blob: 3d9f93e2fcf215c7975a87cb032953f89350a37c [file] [log] [blame]
/*
* Copyright (c) 2015, 2018 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Nathan Binkert
* Erik Hallnor
* Steve Reinhardt
* Andreas Sandberg
*/
/* @file
* Serialization Interface Declarations
*/
#ifndef __SERIALIZE_HH__
#define __SERIALIZE_HH__
#include <algorithm>
#include <iostream>
#include <list>
#include <map>
#include <stack>
#include <set>
#include <vector>
#include "base/bitunion.hh"
#include "base/logging.hh"
#include "base/str.hh"
class IniFile;
class SimObject;
class SimObjectResolver;
typedef std::ostream CheckpointOut;
class CheckpointIn
{
private:
IniFile *db;
SimObjectResolver &objNameResolver;
public:
CheckpointIn(const std::string &cpt_dir, SimObjectResolver &resolver);
~CheckpointIn();
const std::string cptDir;
bool find(const std::string &section, const std::string &entry,
std::string &value);
bool findObj(const std::string &section, const std::string &entry,
SimObject *&value);
bool entryExists(const std::string &section, const std::string &entry);
bool sectionExists(const std::string &section);
// The following static functions have to do with checkpoint
// creation rather than restoration. This class makes a handy
// namespace for them though. Currently no Checkpoint object is
// created on serialization (only unserialization) so we track the
// directory name as a global. It would be nice to change this
// someday
private:
// current directory we're serializing into.
static std::string currentDirectory;
public:
// Set the current directory. This function takes care of
// inserting curTick() if there's a '%d' in the argument, and
// appends a '/' if necessary. The final name is returned.
static std::string setDir(const std::string &base_name);
// Export current checkpoint directory name so other objects can
// derive filenames from it (e.g., memory). The return value is
// guaranteed to end in '/' so filenames can be directly appended.
// This function is only valid while a checkpoint is being created.
static std::string dir();
// Filename for base checkpoint file within directory.
static const char *baseFilename;
};
/**
* Basic support for object serialization.
*
* Objects that support serialization should derive from this
* class. Such objects can largely be divided into two categories: 1)
* True SimObjects (deriving from SimObject), and 2) child objects
* (non-SimObjects).
*
* SimObjects are serialized automatically into their own sections
* automatically by the SimObject base class (see
* SimObject::serializeAll().
*
* SimObjects can contain other serializable objects that are not
* SimObjects. Much like normal serialized members are not serialized
* automatically, these objects will not be serialized automatically
* and it is expected that the objects owning such serializable
* objects call the required serialization/unserialization methods on
* child objects. The preferred method to serialize a child object is
* to call serializeSection() on the child, which serializes the
* object into a new subsection in the current section. Another option
* is to call serialize() directly, which serializes the object into
* the current section. The latter is not recommended as it can lead
* to naming clashes between objects.
*
* @note Many objects that support serialization need to be put in a
* consistent state when serialization takes place. We refer to the
* action of forcing an object into a consistent state as
* 'draining'. Objects that need draining inherit from Drainable. See
* Drainable for more information.
*/
class Serializable
{
protected:
/**
* Scoped checkpoint section helper class
*
* This helper class creates a section within a checkpoint without
* the need for a separate serializeable object. It is mainly used
* within the Serializable class when serializing or unserializing
* section (see serializeSection() and unserializeSection()). It
* can also be used to maintain backwards compatibility in
* existing code that serializes structs that are not inheriting
* from Serializable into subsections.
*
* When the class is instantiated, it appends a name to the active
* path in a checkpoint. The old path is later restored when the
* instance is destroyed. For example, serializeSection() could be
* implemented by instantiating a ScopedCheckpointSection and then
* calling serialize() on an object.
*/
class ScopedCheckpointSection {
public:
template<class CP>
ScopedCheckpointSection(CP &cp, const char *name) {
pushName(name);
nameOut(cp);
}
template<class CP>
ScopedCheckpointSection(CP &cp, const std::string &name) {
pushName(name.c_str());
nameOut(cp);
}
~ScopedCheckpointSection();
ScopedCheckpointSection() = delete;
ScopedCheckpointSection(const ScopedCheckpointSection &) = delete;
ScopedCheckpointSection &operator=(
const ScopedCheckpointSection &) = delete;
ScopedCheckpointSection &operator=(
ScopedCheckpointSection &&) = delete;
private:
void pushName(const char *name);
void nameOut(CheckpointOut &cp);
void nameOut(CheckpointIn &cp) {};
};
public:
Serializable();
virtual ~Serializable();
/**
* Serialize an object
*
* Output an object's state into the current checkpoint section.
*
* @param cp Checkpoint state
*/
virtual void serialize(CheckpointOut &cp) const = 0;
/**
* Unserialize an object
*
* Read an object's state from the current checkpoint section.
*
* @param cp Checkpoint state
*/
virtual void unserialize(CheckpointIn &cp) = 0;
/**
* Serialize an object into a new section
*
* This method creates a new section in a checkpoint and calls
* serialize() to serialize the current object into that
* section. The name of the section is appended to the current
* checkpoint path.
*
* @param cp Checkpoint state
* @param name Name to append to the active path
*/
void serializeSection(CheckpointOut &cp, const char *name) const;
void serializeSection(CheckpointOut &cp, const std::string &name) const {
serializeSection(cp, name.c_str());
}
/**
* Unserialize an a child object
*
* This method loads a child object from a checkpoint. The object
* name is appended to the active path to form a fully qualified
* section name and unserialize() is called.
*
* @param cp Checkpoint state
* @param name Name to append to the active path
*/
void unserializeSection(CheckpointIn &cp, const char *name);
void unserializeSection(CheckpointIn &cp, const std::string &name) {
unserializeSection(cp, name.c_str());
}
/** Get the fully-qualified name of the active section */
static const std::string &currentSection();
static int ckptCount;
static int ckptMaxCount;
static int ckptPrevCount;
static void serializeAll(const std::string &cpt_dir);
static void unserializeGlobals(CheckpointIn &cp);
private:
static std::stack<std::string> path;
};
//
// The base implementations use to_number for parsing and '<<' for
// displaying, suitable for integer types.
//
template <class T>
bool
parseParam(const std::string &s, T &value)
{
return to_number(s, value);
}
template <class T>
void
showParam(CheckpointOut &os, const T &value)
{
os << value;
}
template <class T>
bool
parseParam(const std::string &s, BitUnionType<T> &value)
{
// Zero initialize storage to avoid leaking an uninitialized value
BitUnionBaseType<T> storage = BitUnionBaseType<T>();
auto res = to_number(s, storage);
value = storage;
return res;
}
template <class T>
void
showParam(CheckpointOut &os, const BitUnionType<T> &value)
{
auto storage = static_cast<BitUnionBaseType<T>>(value);
// For a BitUnion8, the storage type is an unsigned char.
// Since we want to serialize a number we need to cast to
// unsigned int
os << ((sizeof(storage) == 1) ?
static_cast<unsigned int>(storage) : storage);
}
// Treat 8-bit ints (chars) as ints on output, not as chars
template <>
inline void
showParam(CheckpointOut &os, const char &value)
{
os << (int)value;
}
template <>
inline void
showParam(CheckpointOut &os, const signed char &value)
{
os << (int)value;
}
template <>
inline void
showParam(CheckpointOut &os, const unsigned char &value)
{
os << (unsigned int)value;
}
template <>
inline bool
parseParam(const std::string &s, float &value)
{
return to_number(s, value);
}
template <>
inline bool
parseParam(const std::string &s, double &value)
{
return to_number(s, value);
}
template <>
inline bool
parseParam(const std::string &s, bool &value)
{
return to_bool(s, value);
}
// Display bools as strings
template <>
inline void
showParam(CheckpointOut &os, const bool &value)
{
os << (value ? "true" : "false");
}
// String requires no processing to speak of
template <>
inline bool
parseParam(const std::string &s, std::string &value)
{
value = s;
return true;
}
template <class T>
void
paramOut(CheckpointOut &os, const std::string &name, const T &param)
{
os << name << "=";
showParam(os, param);
os << "\n";
}
template <class T>
void
paramIn(CheckpointIn &cp, const std::string &name, T &param)
{
const std::string &section(Serializable::currentSection());
std::string str;
if (!cp.find(section, name, str) || !parseParam(str, param)) {
fatal("Can't unserialize '%s:%s'\n", section, name);
}
}
template <class T>
bool
optParamIn(CheckpointIn &cp, const std::string &name,
T &param, bool warn = true)
{
const std::string &section(Serializable::currentSection());
std::string str;
if (!cp.find(section, name, str) || !parseParam(str, param)) {
if (warn)
warn("optional parameter %s:%s not present\n", section, name);
return false;
} else {
return true;
}
}
template <class T>
void
arrayParamOut(CheckpointOut &os, const std::string &name,
const std::vector<T> &param)
{
typename std::vector<T>::size_type size = param.size();
os << name << "=";
if (size > 0)
showParam(os, param[0]);
for (typename std::vector<T>::size_type i = 1; i < size; ++i) {
os << " ";
showParam(os, param[i]);
}
os << "\n";
}
template <class T>
void
arrayParamOut(CheckpointOut &os, const std::string &name,
const std::list<T> &param)
{
typename std::list<T>::const_iterator it = param.begin();
os << name << "=";
if (param.size() > 0)
showParam(os, *it);
it++;
while (it != param.end()) {
os << " ";
showParam(os, *it);
it++;
}
os << "\n";
}
template <class T>
void
arrayParamOut(CheckpointOut &os, const std::string &name,
const std::set<T> &param)
{
typename std::set<T>::const_iterator it = param.begin();
os << name << "=";
if (param.size() > 0)
showParam(os, *it);
it++;
while (it != param.end()) {
os << " ";
showParam(os, *it);
it++;
}
os << "\n";
}
template <class T>
void
arrayParamOut(CheckpointOut &os, const std::string &name,
const T *param, unsigned size)
{
os << name << "=";
if (size > 0)
showParam(os, param[0]);
for (unsigned i = 1; i < size; ++i) {
os << " ";
showParam(os, param[i]);
}
os << "\n";
}
/**
* Extract values stored in the checkpoint, and assign them to the provided
* array container.
*
* @param cp The checkpoint to be parsed.
* @param name Name of the container.
* @param param The array container.
* @param size The expected number of entries to be extracted.
*/
template <class T>
void
arrayParamIn(CheckpointIn &cp, const std::string &name,
T *param, unsigned size)
{
const std::string &section(Serializable::currentSection());
std::string str;
if (!cp.find(section, name, str)) {
fatal("Can't unserialize '%s:%s'\n", section, name);
}
// code below stolen from VectorParam<T>::parse().
// it would be nice to unify these somehow...
std::vector<std::string> tokens;
tokenize(tokens, str, ' ');
// Need this if we were doing a vector
// value.resize(tokens.size());
fatal_if(tokens.size() != size,
"Array size mismatch on %s:%s (Got %u, expected %u)'\n",
section, name, tokens.size(), size);
for (std::vector<std::string>::size_type i = 0; i < tokens.size(); i++) {
// need to parse into local variable to handle vector<bool>,
// for which operator[] returns a special reference class
// that's not the same as 'bool&', (since it's a packed
// vector)
T scalar_value;
if (!parseParam(tokens[i], scalar_value)) {
std::string err("could not parse \"");
err += str;
err += "\"";
fatal(err);
}
// assign parsed value to vector
param[i] = scalar_value;
}
}
template <class T>
void
arrayParamIn(CheckpointIn &cp, const std::string &name, std::vector<T> &param)
{
const std::string &section(Serializable::currentSection());
std::string str;
if (!cp.find(section, name, str)) {
fatal("Can't unserialize '%s:%s'\n", section, name);
}
// code below stolen from VectorParam<T>::parse().
// it would be nice to unify these somehow...
std::vector<std::string> tokens;
tokenize(tokens, str, ' ');
// Need this if we were doing a vector
// value.resize(tokens.size());
param.resize(tokens.size());
for (std::vector<std::string>::size_type i = 0; i < tokens.size(); i++) {
// need to parse into local variable to handle vector<bool>,
// for which operator[] returns a special reference class
// that's not the same as 'bool&', (since it's a packed
// vector)
T scalar_value;
if (!parseParam(tokens[i], scalar_value)) {
std::string err("could not parse \"");
err += str;
err += "\"";
fatal(err);
}
// assign parsed value to vector
param[i] = scalar_value;
}
}
template <class T>
void
arrayParamIn(CheckpointIn &cp, const std::string &name, std::list<T> &param)
{
const std::string &section(Serializable::currentSection());
std::string str;
if (!cp.find(section, name, str)) {
fatal("Can't unserialize '%s:%s'\n", section, name);
}
param.clear();
std::vector<std::string> tokens;
tokenize(tokens, str, ' ');
for (std::vector<std::string>::size_type i = 0; i < tokens.size(); i++) {
T scalar_value;
if (!parseParam(tokens[i], scalar_value)) {
std::string err("could not parse \"");
err += str;
err += "\"";
fatal(err);
}
// assign parsed value to vector
param.push_back(scalar_value);
}
}
template <class T>
void
arrayParamIn(CheckpointIn &cp, const std::string &name, std::set<T> &param)
{
const std::string &section(Serializable::currentSection());
std::string str;
if (!cp.find(section, name, str)) {
fatal("Can't unserialize '%s:%s'\n", section, name);
}
param.clear();
std::vector<std::string> tokens;
tokenize(tokens, str, ' ');
for (std::vector<std::string>::size_type i = 0; i < tokens.size(); i++) {
T scalar_value;
if (!parseParam(tokens[i], scalar_value)) {
std::string err("could not parse \"");
err += str;
err += "\"";
fatal(err);
}
// assign parsed value to vector
param.insert(scalar_value);
}
}
void
debug_serialize(const std::string &cpt_dir);
void
objParamIn(CheckpointIn &cp, const std::string &name, SimObject * &param);
//
// These macros are streamlined to use in serialize/unserialize
// functions. It's assumed that serialize() has a parameter 'os' for
// the ostream, and unserialize() has parameters 'cp' and 'section'.
#define SERIALIZE_SCALAR(scalar) paramOut(cp, #scalar, scalar)
#define UNSERIALIZE_SCALAR(scalar) paramIn(cp, #scalar, scalar)
#define UNSERIALIZE_OPT_SCALAR(scalar) optParamIn(cp, #scalar, scalar)
// ENUMs are like SCALARs, but we cast them to ints on the way out
#define SERIALIZE_ENUM(scalar) paramOut(cp, #scalar, (int)scalar)
#define UNSERIALIZE_ENUM(scalar) \
do { \
int tmp; \
paramIn(cp, #scalar, tmp); \
scalar = static_cast<decltype(scalar)>(tmp); \
} while (0)
#define SERIALIZE_ARRAY(member, size) \
arrayParamOut(cp, #member, member, size)
#define UNSERIALIZE_ARRAY(member, size) \
arrayParamIn(cp, #member, member, size)
#define SERIALIZE_CONTAINER(member) \
arrayParamOut(cp, #member, member)
#define UNSERIALIZE_CONTAINER(member) \
arrayParamIn(cp, #member, member)
#define SERIALIZE_EVENT(event) event.serializeSection(cp, #event);
#define UNSERIALIZE_EVENT(event) \
do { \
event.unserializeSection(cp, #event); \
eventQueue()->checkpointReschedule(&event); \
} while (0)
#define SERIALIZE_OBJ(obj) obj.serializeSection(cp, #obj)
#define UNSERIALIZE_OBJ(obj) obj.unserializeSection(cp, #obj)
#define SERIALIZE_OBJPTR(objptr) paramOut(cp, #objptr, (objptr)->name())
#define UNSERIALIZE_OBJPTR(objptr) \
do { \
SimObject *sptr; \
objParamIn(cp, #objptr, sptr); \
objptr = dynamic_cast<decltype(objptr)>(sptr); \
} while (0)
#endif // __SERIALIZE_HH__