if (offset < PCI_DEVICE_SPECIFIC)
PciDev::writeConfig(pkt);
else
panic("Device specific PCI config space not implemented.\n");
///
/// Some work may need to be done here based for the pci COMMAND bits.
///
return pioDelay;
}
Tick
IGbE::read(PacketPtr pkt)
{
int bar;
Addr daddr;
if (!getBAR(pkt->getAddr(), bar, daddr))
panic("Invalid PCI memory access to unmapped memory.\n");
// Only Memory register BAR is allowed
assert(bar == 0);
// Only 32bit accesses allowed
assert(pkt->getSize() == 4);
DPRINTF(Ethernet, "Read device register %#X\n", daddr);
pkt->allocate();
///
/// Handle read of register here
///
switch (daddr) {
case REG_CTRL:
pkt->set<uint32_t>(regs.ctrl());
break;
case REG_STATUS:
pkt->set<uint32_t>(regs.sts());
break;
case REG_EECD:
pkt->set<uint32_t>(regs.eecd());
break;
case REG_EERD:
pkt->set<uint32_t>(regs.eerd());
break;
case REG_CTRL_EXT:
pkt->set<uint32_t>(regs.ctrl_ext());
break;
case REG_MDIC:
pkt->set<uint32_t>(regs.mdic());
break;
case REG_ICR:
DPRINTF(Ethernet, "Reading ICR. ICR=%#x IMR=%#x IAM=%#x IAME=%d\n", regs.icr(),
regs.imr, regs.iam, regs.ctrl_ext.iame());
pkt->set<uint32_t>(regs.icr());
if (regs.icr.int_assert() || regs.imr == 0) {
regs.icr = regs.icr() & ~mask(30);
DPRINTF(Ethernet, "Cleared ICR. ICR=%#x\n", regs.icr());
}
if (regs.ctrl_ext.iame() && regs.icr.int_assert())
regs.imr &= ~regs.iam;
chkInterrupt();
break;
case REG_ITR:
pkt->set<uint32_t>(regs.itr());
break;
case REG_RCTL:
pkt->set<uint32_t>(regs.rctl());
break;
case REG_FCTTV:
pkt->set<uint32_t>(regs.fcttv());
break;
case REG_TCTL:
pkt->set<uint32_t>(regs.tctl());
break;
case REG_PBA:
pkt->set<uint32_t>(regs.pba());
break;
case REG_WUC:
case REG_LEDCTL:
pkt->set<uint32_t>(0); // We don't care, so just return 0
break;
case REG_FCRTL:
pkt->set<uint32_t>(regs.fcrtl());
break;
case REG_FCRTH:
pkt->set<uint32_t>(regs.fcrth());
break;
case REG_RDBAL:
pkt->set<uint32_t>(regs.rdba.rdbal());
break;
case REG_RDBAH:
pkt->set<uint32_t>(regs.rdba.rdbah());
break;
case REG_RDLEN:
pkt->set<uint32_t>(regs.rdlen());
break;
case REG_RDH:
pkt->set<uint32_t>(regs.rdh());
break;
case REG_RDT:
pkt->set<uint32_t>(regs.rdt());
break;
case REG_RDTR:
pkt->set<uint32_t>(regs.rdtr());
if (regs.rdtr.fpd()) {
rxDescCache.writeback(0);
DPRINTF(EthernetIntr, "Posting interrupt because of RDTR.FPD write\n");
postInterrupt(IT_RXT);
regs.rdtr.fpd(0);
}
break;
case REG_RADV:
pkt->set<uint32_t>(regs.radv());
break;
case REG_TDBAL:
pkt->set<uint32_t>(regs.tdba.tdbal());
break;
case REG_TDBAH:
pkt->set<uint32_t>(regs.tdba.tdbah());
break;
case REG_TDLEN:
pkt->set<uint32_t>(regs.tdlen());
break;
case REG_TDH:
pkt->set<uint32_t>(regs.tdh());
break;
case REG_TDT:
pkt->set<uint32_t>(regs.tdt());
break;
case REG_TIDV:
pkt->set<uint32_t>(regs.tidv());
break;
case REG_TXDCTL:
pkt->set<uint32_t>(regs.txdctl());
break;
case REG_TADV:
pkt->set<uint32_t>(regs.tadv());
break;
case REG_RXCSUM:
pkt->set<uint32_t>(regs.rxcsum());
break;
case REG_MANC:
pkt->set<uint32_t>(regs.manc());
break;
default:
if (!(daddr >= REG_VFTA && daddr < (REG_VFTA + VLAN_FILTER_TABLE_SIZE*4)) &&
!(daddr >= REG_RAL && daddr < (REG_RAL + RCV_ADDRESS_TABLE_SIZE*8)) &&
!(daddr >= REG_MTA && daddr < (REG_MTA + MULTICAST_TABLE_SIZE*4)) &&
!(daddr >= REG_CRCERRS && daddr < (REG_CRCERRS + STATS_REGS_SIZE)))
panic("Read request to unknown register number: %#x\n", daddr);
else
pkt->set<uint32_t>(0);
};
pkt->makeAtomicResponse();
return pioDelay;
}
Tick
IGbE::write(PacketPtr pkt)
{
int bar;
Addr daddr;
if (!getBAR(pkt->getAddr(), bar, daddr))
panic("Invalid PCI memory access to unmapped memory.\n");
// Only Memory register BAR is allowed
assert(bar == 0);
// Only 32bit accesses allowed
assert(pkt->getSize() == sizeof(uint32_t));
DPRINTF(Ethernet, "Wrote device register %#X value %#X\n", daddr, pkt->get<uint32_t>());
///
/// Handle write of register here
///
uint32_t val = pkt->get<uint32_t>();
Regs::RCTL oldrctl;
Regs::TCTL oldtctl;
switch (daddr) {
case REG_CTRL:
regs.ctrl = val;
if (regs.ctrl.tfce())
warn("TX Flow control enabled, should implement\n");
if (regs.ctrl.rfce())
warn("RX Flow control enabled, should implement\n");
break;
case REG_CTRL_EXT:
regs.ctrl_ext = val;
break;
case REG_STATUS:
regs.sts = val;
break;
case REG_EECD:
int oldClk;
oldClk = regs.eecd.sk();
regs.eecd = val;
// See if this is a eeprom access and emulate accordingly
if (!oldClk && regs.eecd.sk()) {
if (eeOpBits < 8) {
eeOpcode = eeOpcode << 1 | regs.eecd.din();
eeOpBits++;
} else if (eeAddrBits < 8 && eeOpcode == EEPROM_READ_OPCODE_SPI) {
eeAddr = eeAddr << 1 | regs.eecd.din();
eeAddrBits++;
} else if (eeDataBits < 16 && eeOpcode == EEPROM_READ_OPCODE_SPI) {
assert(eeAddr>>1 < EEPROM_SIZE);
DPRINTF(EthernetEEPROM, "EEPROM bit read: %d word: %#X\n",
flash[eeAddr>>1] >> eeDataBits & 0x1, flash[eeAddr>>1]);
regs.eecd.dout((flash[eeAddr>>1] >> (15-eeDataBits)) & 0x1);
eeDataBits++;
} else if (eeDataBits < 8 && eeOpcode == EEPROM_RDSR_OPCODE_SPI) {
regs.eecd.dout(0);
eeDataBits++;
} else
panic("What's going on with eeprom interface? opcode:"
" %#x:%d addr: %#x:%d, data: %d\n", (uint32_t)eeOpcode,
(uint32_t)eeOpBits, (uint32_t)eeAddr,
(uint32_t)eeAddrBits, (uint32_t)eeDataBits);
// Reset everything for the next command
if ((eeDataBits == 16 && eeOpcode == EEPROM_READ_OPCODE_SPI) ||
(eeDataBits == 8 && eeOpcode == EEPROM_RDSR_OPCODE_SPI)) {
eeOpBits = 0;
eeAddrBits = 0;
eeDataBits = 0;
eeOpcode = 0;
eeAddr = 0;
}
DPRINTF(EthernetEEPROM, "EEPROM: opcode: %#X:%d addr: %#X:%d\n",
(uint32_t)eeOpcode, (uint32_t) eeOpBits,
(uint32_t)eeAddr>>1, (uint32_t)eeAddrBits);
if (eeOpBits == 8 && !(eeOpcode == EEPROM_READ_OPCODE_SPI ||
eeOpcode == EEPROM_RDSR_OPCODE_SPI ))
panic("Unknown eeprom opcode: %#X:%d\n", (uint32_t)eeOpcode,
(uint32_t)eeOpBits);
}
// If driver requests eeprom access, immediately give it to it
regs.eecd.ee_gnt(regs.eecd.ee_req());
break;
case REG_EERD:
regs.eerd = val;
break;
case REG_MDIC:
regs.mdic = val;
if (regs.mdic.i())
panic("No support for interrupt on mdic complete\n");
if (regs.mdic.phyadd() != 1)
panic("No support for reading anything but phy\n");
DPRINTF(Ethernet, "%s phy address %x\n", regs.mdic.op() == 1 ? "Writing"
: "Reading", regs.mdic.regadd());
switch (regs.mdic.regadd()) {
case PHY_PSTATUS:
regs.mdic.data(0x796D); // link up
break;
case PHY_PID:
regs.mdic.data(0x02A8);
break;
case PHY_EPID:
regs.mdic.data(0x0380);
break;
case PHY_GSTATUS:
regs.mdic.data(0x7C00);
break;
case PHY_EPSTATUS:
regs.mdic.data(0x3000);
break;
case PHY_AGC:
regs.mdic.data(0x180); // some random length
break;
default:
regs.mdic.data(0);
}
regs.mdic.r(1);
break;
case REG_ICR:
DPRINTF(Ethernet, "Writing ICR. ICR=%#x IMR=%#x IAM=%#x IAME=%d\n", regs.icr(),
regs.imr, regs.iam, regs.ctrl_ext.iame());
if (regs.ctrl_ext.iame())
regs.imr &= ~regs.iam;
regs.icr = ~bits(val,30,0) & regs.icr();
chkInterrupt();
break;
case REG_ITR:
regs.itr = val;
break;
case REG_ICS:
DPRINTF(EthernetIntr, "Posting interrupt because of ICS write\n");
postInterrupt((IntTypes)val);
break;
case REG_IMS:
regs.imr |= val;
chkInterrupt();
break;
case REG_IMC:
regs.imr &= ~val;
chkInterrupt();
break;
case REG_IAM:
regs.iam = val;
break;
case REG_RCTL:
oldrctl = regs.rctl;
regs.rctl = val;
if (regs.rctl.rst()) {
rxDescCache.reset();
DPRINTF(EthernetSM, "RXS: Got RESET!\n");
rxFifo.clear();
regs.rctl.rst(0);
}
if (regs.rctl.en())
rxTick = true;
restartClock();
break;
case REG_FCTTV:
regs.fcttv = val;
break;
case REG_TCTL:
regs.tctl = val;
oldtctl = regs.tctl;
regs.tctl = val;
if (regs.tctl.en())
txTick = true;
restartClock();
if (regs.tctl.en() && !oldtctl.en()) {
txDescCache.reset();
}
break;
case REG_PBA:
regs.pba.rxa(val);
regs.pba.txa(64 - regs.pba.rxa());
break;
case REG_WUC:
case REG_LEDCTL:
case REG_FCAL:
case REG_FCAH:
case REG_FCT:
case REG_VET:
case REG_AIFS:
case REG_TIPG:
; // We don't care, so don't store anything
break;
case REG_FCRTL:
regs.fcrtl = val;
break;
case REG_FCRTH:
regs.fcrth = val;
break;
case REG_RDBAL:
regs.rdba.rdbal( val & ~mask(4));
rxDescCache.areaChanged();
break;
case REG_RDBAH:
regs.rdba.rdbah(val);
rxDescCache.areaChanged();
break;
case REG_RDLEN:
regs.rdlen = val & ~mask(7);
rxDescCache.areaChanged();
break;
case REG_RDH:
regs.rdh = val;
rxDescCache.areaChanged();
break;
case REG_RDT:
regs.rdt = val;
DPRINTF(EthernetSM, "RXS: RDT Updated.\n");
if (getState() == SimObject::Running) {
DPRINTF(EthernetSM, "RXS: RDT Fetching Descriptors!\n");
rxDescCache.fetchDescriptors();
} else {
DPRINTF(EthernetSM, "RXS: RDT NOT Fetching Desc b/c draining!\n");
}
break;
case REG_RDTR:
regs.rdtr = val;
break;
case REG_RADV:
regs.radv = val;
break;
case REG_TDBAL:
regs.tdba.tdbal( val & ~mask(4));
txDescCache.areaChanged();
break;
case REG_TDBAH:
regs.tdba.tdbah(val);
txDescCache.areaChanged();
break;
case REG_TDLEN:
regs.tdlen = val & ~mask(7);
txDescCache.areaChanged();
break;
case REG_TDH:
regs.tdh = val;
txDescCache.areaChanged();
break;
case REG_TDT:
regs.tdt = val;
DPRINTF(EthernetSM, "TXS: TX Tail pointer updated\n");
if (getState() == SimObject::Running) {
DPRINTF(EthernetSM, "TXS: TDT Fetching Descriptors!\n");
txDescCache.fetchDescriptors();
} else {
DPRINTF(EthernetSM, "TXS: TDT NOT Fetching Desc b/c draining!\n");
}
break;
case REG_TIDV:
regs.tidv = val;
break;
case REG_TXDCTL:
regs.txdctl = val;
break;
case REG_TADV:
regs.tadv = val;
break;
case REG_RXCSUM:
regs.rxcsum = val;
break;
case REG_MANC:
regs.manc = val;
break;
default:
if (!(daddr >= REG_VFTA && daddr < (REG_VFTA + VLAN_FILTER_TABLE_SIZE*4)) &&
!(daddr >= REG_RAL && daddr < (REG_RAL + RCV_ADDRESS_TABLE_SIZE*8)) &&
!(daddr >= REG_MTA && daddr < (REG_MTA + MULTICAST_TABLE_SIZE*4)))
panic("Write request to unknown register number: %#x\n", daddr);
};
pkt->makeAtomicResponse();
return pioDelay;
}
void
IGbE::postInterrupt(IntTypes t, bool now)
{
assert(t);
// Interrupt is already pending
if (t & regs.icr() && !now)
return;
regs.icr = regs.icr() | t;
if (regs.itr.interval() == 0 || now) {
if (interEvent.scheduled()) {
interEvent.deschedule();
}
cpuPostInt();
} else {
DPRINTF(EthernetIntr, "EINT: Scheduling timer interrupt for %d ticks\n",
Clock::Int::ns * 256 * regs.itr.interval());
if (!interEvent.scheduled()) {
interEvent.schedule(curTick + Clock::Int::ns * 256 * regs.itr.interval());
}
}
}
void
IGbE::delayIntEvent()
{
cpuPostInt();
}
void
IGbE::cpuPostInt()
{
if (!(regs.icr() & regs.imr)) {
DPRINTF(Ethernet, "Interrupt Masked. Not Posting\n");
return;
}
DPRINTF(Ethernet, "Posting Interrupt\n");
if (interEvent.scheduled()) {
interEvent.deschedule();
}
if (rdtrEvent.scheduled()) {
regs.icr.rxt0(1);
rdtrEvent.deschedule();
}
if (radvEvent.scheduled()) {
regs.icr.rxt0(1);
radvEvent.deschedule();
}
if (tadvEvent.scheduled()) {
regs.icr.txdw(1);
tadvEvent.deschedule();
}
if (tidvEvent.scheduled()) {
regs.icr.txdw(1);
tidvEvent.deschedule();
}
regs.icr.int_assert(1);
DPRINTF(EthernetIntr, "EINT: Posting interrupt to CPU now. Vector %#x\n",
regs.icr());
intrPost();
}
void
IGbE::cpuClearInt()
{
if (regs.icr.int_assert()) {
regs.icr.int_assert(0);
DPRINTF(EthernetIntr, "EINT: Clearing interrupt to CPU now. Vector %#x\n",
regs.icr());
intrClear();
}
}
void
IGbE::chkInterrupt()
{
DPRINTF(Ethernet, "Checking interrupts icr: %#x imr: %#x\n", regs.icr(),
regs.imr);
// Check if we need to clear the cpu interrupt
if (!(regs.icr() & regs.imr)) {
DPRINTF(Ethernet, "Mask cleaned all interrupts\n");
if (interEvent.scheduled())
interEvent.deschedule();
if (regs.icr.int_assert())
cpuClearInt();
}
DPRINTF(Ethernet, "ITR = %#X itr.interval = %#X\n", regs.itr(), regs.itr.interval());
if (regs.icr() & regs.imr) {
if (regs.itr.interval() == 0) {
cpuPostInt();
} else {
DPRINTF(Ethernet, "Possibly scheduling interrupt because of imr write\n");
if (!interEvent.scheduled()) {
DPRINTF(Ethernet, "Scheduling for %d\n", curTick + Clock::Int::ns
* 256 * regs.itr.interval());
interEvent.schedule(curTick + Clock::Int::ns * 256 * regs.itr.interval());
}
}
}
}
IGbE::RxDescCache::RxDescCache(IGbE *i, const std::string n, int s)
: DescCache<RxDesc>(i, n, s), pktDone(false), pktEvent(this)
{
}
void
IGbE::RxDescCache::writePacket(EthPacketPtr packet)
{
// We shouldn't have to deal with any of these yet
DPRINTF(EthernetDesc, "Packet Length: %d Desc Size: %d\n",
packet->length, igbe->regs.rctl.descSize());
assert(packet->length < igbe->regs.rctl.descSize());
assert(unusedCache.size());
//if (!unusedCache.size())
// return false;
pktPtr = packet;
pktDone = false;
igbe->dmaWrite(igbe->platform->pciToDma(unusedCache.front()->buf),
packet->length, &pktEvent, packet->data);
}
void
IGbE::RxDescCache::pktComplete()
{
assert(unusedCache.size());
RxDesc *desc;
desc = unusedCache.front();
uint16_t crcfixup = igbe->regs.rctl.secrc() ? 0 : 4 ;
desc->len = htole((uint16_t)(pktPtr->length + crcfixup));
DPRINTF(EthernetDesc, "pktPtr->length: %d stripcrc offset: %d value written: %d %d\n",
pktPtr->length, crcfixup,
htole((uint16_t)(pktPtr->length + crcfixup)),
(uint16_t)(pktPtr->length + crcfixup));
// no support for anything but starting at 0
assert(igbe->regs.rxcsum.pcss() == 0);
DPRINTF(EthernetDesc, "Packet written to memory updating Descriptor\n");
uint8_t status = RXDS_DD | RXDS_EOP;
uint8_t err = 0;
IpPtr ip(pktPtr);
if (ip) {
DPRINTF(EthernetDesc, "Proccesing Ip packet with Id=%d\n", ip->id());
if (igbe->regs.rxcsum.ipofld()) {
DPRINTF(EthernetDesc, "Checking IP checksum\n");
status |= RXDS_IPCS;
desc->csum = htole(cksum(ip));
if (cksum(ip) != 0) {
err |= RXDE_IPE;
DPRINTF(EthernetDesc, "Checksum is bad!!\n");
}
}
TcpPtr tcp(ip);
if (tcp && igbe->regs.rxcsum.tuofld()) {
DPRINTF(EthernetDesc, "Checking TCP checksum\n");
status |= RXDS_TCPCS;
desc->csum = htole(cksum(tcp));
if (cksum(tcp) != 0) {
DPRINTF(EthernetDesc, "Checksum is bad!!\n");
err |= RXDE_TCPE;
}
}
UdpPtr udp(ip);
if (udp && igbe->regs.rxcsum.tuofld()) {
DPRINTF(EthernetDesc, "Checking UDP checksum\n");
status |= RXDS_UDPCS;
desc->csum = htole(cksum(udp));
if (cksum(udp) != 0) {
DPRINTF(EthernetDesc, "Checksum is bad!!\n");
err |= RXDE_TCPE;
}
}
} else { // if ip
DPRINTF(EthernetSM, "Proccesing Non-Ip packet\n");
}
desc->status = htole(status);
desc->errors = htole(err);
// No vlan support at this point... just set it to 0
desc->vlan = 0;
// Deal with the rx timer interrupts
if (igbe->regs.rdtr.delay()) {
DPRINTF(EthernetSM, "RXS: Scheduling DTR for %d\n",
igbe->regs.rdtr.delay() * igbe->intClock());
igbe->rdtrEvent.reschedule(curTick + igbe->regs.rdtr.delay() *
igbe->intClock(),true);
}
if (igbe->regs.radv.idv() && igbe->regs.rdtr.delay()) {
DPRINTF(EthernetSM, "RXS: Scheduling ADV for %d\n",
igbe->regs.radv.idv() * igbe->intClock());
if (!igbe->radvEvent.scheduled()) {
igbe->radvEvent.schedule(curTick + igbe->regs.radv.idv() *
igbe->intClock());
}
}
// if neither radv or rdtr, maybe itr is set...
if (!igbe->regs.rdtr.delay()) {
DPRINTF(EthernetSM, "RXS: Receive interrupt delay disabled, posting IT_RXT\n");
igbe->postInterrupt(IT_RXT);
}
// If the packet is small enough, interrupt appropriately
// I wonder if this is delayed or not?!
if (pktPtr->length <= igbe->regs.rsrpd.idv()) {
DPRINTF(EthernetSM, "RXS: Posting IT_SRPD beacuse small packet received\n");
igbe->postInterrupt(IT_SRPD);
}
DPRINTF(EthernetDesc, "Processing of this descriptor complete\n");
unusedCache.pop_front();
usedCache.push_back(desc);
pktPtr = NULL;
enableSm();
pktDone = true;
igbe->checkDrain();
}
void
IGbE::RxDescCache::enableSm()
{
if (!igbe->drainEvent) {
igbe->rxTick = true;
igbe->restartClock();
}
}
bool
IGbE::RxDescCache::packetDone()
{
if (pktDone) {
pktDone = false;
return true;
}
return false;
}
bool
IGbE::RxDescCache::hasOutstandingEvents()
{
return pktEvent.scheduled() || wbEvent.scheduled() ||
fetchEvent.scheduled();
}
void
IGbE::RxDescCache::serialize(std::ostream &os)
{
DescCache<RxDesc>::serialize(os);
SERIALIZE_SCALAR(pktDone);
}
void
IGbE::RxDescCache::unserialize(Checkpoint *cp, const std::string &section)
{
DescCache<RxDesc>::unserialize(cp, section);
UNSERIALIZE_SCALAR(pktDone);
}
///////////////////////////////////// IGbE::TxDesc /////////////////////////////////
IGbE::TxDescCache::TxDescCache(IGbE *i, const std::string n, int s)
: DescCache<TxDesc>(i,n, s), pktDone(false), isTcp(false), pktWaiting(false),
pktEvent(this)
{
}
int
IGbE::TxDescCache::getPacketSize()
{
assert(unusedCache.size());
TxDesc *desc;
DPRINTF(EthernetDesc, "Starting processing of descriptor\n");
while (unusedCache.size() && TxdOp::isContext(unusedCache.front())) {
DPRINTF(EthernetDesc, "Got context descriptor type... skipping\n");
// I think we can just ignore these for now?
desc = unusedCache.front();
DPRINTF(EthernetDesc, "Descriptor upper: %#x lower: %#X\n", desc->d1,
desc->d2);
// is this going to be a tcp or udp packet?
isTcp = TxdOp::tcp(desc) ? true : false;
// make sure it's ipv4
//assert(TxdOp::ip(desc));
TxdOp::setDd(desc);
unusedCache.pop_front();
usedCache.push_back(desc);
}
if (!unusedCache.size())
return -1;
DPRINTF(EthernetDesc, "Next TX packet is %d bytes\n",
TxdOp::getLen(unusedCache.front()));
return TxdOp::getLen(unusedCache.front());
}
void
IGbE::TxDescCache::getPacketData(EthPacketPtr p)
{
assert(unusedCache.size());
TxDesc *desc;
desc = unusedCache.front();
assert((TxdOp::isLegacy(desc) || TxdOp::isData(desc)) && TxdOp::getLen(desc));
pktPtr = p;
pktWaiting = true;
DPRINTF(EthernetDesc, "Starting DMA of packet at offset %d\n", p->length);
igbe->dmaRead(igbe->platform->pciToDma(TxdOp::getBuf(desc)),
TxdOp::getLen(desc), &pktEvent, p->data + p->length);
}
void
IGbE::TxDescCache::pktComplete()
{
TxDesc *desc;
assert(unusedCache.size());
assert(pktPtr);
DPRINTF(EthernetDesc, "DMA of packet complete\n");
desc = unusedCache.front();
assert((TxdOp::isLegacy(desc) || TxdOp::isData(desc)) && TxdOp::getLen(desc));
DPRINTF(EthernetDesc, "TxDescriptor data d1: %#llx d2: %#llx\n", desc->d1, desc->d2);
if (!TxdOp::eop(desc)) {
pktPtr->length += TxdOp::getLen(desc);
unusedCache.pop_front();
usedCache.push_back(desc);
pktDone = true;
pktWaiting = false;
pktMultiDesc = true;
DPRINTF(EthernetDesc, "Partial Packet Descriptor of %d bytes Done\n",
pktPtr->length);
pktPtr = NULL;
enableSm();
igbe->checkDrain();
return;
}
pktMultiDesc = false;
// Set the length of the data in the EtherPacket
pktPtr->length += TxdOp::getLen(desc);
// no support for vlans
assert(!TxdOp::vle(desc));
// we alway report status
assert(TxdOp::rs(desc));
// we only support single packet descriptors at this point
assert(TxdOp::eop(desc));
// set that this packet is done
TxdOp::setDd(desc);
DPRINTF(EthernetDesc, "TxDescriptor data d1: %#llx d2: %#llx\n", desc->d1, desc->d2);
if (DTRACE(EthernetDesc)) {
IpPtr ip(pktPtr);
if (ip)
DPRINTF(EthernetDesc, "Proccesing Ip packet with Id=%d\n",
ip->id());
else
DPRINTF(EthernetSM, "Proccesing Non-Ip packet\n");
}
// Checksums are only ofloaded for new descriptor types
if (TxdOp::isData(desc) && ( TxdOp::ixsm(desc) || TxdOp::txsm(desc)) ) {
DPRINTF(EthernetDesc, "Calculating checksums for packet\n");
IpPtr ip(pktPtr);
assert(ip);
if (TxdOp::ixsm(desc)) {
ip->sum(0);
ip->sum(cksum(ip));
DPRINTF(EthernetDesc, "Calculated IP checksum\n");
}
if (TxdOp::txsm(desc)) {
TcpPtr tcp(ip);
UdpPtr udp(ip);
if (tcp) {
tcp->sum(0);
tcp->sum(cksum(tcp));
DPRINTF(EthernetDesc, "Calculated TCP checksum\n");
} else if (udp) {
assert(udp);
udp->sum(0);
udp->sum(cksum(udp));
DPRINTF(EthernetDesc, "Calculated UDP checksum\n");
} else {
panic("Told to checksum, but don't know how\n");
}
}
}
if (TxdOp::ide(desc)) {
// Deal with the rx timer interrupts
DPRINTF(EthernetDesc, "Descriptor had IDE set\n");
if (igbe->regs.tidv.idv()) {
DPRINTF(EthernetDesc, "setting tidv\n");
igbe->tidvEvent.reschedule(curTick + igbe->regs.tidv.idv() *
igbe->intClock(), true);
}
if (igbe->regs.tadv.idv() && igbe->regs.tidv.idv()) {
DPRINTF(EthernetDesc, "setting tadv\n");
if (!igbe->tadvEvent.scheduled()) {
igbe->tadvEvent.schedule(curTick + igbe->regs.tadv.idv() *
igbe->intClock());
}
}
}
unusedCache.pop_front();
usedCache.push_back(desc);
pktDone = true;
pktWaiting = false;
pktPtr = NULL;
DPRINTF(EthernetDesc, "Descriptor Done\n");
if (igbe->regs.txdctl.wthresh() == 0) {
DPRINTF(EthernetDesc, "WTHRESH == 0, writing back descriptor\n");
writeback(0);
} else if (igbe->regs.txdctl.wthresh() >= usedCache.size()) {
DPRINTF(EthernetDesc, "used > WTHRESH, writing back descriptor\n");
writeback((igbe->cacheBlockSize()-1)>>4);
}
enableSm();
igbe->checkDrain();
}
void
IGbE::TxDescCache::serialize(std::ostream &os)
{
DescCache<TxDesc>::serialize(os);
SERIALIZE_SCALAR(pktDone);
SERIALIZE_SCALAR(isTcp);
SERIALIZE_SCALAR(pktWaiting);
SERIALIZE_SCALAR(pktMultiDesc);
}
void
IGbE::TxDescCache::unserialize(Checkpoint *cp, const std::string &section)
{
DescCache<TxDesc>::unserialize(cp, section);
UNSERIALIZE_SCALAR(pktDone);
UNSERIALIZE_SCALAR(isTcp);
UNSERIALIZE_SCALAR(pktWaiting);
UNSERIALIZE_SCALAR(pktMultiDesc);
}
bool
IGbE::TxDescCache::packetAvailable()
{
if (pktDone) {
pktDone = false;
return true;
}
return false;
}
void
IGbE::TxDescCache::enableSm()
{
if (!igbe->drainEvent) {
igbe->txTick = true;
igbe->restartClock();
}
}
bool
IGbE::TxDescCache::hasOutstandingEvents()
{
return pktEvent.scheduled() || wbEvent.scheduled() ||
fetchEvent.scheduled();
}
///////////////////////////////////// IGbE /////////////////////////////////
void
IGbE::restartClock()
{
if (!tickEvent.scheduled() && (rxTick || txTick || txFifoTick) && getState() ==
SimObject::Running)
tickEvent.schedule((curTick/ticks(1)) * ticks(1) + ticks(1));
}
unsigned int
IGbE::drain(Event *de)
{
unsigned int count;
count = pioPort->drain(de) + dmaPort->drain(de);
if (rxDescCache.hasOutstandingEvents() ||
txDescCache.hasOutstandingEvents()) {
count++;
drainEvent = de;
}
txFifoTick = false;
txTick = false;
rxTick = false;
if (tickEvent.scheduled())
tickEvent.deschedule();
if (count)
changeState(Draining);
else
changeState(Drained);
return count;
}
void
IGbE::resume()
{
SimObject::resume();
txFifoTick = true;
txTick = true;
rxTick = true;
restartClock();
}
void
IGbE::checkDrain()
{
if (!drainEvent)
return;
txFifoTick = false;
txTick = false;
rxTick = false;
if (!rxDescCache.hasOutstandingEvents() &&
!txDescCache.hasOutstandingEvents()) {
drainEvent->process();
drainEvent = NULL;
}
}
void
IGbE::txStateMachine()
{
if (!regs.tctl.en()) {
txTick = false;
DPRINTF(EthernetSM, "TXS: TX disabled, stopping ticking\n");
return;
}
// If we have a packet available and it's length is not 0 (meaning it's not
// a multidescriptor packet) put it in the fifo, otherwise an the next
// iteration we'll get the rest of the data
if (txPacket && txDescCache.packetAvailable()
&& !txDescCache.packetMultiDesc() && txPacket->length) {
bool success;
DPRINTF(EthernetSM, "TXS: packet placed in TX FIFO\n");
success = txFifo.push(txPacket);
txFifoTick = true && !drainEvent;
assert(success);
txPacket = NULL;
txDescCache.writeback((cacheBlockSize()-1)>>4);
return;
}
// Only support descriptor granularity
assert(regs.txdctl.gran());
if (regs.txdctl.lwthresh() && txDescCache.descLeft() < (regs.txdctl.lwthresh() * 8)) {
DPRINTF(EthernetSM, "TXS: LWTHRESH caused posting of TXDLOW\n");
postInterrupt(IT_TXDLOW);
}
if (!txPacket) {
txPacket = new EthPacketData(16384);
}
if (!txDescCache.packetWaiting()) {
if (txDescCache.descLeft() == 0) {
postInterrupt(IT_TXQE);
txDescCache.writeback(0);
txDescCache.fetchDescriptors();
DPRINTF(EthernetSM, "TXS: No descriptors left in ring, forcing "
"writeback stopping ticking and posting TXQE\n");
txTick = false;
return;
}
if (!(txDescCache.descUnused())) {
txDescCache.fetchDescriptors();
DPRINTF(EthernetSM, "TXS: No descriptors available in cache, fetching and stopping ticking\n");
txTick = false;
return;
}
int size;
size = txDescCache.getPacketSize();
if (size > 0 && txFifo.avail() > size) {
DPRINTF(EthernetSM, "TXS: Reserving %d bytes in FIFO and begining "
"DMA of next packet\n", size);
txFifo.reserve(size);
txDescCache.getPacketData(txPacket);
} else if (size <= 0) {
DPRINTF(EthernetSM, "TXS: getPacketSize returned: %d\n", size);
DPRINTF(EthernetSM, "TXS: No packets to get, writing back used descriptors\n");
txDescCache.writeback(0);
} else {
DPRINTF(EthernetSM, "TXS: FIFO full, stopping ticking until space "
"available in FIFO\n");
txTick = false;
}
return;
}
DPRINTF(EthernetSM, "TXS: Nothing to do, stopping ticking\n");
txTick = false;
}
bool
IGbE::ethRxPkt(EthPacketPtr pkt)
{
DPRINTF(Ethernet, "RxFIFO: Receiving pcakte from wire\n");
if (!regs.rctl.en()) {
DPRINTF(Ethernet, "RxFIFO: RX not enabled, dropping\n");
return true;
}
// restart the state machines if they are stopped
rxTick = true && !drainEvent;
if ((rxTick || txTick) && !tickEvent.scheduled()) {
DPRINTF(EthernetSM, "RXS: received packet into fifo, starting ticking\n");
restartClock();
}
if (!rxFifo.push(pkt)) {
DPRINTF(Ethernet, "RxFIFO: Packet won't fit in fifo... dropped\n");
postInterrupt(IT_RXO, true);
return false;
}
return true;
}
void
IGbE::rxStateMachine()
{
if (!regs.rctl.en()) {
rxTick = false;
DPRINTF(EthernetSM, "RXS: RX disabled, stopping ticking\n");
return;
}
// If the packet is done check for interrupts/descriptors/etc
if (rxDescCache.packetDone()) {
rxDmaPacket = false;
DPRINTF(EthernetSM, "RXS: Packet completed DMA to memory\n");
int descLeft = rxDescCache.descLeft();
switch (regs.rctl.rdmts()) {
case 2: if (descLeft > .125 * regs.rdlen()) break;
case 1: if (descLeft > .250 * regs.rdlen()) break;
case 0: if (descLeft > .500 * regs.rdlen()) break;
DPRINTF(Ethernet, "RXS: Interrupting (RXDMT) because of descriptors left\n");
postInterrupt(IT_RXDMT);
break;
}
if (descLeft == 0) {
rxDescCache.writeback(0);
DPRINTF(EthernetSM, "RXS: No descriptors left in ring, forcing"
" writeback and stopping ticking\n");
rxTick = false;
}
// only support descriptor granulaties
assert(regs.rxdctl.gran());
if (regs.rxdctl.wthresh() >= rxDescCache.descUsed()) {
DPRINTF(EthernetSM, "RXS: Writing back because WTHRESH >= descUsed\n");
if (regs.rxdctl.wthresh() < (cacheBlockSize()>>4))
rxDescCache.writeback(regs.rxdctl.wthresh()-1);
else
rxDescCache.writeback((cacheBlockSize()-1)>>4);
}
if ((rxDescCache.descUnused() < regs.rxdctl.pthresh()) &&
((rxDescCache.descLeft() - rxDescCache.descUnused()) > regs.rxdctl.hthresh())) {
DPRINTF(EthernetSM, "RXS: Fetching descriptors because descUnused < PTHRESH\n");
rxDescCache.fetchDescriptors();
}
if (rxDescCache.descUnused() == 0) {
rxDescCache.fetchDescriptors();
DPRINTF(EthernetSM, "RXS: No descriptors available in cache, "
"fetching descriptors and stopping ticking\n");
rxTick = false;
}
return;
}
if (rxDmaPacket) {
DPRINTF(EthernetSM, "RXS: stopping ticking until packet DMA completes\n");
rxTick = false;
return;
}
if (!rxDescCache.descUnused()) {
rxDescCache.fetchDescriptors();
DPRINTF(EthernetSM, "RXS: No descriptors available in cache, stopping ticking\n");
rxTick = false;
DPRINTF(EthernetSM, "RXS: No descriptors available, fetching\n");
return;
}
if (rxFifo.empty()) {
DPRINTF(EthernetSM, "RXS: RxFIFO empty, stopping ticking\n");
rxTick = false;
return;
}
EthPacketPtr pkt;
pkt = rxFifo.front();
rxDescCache.writePacket(pkt);
DPRINTF(EthernetSM, "RXS: Writing packet into memory\n");
DPRINTF(EthernetSM, "RXS: Removing packet from FIFO\n");
rxFifo.pop();
DPRINTF(EthernetSM, "RXS: stopping ticking until packet DMA completes\n");
rxTick = false;
rxDmaPacket = true;
}
void
IGbE::txWire()
{
if (txFifo.empty()) {
txFifoTick = false;
return;
}
if (etherInt->sendPacket(txFifo.front())) {
if (DTRACE(EthernetSM)) {
IpPtr ip(txFifo.front());
if (ip)
DPRINTF(EthernetSM, "Transmitting Ip packet with Id=%d\n",
ip->id());
else
DPRINTF(EthernetSM, "Transmitting Non-Ip packet\n");
}
DPRINTF(EthernetSM, "TxFIFO: Successful transmit, bytes available in fifo: %d\n",
txFifo.avail());
txFifo.pop();
} else {
// We'll get woken up when the packet ethTxDone() gets called
txFifoTick = false;
}
}
void
IGbE::tick()
{
DPRINTF(EthernetSM, "IGbE: -------------- Cycle --------------\n");
if (rxTick)
rxStateMachine();
if (txTick)
txStateMachine();
if (txFifoTick)
txWire();
if (rxTick || txTick || txFifoTick)
tickEvent.schedule(curTick + ticks(1));
}
void
IGbE::ethTxDone()
{
// restart the tx state machines if they are stopped
// fifo to send another packet
// tx sm to put more data into the fifo
txFifoTick = true && !drainEvent;
if (txDescCache.descLeft() != 0 && !drainEvent)
txTick = true;
restartClock();
txWire();
DPRINTF(EthernetSM, "TxFIFO: Transmission complete\n");
}
void
IGbE::serialize(std::ostream &os)
{
PciDev::serialize(os);
regs.serialize(os);
SERIALIZE_SCALAR(eeOpBits);
SERIALIZE_SCALAR(eeAddrBits);
SERIALIZE_SCALAR(eeDataBits);
SERIALIZE_SCALAR(eeOpcode);
SERIALIZE_SCALAR(eeAddr);
SERIALIZE_ARRAY(flash,iGbReg::EEPROM_SIZE);
rxFifo.serialize("rxfifo", os);
txFifo.serialize("txfifo", os);
bool txPktExists = txPacket;
SERIALIZE_SCALAR(txPktExists);
if (txPktExists)
txPacket->serialize("txpacket", os);
Tick rdtr_time = 0, radv_time = 0, tidv_time = 0, tadv_time = 0,
inter_time = 0;
if (rdtrEvent.scheduled())
rdtr_time = rdtrEvent.when();
SERIALIZE_SCALAR(rdtr_time);
if (radvEvent.scheduled())
radv_time = radvEvent.when();
SERIALIZE_SCALAR(radv_time);
if (tidvEvent.scheduled())
tidv_time = tidvEvent.when();
SERIALIZE_SCALAR(tidv_time);
if (tadvEvent.scheduled())
tadv_time = tadvEvent.when();
SERIALIZE_SCALAR(tadv_time);
if (interEvent.scheduled())
inter_time = interEvent.when();
SERIALIZE_SCALAR(inter_time);
nameOut(os, csprintf("%s.TxDescCache", name()));
txDescCache.serialize(os);
nameOut(os, csprintf("%s.RxDescCache", name()));
rxDescCache.serialize(os);
}
void
IGbE::unserialize(Checkpoint *cp, const std::string &section)
{
PciDev::unserialize(cp, section);
regs.unserialize(cp, section);
UNSERIALIZE_SCALAR(eeOpBits);
UNSERIALIZE_SCALAR(eeAddrBits);
UNSERIALIZE_SCALAR(eeDataBits);
UNSERIALIZE_SCALAR(eeOpcode);
UNSERIALIZE_SCALAR(eeAddr);
UNSERIALIZE_ARRAY(flash,iGbReg::EEPROM_SIZE);
rxFifo.unserialize("rxfifo", cp, section);
txFifo.unserialize("txfifo", cp, section);
bool txPktExists;
UNSERIALIZE_SCALAR(txPktExists);
if (txPktExists) {
txPacket = new EthPacketData(16384);
txPacket->unserialize("txpacket", cp, section);
}
rxTick = true;
txTick = true;
txFifoTick = true;
Tick rdtr_time, radv_time, tidv_time, tadv_time, inter_time;
UNSERIALIZE_SCALAR(rdtr_time);
UNSERIALIZE_SCALAR(radv_time);
UNSERIALIZE_SCALAR(tidv_time);
UNSERIALIZE_SCALAR(tadv_time);
UNSERIALIZE_SCALAR(inter_time);
if (rdtr_time)
rdtrEvent.schedule(rdtr_time);
if (radv_time)
radvEvent.schedule(radv_time);
if (tidv_time)
tidvEvent.schedule(tidv_time);
if (tadv_time)
tadvEvent.schedule(tadv_time);
if (inter_time)
interEvent.schedule(inter_time);
txDescCache.unserialize(cp, csprintf("%s.TxDescCache", section));
rxDescCache.unserialize(cp, csprintf("%s.RxDescCache", section));
}
IGbE *
IGbEParams::create()
{
return new IGbE(this);
}