blob: 7655291ab32023885708e5f08c78f7b5581ef34f [file] [log] [blame]
// -*- mode:c++ -*-
// Copyright (c) 2010-2014, 2016-2018, 2021 ARM Limited
// All rights reserved
//
// The license below extends only to copyright in the software and shall
// not be construed as granting a license to any other intellectual
// property including but not limited to intellectual property relating
// to a hardware implementation of the functionality of the software
// licensed hereunder. You may use the software subject to the license
// terms below provided that you ensure that this notice is replicated
// unmodified and in its entirety in all distributions of the software,
// modified or unmodified, in source code or in binary form.
//
// Copyright (c) 2007-2008 The Florida State University
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met: redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer;
// redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution;
// neither the name of the copyright holders nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
def operand_types {{
'sb' : 'int8_t',
'ub' : 'uint8_t',
'sh' : 'int16_t',
'uh' : 'uint16_t',
'sw' : 'int32_t',
'uw' : 'uint32_t',
'sd' : 'int64_t',
'ud' : 'uint64_t',
'pint' : 'ArmISA::PackedIntReg',
'sq' : '__int128_t',
'uq' : '__uint128_t',
'tud' : 'std::array<uint64_t, 2>',
'sf' : 'float',
'df' : 'double',
'vc' : 'ArmISA::VecRegContainer',
# For operations that are implemented as a template
'x' : 'TPElem',
'xs' : 'TPSElem',
'xd' : 'TPDElem',
'pc' : 'ArmISA::VecPredRegContainer',
'pb' : 'uint8_t'
}};
let {{
maybePCRead = '''
((%(reg_idx)s == PCReg) ? readPC(xc) : xc->%(func)s(this, %(op_idx)s))
'''
maybeAlignedPCRead = '''
((%(reg_idx)s == PCReg) ? (roundDown(readPC(xc), 4)) :
xc->%(func)s(this, %(op_idx)s))
'''
maybePCWrite = '''
((%(reg_idx)s == PCReg) ? setNextPC(xc, %(final_val)s) :
xc->%(func)s(this, %(op_idx)s, %(final_val)s))
'''
maybeIWPCWrite = '''
((%(reg_idx)s == PCReg) ? setIWNextPC(xc, %(final_val)s) :
xc->%(func)s(this, %(op_idx)s, %(final_val)s))
'''
maybeAIWPCWrite = '''
if (%(reg_idx)s == PCReg) {
bool thumb = THUMB;
if (thumb) {
setNextPC(xc, %(final_val)s);
} else {
setIWNextPC(xc, %(final_val)s);
}
} else {
xc->%(func)s(this, %(op_idx)s, %(final_val)s);
}
'''
aarch64Read = '''
((xc->%(func)s(this, %(op_idx)s)) & mask(intWidth))
'''
aarch64Write = '''
xc->%(func)s(this, %(op_idx)s, (%(final_val)s) & mask(intWidth))
'''
aarchX64Read = '''
((xc->%(func)s(this, %(op_idx)s)) & mask(aarch64 ? 64 : 32))
'''
aarchX64Write = '''
xc->%(func)s(this, %(op_idx)s, (%(final_val)s) & mask(aarch64 ? 64 : 32))
'''
aarchW64Read = '''
((xc->%(func)s(this, %(op_idx)s)) & mask(32))
'''
aarchW64Write = '''
xc->%(func)s(this, %(op_idx)s, (%(final_val)s) & mask(32))
'''
cntrlNsBankedWrite = '''
xc->setMiscReg(snsBankedIndex(dest, xc->tcBase()), %(final_val)s)
'''
cntrlNsBankedRead = '''
xc->readMiscReg(snsBankedIndex(op1, xc->tcBase()))
'''
#PCState operands need to have a sorting index (the number at the end)
#less than all the integer registers which might update the PC. That way
#if the flag bits of the pc state are updated and a branch happens through
#R15, the updates are layered properly and the R15 update isn't lost.
srtNormal = 5
srtCpsr = 4
srtBase = 3
srtPC = 2
srtMode = 1
srtEPC = 0
def vectorElem(idx, elem):
return ('VecElem', 'sf', (idx, elem), 'IsVectorElem', srtNormal)
def vectorReg(idx, base, suffix = ''):
elems = {
base + 'P0' + suffix : ('0', 'sf'),
base + 'P1' + suffix : ('1', 'sf'),
base + 'P2' + suffix : ('2', 'sf'),
base + 'P3' + suffix : ('3', 'sf'),
base + 'S' + suffix : ('0', 'sf'),
base + 'D' + suffix : ('0', 'df'),
base + 'Q' + suffix : ('0', 'tud')
}
return ('VecReg', 'vc', (idx, elems), 'IsVector', srtNormal)
def vecPredReg(idx):
return ('VecPredReg', 'pc', idx, None, srtNormal)
def intReg(idx):
return ('IntReg', 'uw', idx, 'IsInteger', srtNormal,
maybePCRead, maybePCWrite)
def pIntReg(idx):
return ('IntReg', 'pint', idx, 'IsInteger', srtNormal,
maybePCRead, maybePCWrite)
def intReg64(idx):
return ('IntReg', 'ud', idx, 'IsInteger', srtNormal,
aarch64Read, aarch64Write)
def intRegX64(idx, id = srtNormal):
return ('IntReg', 'ud', idx, 'IsInteger', id,
aarchX64Read, aarchX64Write)
def intRegW64(idx, id = srtNormal):
return ('IntReg', 'ud', idx, 'IsInteger', id,
aarchW64Read, aarchW64Write)
def intRegNPC(idx):
return ('IntReg', 'uw', idx, 'IsInteger', srtNormal)
def intRegAPC(idx, id = srtNormal):
return ('IntReg', 'uw', idx, 'IsInteger', id,
maybeAlignedPCRead, maybePCWrite)
def intRegIWPC(idx):
return ('IntReg', 'uw', idx, 'IsInteger', srtNormal,
maybePCRead, maybeIWPCWrite)
def intRegAIWPC(idx):
return ('IntReg', 'uw', idx, 'IsInteger', srtNormal,
maybePCRead, maybeAIWPCWrite)
def ccReg(idx):
return ('CCReg', 'uw', idx, None, srtNormal)
def cntrlReg(idx, id = srtNormal, type = 'uw'):
return ('ControlReg', type, idx, None, id)
def cntrlNsBankedReg(idx, id = srtNormal, type = 'uw'):
return ('ControlReg', type, idx, (None, None, 'IsControl'), id, cntrlNsBankedRead, cntrlNsBankedWrite)
def cntrlNsBankedReg64(idx, id = srtNormal, type = 'ud'):
return ('ControlReg', type, idx, (None, None, 'IsControl'), id, cntrlNsBankedRead, cntrlNsBankedWrite)
def cntrlRegNC(idx, id = srtNormal, type = 'uw'):
return ('ControlReg', type, idx, None, id)
def pcStateReg(idx, id):
return ('PCState', 'ud', idx, (None, None, 'IsControl'), id)
}};
def operands {{
#Abstracted integer reg operands
'Dest': intReg('dest'),
'Dest64': intReg64('dest'),
'XDest': intRegX64('dest'),
'WDest': intRegW64('dest'),
'IWDest': intRegIWPC('dest'),
'AIWDest': intRegAIWPC('dest'),
'Dest2': intReg('dest2'),
'XDest2': intRegX64('dest2'),
'IWDest2': intRegIWPC('dest2'),
'Result': intReg('result'),
'XResult': intRegX64('result'),
'XResult2': intRegX64('result2'),
'XBase': intRegX64('base', id = srtBase),
'Base': intRegAPC('base', id = srtBase),
'XOffset': intRegX64('offset'),
'Index': intReg('index'),
'Shift': intReg('shift'),
'Op1': intReg('op1'),
'Op2': intReg('op2'),
'Op3': intReg('op3'),
'Op164': intReg64('op1'),
'Op264': intReg64('op2'),
'Op364': intReg64('op3'),
'XOp1': intRegX64('op1'),
'XOp2': intRegX64('op2'),
'XOp3': intRegX64('op3'),
'WOp1': intRegW64('op1'),
'WOp2': intRegW64('op2'),
'WOp3': intRegW64('op3'),
'Reg0': intReg('reg0'),
'Reg1': intReg('reg1'),
'Reg2': intReg('reg2'),
'Reg3': intReg('reg3'),
'PInt0': pIntReg('reg0'),
'PInt1': pIntReg('reg1'),
'PInt2': pIntReg('reg2'),
'PInt3': pIntReg('reg3'),
#Fixed index integer reg operands
'SpMode': intRegNPC('intRegInMode((OperatingMode)regMode, INTREG_SP)'),
'DecodedBankedIntReg': intRegNPC('decodeMrsMsrBankedIntRegIndex(byteMask, r)'),
'LR': intRegNPC('INTREG_LR'),
'XLR': intRegX64('INTREG_X30'),
'R7': intRegNPC('7'),
# First four arguments are passed in registers
'R0': intRegNPC('0'),
'R1': intRegNPC('1'),
'R2': intRegNPC('2'),
'R3': intRegNPC('3'),
'R4': intRegNPC('4'),
'R5': intRegNPC('5'),
'X0': intRegX64('0'),
'X1': intRegX64('1'),
'X2': intRegX64('2'),
'X3': intRegX64('3'),
'X4': intRegX64('4'),
'X5': intRegX64('5'),
# Condition code registers
'CondCodesNZ': ccReg('CCREG_NZ'),
'CondCodesC': ccReg('CCREG_C'),
'CondCodesV': ccReg('CCREG_V'),
'CondCodesGE': ccReg('CCREG_GE'),
'OptCondCodesNZ': ccReg(
'''((condCode == COND_AL || condCode == COND_UC ||
condCode == COND_CC || condCode == COND_CS ||
condCode == COND_VS || condCode == COND_VC) ?
CCREG_ZERO : CCREG_NZ)'''),
'OptCondCodesC': ccReg(
'''((condCode == COND_HI || condCode == COND_LS ||
condCode == COND_CS || condCode == COND_CC) ?
CCREG_C : CCREG_ZERO)'''),
'OptShiftRmCondCodesC': ccReg(
'''((condCode == COND_HI || condCode == COND_LS ||
condCode == COND_CS || condCode == COND_CC ||
shiftType == ROR) ?
CCREG_C : CCREG_ZERO)'''),
'OptCondCodesV': ccReg(
'''((condCode == COND_VS || condCode == COND_VC ||
condCode == COND_GE || condCode == COND_LT ||
condCode == COND_GT || condCode == COND_LE) ?
CCREG_V : CCREG_ZERO)'''),
'FpCondCodes': ccReg('CCREG_FP'),
#Abstracted floating point reg operands
'FpDest': vectorElem('dest / 4', 'dest % 4'),
'FpDestP0': vectorElem('(dest + 0) / 4', '(dest + 0) % 4'),
'FpDestP1': vectorElem('(dest + 1) / 4', '(dest + 1) % 4'),
'FpDestP2': vectorElem('(dest + 2) / 4', '(dest + 2) % 4'),
'FpDestP3': vectorElem('(dest + 3) / 4', '(dest + 3) % 4'),
'FpDestP4': vectorElem('(dest + 4) / 4', '(dest + 4) % 4'),
'FpDestP5': vectorElem('(dest + 5) / 4', '(dest + 5) % 4'),
'FpDestP6': vectorElem('(dest + 6) / 4', '(dest + 6) % 4'),
'FpDestP7': vectorElem('(dest + 7) / 4', '(dest + 7) % 4'),
'FpDestS0P0': vectorElem(
'(dest + step * 0 + 0) / 4', '(dest + step * 0 + 0) % 4'),
'FpDestS0P1': vectorElem(
'(dest + step * 0 + 1) / 4', '(dest + step * 0 + 1) % 4'),
'FpDestS1P0': vectorElem(
'(dest + step * 1 + 0) / 4', '(dest + step * 1 + 0) % 4'),
'FpDestS1P1': vectorElem(
'(dest + step * 1 + 1) / 4', '(dest + step * 1 + 1) % 4'),
'FpDestS2P0': vectorElem(
'(dest + step * 2 + 0) / 4', '(dest + step * 2 + 0) % 4'),
'FpDestS2P1': vectorElem(
'(dest + step * 2 + 1) / 4', '(dest + step * 2 + 1) % 4'),
'FpDestS3P0': vectorElem(
'(dest + step * 3 + 0) / 4', '(dest + step * 3 + 0) % 4'),
'FpDestS3P1': vectorElem(
'(dest + step * 3 + 1) / 4', '(dest + step * 3 + 1) % 4'),
'FpDest2': vectorElem('dest2 / 4', 'dest2 % 4'),
'FpDest2P0': vectorElem('(dest2 + 0) / 4', '(dest2 + 0) % 4'),
'FpDest2P1': vectorElem('(dest2 + 1) / 4', '(dest2 + 1) % 4'),
'FpDest2P2': vectorElem('(dest2 + 2) / 4', '(dest2 + 2) % 4'),
'FpDest2P3': vectorElem('(dest2 + 3) / 4', '(dest2 + 3) % 4'),
'FpOp1': vectorElem('op1 / 4', 'op1 % 4'),
'FpOp1P0': vectorElem('(op1 + 0) / 4', '(op1 + 0) % 4'),
'FpOp1P1': vectorElem('(op1 + 1) / 4', '(op1 + 1) % 4'),
'FpOp1P2': vectorElem('(op1 + 2) / 4', '(op1 + 2) % 4'),
'FpOp1P3': vectorElem('(op1 + 3) / 4', '(op1 + 3) % 4'),
'FpOp1P4': vectorElem('(op1 + 4) / 4', '(op1 + 4) % 4'),
'FpOp1P5': vectorElem('(op1 + 5) / 4', '(op1 + 5) % 4'),
'FpOp1P6': vectorElem('(op1 + 6) / 4', '(op1 + 6) % 4'),
'FpOp1P7': vectorElem('(op1 + 7) / 4', '(op1 + 7) % 4'),
'FpOp1S0P0': vectorElem(
'(op1 + step * 0 + 0) / 4', '(op1 + step * 0 + 0) % 4'),
'FpOp1S0P1': vectorElem(
'(op1 + step * 0 + 1) / 4', '(op1 + step * 0 + 1) % 4'),
'FpOp1S1P0': vectorElem(
'(op1 + step * 1 + 0) / 4', '(op1 + step * 1 + 0) % 4'),
'FpOp1S1P1': vectorElem(
'(op1 + step * 1 + 1) / 4', '(op1 + step * 1 + 1) % 4'),
'FpOp1S2P0': vectorElem(
'(op1 + step * 2 + 0) / 4', '(op1 + step * 2 + 0) % 4'),
'FpOp1S2P1': vectorElem(
'(op1 + step * 2 + 1) / 4', '(op1 + step * 2 + 1) % 4'),
'FpOp1S3P0': vectorElem(
'(op1 + step * 3 + 0) / 4', '(op1 + step * 3 + 0) % 4'),
'FpOp1S3P1': vectorElem(
'(op1 + step * 3 + 1) / 4', '(op1 + step * 3 + 1) % 4'),
'FpOp2': vectorElem('op2 / 4', 'op2 % 4'),
'FpOp2P0': vectorElem('(op2 + 0) / 4', '(op2 + 0) % 4'),
'FpOp2P1': vectorElem('(op2 + 1) / 4', '(op2 + 1) % 4'),
'FpOp2P2': vectorElem('(op2 + 2) / 4', '(op2 + 2) % 4'),
'FpOp2P3': vectorElem('(op2 + 3) / 4', '(op2 + 3) % 4'),
# Create AArch64 unpacked view of the FP registers
# Name ::= 'AA64Vec' OpSpec [LaneSpec]
# OpSpec ::= IOSpec [Index] [Plus]
# IOSpec ::= 'S' | 'D'
# Index ::= '0' | ... | '9'
# Plus ::= [PlusAmount] ['l']
# PlusAmount ::= 'p' [PlusAmount]
# LaneSpec ::= 'L' Index
#
# All the constituents are hierarchically defined as part of the Vector
# Register they belong to
'AA64FpOp1': vectorReg('op1', 'AA64FpOp1'),
'AA64FpOp2': vectorReg('op2', 'AA64FpOp2'),
'AA64FpOp3': vectorReg('op3', 'AA64FpOp3'),
'AA64FpDest': vectorReg('dest', 'AA64FpDest'),
'AA64FpDest2': vectorReg('dest2', 'AA64FpDest2'),
'AA64FpOp1V0': vectorReg('op1', 'AA64FpOp1', 'V0'),
'AA64FpOp1V1': vectorReg('op1 + 1', 'AA64FpOp1', 'V1'),
'AA64FpOp1V2': vectorReg('op1 + 2', 'AA64FpOp1', 'V2'),
'AA64FpOp1V3': vectorReg('op1 + 3', 'AA64FpOp1', 'V3'),
'AA64FpOp1V0S': vectorReg('(op1 + 0) % 32', 'AA64FpOp1', 'V0S'),
'AA64FpOp1V1S': vectorReg('(op1 + 1) % 32', 'AA64FpOp1', 'V1S'),
'AA64FpOp1V2S': vectorReg('(op1 + 2) % 32', 'AA64FpOp1', 'V2S'),
'AA64FpOp1V3S': vectorReg('(op1 + 3) % 32', 'AA64FpOp1', 'V3S'),
'AA64FpDestV0': vectorReg('(dest + 0)', 'AA64FpDest', 'V0'),
'AA64FpDestV1': vectorReg('(dest + 1)', 'AA64FpDest', 'V1'),
'AA64FpDestV0L': vectorReg('(dest + 0) % 32', 'AA64FpDest', 'V0L'),
'AA64FpDestV1L': vectorReg('(dest + 1) % 32', 'AA64FpDest', 'V1L'),
# Temporary registers for SVE interleaving
'AA64IntrlvReg0': vectorReg('INTRLVREG0', 'AA64FpIntrlvReg0'),
'AA64IntrlvReg1': vectorReg('INTRLVREG1', 'AA64FpIntrlvReg1'),
'AA64IntrlvReg2': vectorReg('INTRLVREG2', 'AA64FpIntrlvReg2'),
'AA64IntrlvReg3': vectorReg('INTRLVREG3', 'AA64FpIntrlvReg3'),
'AA64FpDestMerge': vectorReg('dest', 'AA64FpDestMerge'),
'AA64FpBase': vectorReg('base', 'AA64FpBase'),
'AA64FpOffset': vectorReg('offset', 'AA64FpOffset'),
'AA64FpUreg0': vectorReg('VECREG_UREG0', 'AA64FpUreg0'),
# Predicate register operands
'GpOp': vecPredReg('gp'),
'POp1': vecPredReg('op1'),
'POp2': vecPredReg('op2'),
'PDest': vecPredReg('dest'),
'PDestMerge': vecPredReg('dest'),
'Ffr': vecPredReg('PREDREG_FFR'),
'FfrAux': vecPredReg('PREDREG_FFR'),
'PUreg0': vecPredReg('PREDREG_UREG0'),
#Abstracted control reg operands
'MiscDest': cntrlReg('dest'),
'MiscOp1': cntrlReg('op1'),
'MiscNsBankedDest': cntrlNsBankedReg('dest'),
'MiscNsBankedOp1': cntrlNsBankedReg('op1'),
'MiscNsBankedDest64': cntrlNsBankedReg64('dest'),
'MiscNsBankedOp164': cntrlNsBankedReg64('op1'),
#Fixed index control regs
'Cpsr': cntrlReg('MISCREG_CPSR', srtCpsr),
'CpsrQ': cntrlReg('MISCREG_CPSR_Q', srtCpsr),
'Spsr': cntrlRegNC('MISCREG_SPSR'),
'Fpsr': cntrlRegNC('MISCREG_FPSR'),
'Fpsid': cntrlRegNC('MISCREG_FPSID'),
'Fpscr': cntrlRegNC('MISCREG_FPSCR'),
'FpscrQc': cntrlRegNC('MISCREG_FPSCR_QC'),
'FpscrExc': cntrlRegNC('MISCREG_FPSCR_EXC'),
'Cpacr': cntrlReg('MISCREG_CPACR'),
'Cpacr64': cntrlReg('MISCREG_CPACR_EL1'),
'Fpexc': cntrlRegNC('MISCREG_FPEXC'),
'Nsacr': cntrlReg('MISCREG_NSACR'),
'ElrHyp': cntrlRegNC('MISCREG_ELR_HYP'),
'Hcr': cntrlReg('MISCREG_HCR'),
'Hcr64': cntrlReg('MISCREG_HCR_EL2'),
'CptrEl264': cntrlReg('MISCREG_CPTR_EL2'),
'CptrEl364': cntrlReg('MISCREG_CPTR_EL3'),
'Hstr': cntrlReg('MISCREG_HSTR'),
'Scr': cntrlReg('MISCREG_SCR'),
'Scr64': cntrlReg('MISCREG_SCR_EL3'),
'Sctlr': cntrlRegNC('MISCREG_SCTLR'),
'SevMailbox': cntrlRegNC('MISCREG_SEV_MAILBOX'),
'LLSCLock': cntrlRegNC('MISCREG_LOCKFLAG'),
'Dczid' : cntrlRegNC('MISCREG_DCZID_EL0'),
#Register fields for microops
'URa' : intReg('ura'),
'XURa' : intRegX64('ura'),
'WURa' : intRegW64('ura'),
'IWRa' : intRegIWPC('ura'),
'Fa' : vectorElem('ura / 4', 'ura % 4'),
'URb' : intReg('urb'),
'XURb' : intRegX64('urb'),
'URc' : intReg('urc'),
'XURc' : intRegX64('urc'),
#Memory Operand
'Mem': ('Mem', 'uw', None, (None, 'IsLoad', 'IsStore'), srtNormal),
#PCState fields
'RawPC': pcStateReg('pc', srtPC),
'PC': pcStateReg('instPC', srtPC),
'NPC': pcStateReg('instNPC', srtPC),
'pNPC': pcStateReg('instNPC', srtEPC),
'IWNPC': pcStateReg('instIWNPC', srtPC),
'Thumb': pcStateReg('thumb', srtPC),
'NextThumb': pcStateReg('nextThumb', srtMode),
'NextJazelle': pcStateReg('nextJazelle', srtMode),
'NextItState': pcStateReg('nextItstate', srtMode),
'Itstate': pcStateReg('itstate', srtMode),
'NextAArch64': pcStateReg('nextAArch64', srtMode),
#Register operands depending on a field in the instruction encoding. These
#should be avoided since they may not be portable across different
#encodings of the same instruction.
'Rd': intReg('RD'),
'Rm': intReg('RM'),
'Rs': intReg('RS'),
'Rn': intReg('RN'),
'Rt': intReg('RT')
}};