blob: 6205effd616ea709382a1be1f3f4cefe98d81bef [file] [log] [blame]
/*
pybind11/pybind11.h: Main header file of the C++11 python
binding generator library
Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>
All rights reserved. Use of this source code is governed by a
BSD-style license that can be found in the LICENSE file.
*/
#pragma once
#include "detail/class.h"
#include "detail/init.h"
#include "attr.h"
#include "gil.h"
#include "options.h"
#include <cstdlib>
#include <cstring>
#include <memory>
#include <new>
#include <string>
#include <utility>
#include <vector>
#if defined(__cpp_lib_launder) && !(defined(_MSC_VER) && (_MSC_VER < 1914))
# define PYBIND11_STD_LAUNDER std::launder
# define PYBIND11_HAS_STD_LAUNDER 1
#else
# define PYBIND11_STD_LAUNDER
# define PYBIND11_HAS_STD_LAUNDER 0
#endif
#if defined(__GNUG__) && !defined(__clang__)
# include <cxxabi.h>
#endif
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE)
/* https://stackoverflow.com/questions/46798456/handling-gccs-noexcept-type-warning
This warning is about ABI compatibility, not code health.
It is only actually needed in a couple places, but apparently GCC 7 "generates this warning if
and only if the first template instantiation ... involves noexcept" [stackoverflow], therefore
it could get triggered from seemingly random places, depending on user code.
No other GCC version generates this warning.
*/
#if defined(__GNUC__) && __GNUC__ == 7
PYBIND11_WARNING_DISABLE_GCC("-Wnoexcept-type")
#endif
PYBIND11_WARNING_DISABLE_MSVC(4127)
PYBIND11_NAMESPACE_BEGIN(detail)
// Apply all the extensions translators from a list
// Return true if one of the translators completed without raising an exception
// itself. Return of false indicates that if there are other translators
// available, they should be tried.
inline bool apply_exception_translators(std::forward_list<ExceptionTranslator> &translators) {
auto last_exception = std::current_exception();
for (auto &translator : translators) {
try {
translator(last_exception);
return true;
} catch (...) {
last_exception = std::current_exception();
}
}
return false;
}
#if defined(_MSC_VER)
# define PYBIND11_COMPAT_STRDUP _strdup
#else
# define PYBIND11_COMPAT_STRDUP strdup
#endif
PYBIND11_NAMESPACE_END(detail)
/// Wraps an arbitrary C++ function/method/lambda function/.. into a callable Python object
class cpp_function : public function {
public:
cpp_function() = default;
// NOLINTNEXTLINE(google-explicit-constructor)
cpp_function(std::nullptr_t) {}
/// Construct a cpp_function from a vanilla function pointer
template <typename Return, typename... Args, typename... Extra>
// NOLINTNEXTLINE(google-explicit-constructor)
cpp_function(Return (*f)(Args...), const Extra &...extra) {
initialize(f, f, extra...);
}
/// Construct a cpp_function from a lambda function (possibly with internal state)
template <typename Func,
typename... Extra,
typename = detail::enable_if_t<detail::is_lambda<Func>::value>>
// NOLINTNEXTLINE(google-explicit-constructor)
cpp_function(Func &&f, const Extra &...extra) {
initialize(
std::forward<Func>(f), (detail::function_signature_t<Func> *) nullptr, extra...);
}
/// Construct a cpp_function from a class method (non-const, no ref-qualifier)
template <typename Return, typename Class, typename... Arg, typename... Extra>
// NOLINTNEXTLINE(google-explicit-constructor)
cpp_function(Return (Class::*f)(Arg...), const Extra &...extra) {
initialize(
[f](Class *c, Arg... args) -> Return { return (c->*f)(std::forward<Arg>(args)...); },
(Return(*)(Class *, Arg...)) nullptr,
extra...);
}
/// Construct a cpp_function from a class method (non-const, lvalue ref-qualifier)
/// A copy of the overload for non-const functions without explicit ref-qualifier
/// but with an added `&`.
template <typename Return, typename Class, typename... Arg, typename... Extra>
// NOLINTNEXTLINE(google-explicit-constructor)
cpp_function(Return (Class::*f)(Arg...) &, const Extra &...extra) {
initialize(
[f](Class *c, Arg... args) -> Return { return (c->*f)(std::forward<Arg>(args)...); },
(Return(*)(Class *, Arg...)) nullptr,
extra...);
}
/// Construct a cpp_function from a class method (const, no ref-qualifier)
template <typename Return, typename Class, typename... Arg, typename... Extra>
// NOLINTNEXTLINE(google-explicit-constructor)
cpp_function(Return (Class::*f)(Arg...) const, const Extra &...extra) {
initialize([f](const Class *c,
Arg... args) -> Return { return (c->*f)(std::forward<Arg>(args)...); },
(Return(*)(const Class *, Arg...)) nullptr,
extra...);
}
/// Construct a cpp_function from a class method (const, lvalue ref-qualifier)
/// A copy of the overload for const functions without explicit ref-qualifier
/// but with an added `&`.
template <typename Return, typename Class, typename... Arg, typename... Extra>
// NOLINTNEXTLINE(google-explicit-constructor)
cpp_function(Return (Class::*f)(Arg...) const &, const Extra &...extra) {
initialize([f](const Class *c,
Arg... args) -> Return { return (c->*f)(std::forward<Arg>(args)...); },
(Return(*)(const Class *, Arg...)) nullptr,
extra...);
}
/// Return the function name
object name() const { return attr("__name__"); }
protected:
struct InitializingFunctionRecordDeleter {
// `destruct(function_record, false)`: `initialize_generic` copies strings and
// takes care of cleaning up in case of exceptions. So pass `false` to `free_strings`.
void operator()(detail::function_record *rec) { destruct(rec, false); }
};
using unique_function_record
= std::unique_ptr<detail::function_record, InitializingFunctionRecordDeleter>;
/// Space optimization: don't inline this frequently instantiated fragment
PYBIND11_NOINLINE unique_function_record make_function_record() {
return unique_function_record(new detail::function_record());
}
/// Special internal constructor for functors, lambda functions, etc.
template <typename Func, typename Return, typename... Args, typename... Extra>
void initialize(Func &&f, Return (*)(Args...), const Extra &...extra) {
using namespace detail;
struct capture {
remove_reference_t<Func> f;
};
/* Store the function including any extra state it might have (e.g. a lambda capture
* object) */
// The unique_ptr makes sure nothing is leaked in case of an exception.
auto unique_rec = make_function_record();
auto *rec = unique_rec.get();
/* Store the capture object directly in the function record if there is enough space */
if (sizeof(capture) <= sizeof(rec->data)) {
/* Without these pragmas, GCC warns that there might not be
enough space to use the placement new operator. However, the
'if' statement above ensures that this is the case. */
PYBIND11_WARNING_PUSH
#if defined(__GNUG__) && __GNUC__ >= 6
PYBIND11_WARNING_DISABLE_GCC("-Wplacement-new")
#endif
new ((capture *) &rec->data) capture{std::forward<Func>(f)};
#if !PYBIND11_HAS_STD_LAUNDER
PYBIND11_WARNING_DISABLE_GCC("-Wstrict-aliasing")
#endif
// UB without std::launder, but without breaking ABI and/or
// a significant refactoring it's "impossible" to solve.
if (!std::is_trivially_destructible<capture>::value) {
rec->free_data = [](function_record *r) {
auto data = PYBIND11_STD_LAUNDER((capture *) &r->data);
(void) data;
data->~capture();
};
}
PYBIND11_WARNING_POP
} else {
rec->data[0] = new capture{std::forward<Func>(f)};
rec->free_data = [](function_record *r) { delete ((capture *) r->data[0]); };
}
/* Type casters for the function arguments and return value */
using cast_in = argument_loader<Args...>;
using cast_out
= make_caster<conditional_t<std::is_void<Return>::value, void_type, Return>>;
static_assert(
expected_num_args<Extra...>(
sizeof...(Args), cast_in::args_pos >= 0, cast_in::has_kwargs),
"The number of argument annotations does not match the number of function arguments");
/* Dispatch code which converts function arguments and performs the actual function call */
rec->impl = [](function_call &call) -> handle {
cast_in args_converter;
/* Try to cast the function arguments into the C++ domain */
if (!args_converter.load_args(call)) {
return PYBIND11_TRY_NEXT_OVERLOAD;
}
/* Invoke call policy pre-call hook */
process_attributes<Extra...>::precall(call);
/* Get a pointer to the capture object */
const auto *data = (sizeof(capture) <= sizeof(call.func.data) ? &call.func.data
: call.func.data[0]);
auto *cap = const_cast<capture *>(reinterpret_cast<const capture *>(data));
/* Override policy for rvalues -- usually to enforce rvp::move on an rvalue */
return_value_policy policy
= return_value_policy_override<Return>::policy(call.func.policy);
/* Function scope guard -- defaults to the compile-to-nothing `void_type` */
using Guard = extract_guard_t<Extra...>;
/* Perform the function call */
handle result
= cast_out::cast(std::move(args_converter).template call<Return, Guard>(cap->f),
policy,
call.parent);
/* Invoke call policy post-call hook */
process_attributes<Extra...>::postcall(call, result);
return result;
};
rec->nargs_pos = cast_in::args_pos >= 0
? static_cast<std::uint16_t>(cast_in::args_pos)
: sizeof...(Args) - cast_in::has_kwargs; // Will get reduced more if
// we have a kw_only
rec->has_args = cast_in::args_pos >= 0;
rec->has_kwargs = cast_in::has_kwargs;
/* Process any user-provided function attributes */
process_attributes<Extra...>::init(extra..., rec);
{
constexpr bool has_kw_only_args = any_of<std::is_same<kw_only, Extra>...>::value,
has_pos_only_args = any_of<std::is_same<pos_only, Extra>...>::value,
has_arg_annotations = any_of<is_keyword<Extra>...>::value;
static_assert(has_arg_annotations || !has_kw_only_args,
"py::kw_only requires the use of argument annotations");
static_assert(has_arg_annotations || !has_pos_only_args,
"py::pos_only requires the use of argument annotations (for docstrings "
"and aligning the annotations to the argument)");
static_assert(constexpr_sum(is_kw_only<Extra>::value...) <= 1,
"py::kw_only may be specified only once");
static_assert(constexpr_sum(is_pos_only<Extra>::value...) <= 1,
"py::pos_only may be specified only once");
constexpr auto kw_only_pos = constexpr_first<is_kw_only, Extra...>();
constexpr auto pos_only_pos = constexpr_first<is_pos_only, Extra...>();
static_assert(!(has_kw_only_args && has_pos_only_args) || pos_only_pos < kw_only_pos,
"py::pos_only must come before py::kw_only");
}
/* Generate a readable signature describing the function's arguments and return
value types */
static constexpr auto signature
= const_name("(") + cast_in::arg_names + const_name(") -> ") + cast_out::name;
PYBIND11_DESCR_CONSTEXPR auto types = decltype(signature)::types();
/* Register the function with Python from generic (non-templated) code */
// Pass on the ownership over the `unique_rec` to `initialize_generic`. `rec` stays valid.
initialize_generic(std::move(unique_rec), signature.text, types.data(), sizeof...(Args));
/* Stash some additional information used by an important optimization in 'functional.h' */
using FunctionType = Return (*)(Args...);
constexpr bool is_function_ptr
= std::is_convertible<Func, FunctionType>::value && sizeof(capture) == sizeof(void *);
if (is_function_ptr) {
rec->is_stateless = true;
rec->data[1]
= const_cast<void *>(reinterpret_cast<const void *>(&typeid(FunctionType)));
}
}
// Utility class that keeps track of all duplicated strings, and cleans them up in its
// destructor, unless they are released. Basically a RAII-solution to deal with exceptions
// along the way.
class strdup_guard {
public:
strdup_guard() = default;
strdup_guard(const strdup_guard &) = delete;
strdup_guard &operator=(const strdup_guard &) = delete;
~strdup_guard() {
for (auto *s : strings) {
std::free(s);
}
}
char *operator()(const char *s) {
auto *t = PYBIND11_COMPAT_STRDUP(s);
strings.push_back(t);
return t;
}
void release() { strings.clear(); }
private:
std::vector<char *> strings;
};
/// Register a function call with Python (generic non-templated code goes here)
void initialize_generic(unique_function_record &&unique_rec,
const char *text,
const std::type_info *const *types,
size_t args) {
// Do NOT receive `unique_rec` by value. If this function fails to move out the unique_ptr,
// we do not want this to destruct the pointer. `initialize` (the caller) still relies on
// the pointee being alive after this call. Only move out if a `capsule` is going to keep
// it alive.
auto *rec = unique_rec.get();
// Keep track of strdup'ed strings, and clean them up as long as the function's capsule
// has not taken ownership yet (when `unique_rec.release()` is called).
// Note: This cannot easily be fixed by a `unique_ptr` with custom deleter, because the
// strings are only referenced before strdup'ing. So only *after* the following block could
// `destruct` safely be called, but even then, `repr` could still throw in the middle of
// copying all strings.
strdup_guard guarded_strdup;
/* Create copies of all referenced C-style strings */
rec->name = guarded_strdup(rec->name ? rec->name : "");
if (rec->doc) {
rec->doc = guarded_strdup(rec->doc);
}
for (auto &a : rec->args) {
if (a.name) {
a.name = guarded_strdup(a.name);
}
if (a.descr) {
a.descr = guarded_strdup(a.descr);
} else if (a.value) {
a.descr = guarded_strdup(repr(a.value).cast<std::string>().c_str());
}
}
rec->is_constructor = (std::strcmp(rec->name, "__init__") == 0)
|| (std::strcmp(rec->name, "__setstate__") == 0);
#if defined(PYBIND11_DETAILED_ERROR_MESSAGES) && !defined(PYBIND11_DISABLE_NEW_STYLE_INIT_WARNING)
if (rec->is_constructor && !rec->is_new_style_constructor) {
const auto class_name
= detail::get_fully_qualified_tp_name((PyTypeObject *) rec->scope.ptr());
const auto func_name = std::string(rec->name);
PyErr_WarnEx(PyExc_FutureWarning,
("pybind11-bound class '" + class_name
+ "' is using an old-style "
"placement-new '"
+ func_name
+ "' which has been deprecated. See "
"the upgrade guide in pybind11's docs. This message is only visible "
"when compiled in debug mode.")
.c_str(),
0);
}
#endif
/* Generate a proper function signature */
std::string signature;
size_t type_index = 0, arg_index = 0;
bool is_starred = false;
for (const auto *pc = text; *pc != '\0'; ++pc) {
const auto c = *pc;
if (c == '{') {
// Write arg name for everything except *args and **kwargs.
is_starred = *(pc + 1) == '*';
if (is_starred) {
continue;
}
// Separator for keyword-only arguments, placed before the kw
// arguments start (unless we are already putting an *args)
if (!rec->has_args && arg_index == rec->nargs_pos) {
signature += "*, ";
}
if (arg_index < rec->args.size() && rec->args[arg_index].name) {
signature += rec->args[arg_index].name;
} else if (arg_index == 0 && rec->is_method) {
signature += "self";
} else {
signature += "arg" + std::to_string(arg_index - (rec->is_method ? 1 : 0));
}
signature += ": ";
} else if (c == '}') {
// Write default value if available.
if (!is_starred && arg_index < rec->args.size() && rec->args[arg_index].descr) {
signature += " = ";
signature += rec->args[arg_index].descr;
}
// Separator for positional-only arguments (placed after the
// argument, rather than before like *
if (rec->nargs_pos_only > 0 && (arg_index + 1) == rec->nargs_pos_only) {
signature += ", /";
}
if (!is_starred) {
arg_index++;
}
} else if (c == '%') {
const std::type_info *t = types[type_index++];
if (!t) {
pybind11_fail("Internal error while parsing type signature (1)");
}
if (auto *tinfo = detail::get_type_info(*t)) {
handle th((PyObject *) tinfo->type);
signature += th.attr("__module__").cast<std::string>() + "."
+ th.attr("__qualname__").cast<std::string>();
} else if (rec->is_new_style_constructor && arg_index == 0) {
// A new-style `__init__` takes `self` as `value_and_holder`.
// Rewrite it to the proper class type.
signature += rec->scope.attr("__module__").cast<std::string>() + "."
+ rec->scope.attr("__qualname__").cast<std::string>();
} else {
std::string tname(t->name());
detail::clean_type_id(tname);
signature += tname;
}
} else {
signature += c;
}
}
if (arg_index != args - rec->has_args - rec->has_kwargs || types[type_index] != nullptr) {
pybind11_fail("Internal error while parsing type signature (2)");
}
rec->signature = guarded_strdup(signature.c_str());
rec->args.shrink_to_fit();
rec->nargs = (std::uint16_t) args;
if (rec->sibling && PYBIND11_INSTANCE_METHOD_CHECK(rec->sibling.ptr())) {
rec->sibling = PYBIND11_INSTANCE_METHOD_GET_FUNCTION(rec->sibling.ptr());
}
detail::function_record *chain = nullptr, *chain_start = rec;
if (rec->sibling) {
if (PyCFunction_Check(rec->sibling.ptr())) {
auto *self = PyCFunction_GET_SELF(rec->sibling.ptr());
if (!isinstance<capsule>(self)) {
chain = nullptr;
} else {
auto rec_capsule = reinterpret_borrow<capsule>(self);
if (detail::is_function_record_capsule(rec_capsule)) {
chain = rec_capsule.get_pointer<detail::function_record>();
/* Never append a method to an overload chain of a parent class;
instead, hide the parent's overloads in this case */
if (!chain->scope.is(rec->scope)) {
chain = nullptr;
}
} else {
chain = nullptr;
}
}
}
// Don't trigger for things like the default __init__, which are wrapper_descriptors
// that we are intentionally replacing
else if (!rec->sibling.is_none() && rec->name[0] != '_') {
pybind11_fail("Cannot overload existing non-function object \""
+ std::string(rec->name) + "\" with a function of the same name");
}
}
if (!chain) {
/* No existing overload was found, create a new function object */
rec->def = new PyMethodDef();
std::memset(rec->def, 0, sizeof(PyMethodDef));
rec->def->ml_name = rec->name;
rec->def->ml_meth
= reinterpret_cast<PyCFunction>(reinterpret_cast<void (*)()>(dispatcher));
rec->def->ml_flags = METH_VARARGS | METH_KEYWORDS;
capsule rec_capsule(unique_rec.release(),
[](void *ptr) { destruct((detail::function_record *) ptr); });
rec_capsule.set_name(detail::get_function_record_capsule_name());
guarded_strdup.release();
object scope_module;
if (rec->scope) {
if (hasattr(rec->scope, "__module__")) {
scope_module = rec->scope.attr("__module__");
} else if (hasattr(rec->scope, "__name__")) {
scope_module = rec->scope.attr("__name__");
}
}
m_ptr = PyCFunction_NewEx(rec->def, rec_capsule.ptr(), scope_module.ptr());
if (!m_ptr) {
pybind11_fail("cpp_function::cpp_function(): Could not allocate function object");
}
} else {
/* Append at the beginning or end of the overload chain */
m_ptr = rec->sibling.ptr();
inc_ref();
if (chain->is_method != rec->is_method) {
pybind11_fail(
"overloading a method with both static and instance methods is not supported; "
#if !defined(PYBIND11_DETAILED_ERROR_MESSAGES)
"#define PYBIND11_DETAILED_ERROR_MESSAGES or compile in debug mode for more "
"details"
#else
"error while attempting to bind "
+ std::string(rec->is_method ? "instance" : "static") + " method "
+ std::string(pybind11::str(rec->scope.attr("__name__"))) + "."
+ std::string(rec->name) + signature
#endif
);
}
if (rec->prepend) {
// Beginning of chain; we need to replace the capsule's current head-of-the-chain
// pointer with this one, then make this one point to the previous head of the
// chain.
chain_start = rec;
rec->next = chain;
auto rec_capsule
= reinterpret_borrow<capsule>(((PyCFunctionObject *) m_ptr)->m_self);
rec_capsule.set_pointer(unique_rec.release());
guarded_strdup.release();
} else {
// Or end of chain (normal behavior)
chain_start = chain;
while (chain->next) {
chain = chain->next;
}
chain->next = unique_rec.release();
guarded_strdup.release();
}
}
std::string signatures;
int index = 0;
/* Create a nice pydoc rec including all signatures and
docstrings of the functions in the overload chain */
if (chain && options::show_function_signatures()) {
// First a generic signature
signatures += rec->name;
signatures += "(*args, **kwargs)\n";
signatures += "Overloaded function.\n\n";
}
// Then specific overload signatures
bool first_user_def = true;
for (auto *it = chain_start; it != nullptr; it = it->next) {
if (options::show_function_signatures()) {
if (index > 0) {
signatures += '\n';
}
if (chain) {
signatures += std::to_string(++index) + ". ";
}
signatures += rec->name;
signatures += it->signature;
signatures += '\n';
}
if (it->doc && it->doc[0] != '\0' && options::show_user_defined_docstrings()) {
// If we're appending another docstring, and aren't printing function signatures,
// we need to append a newline first:
if (!options::show_function_signatures()) {
if (first_user_def) {
first_user_def = false;
} else {
signatures += '\n';
}
}
if (options::show_function_signatures()) {
signatures += '\n';
}
signatures += it->doc;
if (options::show_function_signatures()) {
signatures += '\n';
}
}
}
/* Install docstring */
auto *func = (PyCFunctionObject *) m_ptr;
std::free(const_cast<char *>(func->m_ml->ml_doc));
// Install docstring if it's non-empty (when at least one option is enabled)
func->m_ml->ml_doc
= signatures.empty() ? nullptr : PYBIND11_COMPAT_STRDUP(signatures.c_str());
if (rec->is_method) {
m_ptr = PYBIND11_INSTANCE_METHOD_NEW(m_ptr, rec->scope.ptr());
if (!m_ptr) {
pybind11_fail(
"cpp_function::cpp_function(): Could not allocate instance method object");
}
Py_DECREF(func);
}
}
/// When a cpp_function is GCed, release any memory allocated by pybind11
static void destruct(detail::function_record *rec, bool free_strings = true) {
// If on Python 3.9, check the interpreter "MICRO" (patch) version.
// If this is running on 3.9.0, we have to work around a bug.
#if !defined(PYPY_VERSION) && PY_MAJOR_VERSION == 3 && PY_MINOR_VERSION == 9
static bool is_zero = Py_GetVersion()[4] == '0';
#endif
while (rec) {
detail::function_record *next = rec->next;
if (rec->free_data) {
rec->free_data(rec);
}
// During initialization, these strings might not have been copied yet,
// so they cannot be freed. Once the function has been created, they can.
// Check `make_function_record` for more details.
if (free_strings) {
std::free((char *) rec->name);
std::free((char *) rec->doc);
std::free((char *) rec->signature);
for (auto &arg : rec->args) {
std::free(const_cast<char *>(arg.name));
std::free(const_cast<char *>(arg.descr));
}
}
for (auto &arg : rec->args) {
arg.value.dec_ref();
}
if (rec->def) {
std::free(const_cast<char *>(rec->def->ml_doc));
// Python 3.9.0 decref's these in the wrong order; rec->def
// If loaded on 3.9.0, let these leak (use Python 3.9.1 at runtime to fix)
// See https://github.com/python/cpython/pull/22670
#if !defined(PYPY_VERSION) && PY_MAJOR_VERSION == 3 && PY_MINOR_VERSION == 9
if (!is_zero) {
delete rec->def;
}
#else
delete rec->def;
#endif
}
delete rec;
rec = next;
}
}
/// Main dispatch logic for calls to functions bound using pybind11
static PyObject *dispatcher(PyObject *self, PyObject *args_in, PyObject *kwargs_in) {
using namespace detail;
assert(isinstance<capsule>(self));
/* Iterator over the list of potentially admissible overloads */
const function_record *overloads = reinterpret_cast<function_record *>(
PyCapsule_GetPointer(self, get_function_record_capsule_name())),
*it = overloads;
assert(overloads != nullptr);
/* Need to know how many arguments + keyword arguments there are to pick the right
overload */
const auto n_args_in = (size_t) PyTuple_GET_SIZE(args_in);
handle parent = n_args_in > 0 ? PyTuple_GET_ITEM(args_in, 0) : nullptr,
result = PYBIND11_TRY_NEXT_OVERLOAD;
auto self_value_and_holder = value_and_holder();
if (overloads->is_constructor) {
if (!parent
|| !PyObject_TypeCheck(parent.ptr(), (PyTypeObject *) overloads->scope.ptr())) {
PyErr_SetString(
PyExc_TypeError,
"__init__(self, ...) called with invalid or missing `self` argument");
return nullptr;
}
auto *const tinfo = get_type_info((PyTypeObject *) overloads->scope.ptr());
auto *const pi = reinterpret_cast<instance *>(parent.ptr());
self_value_and_holder = pi->get_value_and_holder(tinfo, true);
// If this value is already registered it must mean __init__ is invoked multiple times;
// we really can't support that in C++, so just ignore the second __init__.
if (self_value_and_holder.instance_registered()) {
return none().release().ptr();
}
}
try {
// We do this in two passes: in the first pass, we load arguments with `convert=false`;
// in the second, we allow conversion (except for arguments with an explicit
// py::arg().noconvert()). This lets us prefer calls without conversion, with
// conversion as a fallback.
std::vector<function_call> second_pass;
// However, if there are no overloads, we can just skip the no-convert pass entirely
const bool overloaded = it != nullptr && it->next != nullptr;
for (; it != nullptr; it = it->next) {
/* For each overload:
1. Copy all positional arguments we were given, also checking to make sure that
named positional arguments weren't *also* specified via kwarg.
2. If we weren't given enough, try to make up the omitted ones by checking
whether they were provided by a kwarg matching the `py::arg("name")` name. If
so, use it (and remove it from kwargs); if not, see if the function binding
provided a default that we can use.
3. Ensure that either all keyword arguments were "consumed", or that the
function takes a kwargs argument to accept unconsumed kwargs.
4. Any positional arguments still left get put into a tuple (for args), and any
leftover kwargs get put into a dict.
5. Pack everything into a vector; if we have py::args or py::kwargs, they are an
extra tuple or dict at the end of the positional arguments.
6. Call the function call dispatcher (function_record::impl)
If one of these fail, move on to the next overload and keep trying until we get
a result other than PYBIND11_TRY_NEXT_OVERLOAD.
*/
const function_record &func = *it;
size_t num_args = func.nargs; // Number of positional arguments that we need
if (func.has_args) {
--num_args; // (but don't count py::args
}
if (func.has_kwargs) {
--num_args; // or py::kwargs)
}
size_t pos_args = func.nargs_pos;
if (!func.has_args && n_args_in > pos_args) {
continue; // Too many positional arguments for this overload
}
if (n_args_in < pos_args && func.args.size() < pos_args) {
continue; // Not enough positional arguments given, and not enough defaults to
// fill in the blanks
}
function_call call(func, parent);
// Protect std::min with parentheses
size_t args_to_copy = (std::min)(pos_args, n_args_in);
size_t args_copied = 0;
// 0. Inject new-style `self` argument
if (func.is_new_style_constructor) {
// The `value` may have been preallocated by an old-style `__init__`
// if it was a preceding candidate for overload resolution.
if (self_value_and_holder) {
self_value_and_holder.type->dealloc(self_value_and_holder);
}
call.init_self = PyTuple_GET_ITEM(args_in, 0);
call.args.emplace_back(reinterpret_cast<PyObject *>(&self_value_and_holder));
call.args_convert.push_back(false);
++args_copied;
}
// 1. Copy any position arguments given.
bool bad_arg = false;
for (; args_copied < args_to_copy; ++args_copied) {
const argument_record *arg_rec
= args_copied < func.args.size() ? &func.args[args_copied] : nullptr;
if (kwargs_in && arg_rec && arg_rec->name
&& dict_getitemstring(kwargs_in, arg_rec->name)) {
bad_arg = true;
break;
}
handle arg(PyTuple_GET_ITEM(args_in, args_copied));
if (arg_rec && !arg_rec->none && arg.is_none()) {
bad_arg = true;
break;
}
call.args.push_back(arg);
call.args_convert.push_back(arg_rec ? arg_rec->convert : true);
}
if (bad_arg) {
continue; // Maybe it was meant for another overload (issue #688)
}
// Keep track of how many position args we copied out in case we need to come back
// to copy the rest into a py::args argument.
size_t positional_args_copied = args_copied;
// We'll need to copy this if we steal some kwargs for defaults
dict kwargs = reinterpret_borrow<dict>(kwargs_in);
// 1.5. Fill in any missing pos_only args from defaults if they exist
if (args_copied < func.nargs_pos_only) {
for (; args_copied < func.nargs_pos_only; ++args_copied) {
const auto &arg_rec = func.args[args_copied];
handle value;
if (arg_rec.value) {
value = arg_rec.value;
}
if (value) {
call.args.push_back(value);
call.args_convert.push_back(arg_rec.convert);
} else {
break;
}
}
if (args_copied < func.nargs_pos_only) {
continue; // Not enough defaults to fill the positional arguments
}
}
// 2. Check kwargs and, failing that, defaults that may help complete the list
if (args_copied < num_args) {
bool copied_kwargs = false;
for (; args_copied < num_args; ++args_copied) {
const auto &arg_rec = func.args[args_copied];
handle value;
if (kwargs_in && arg_rec.name) {
value = dict_getitemstring(kwargs.ptr(), arg_rec.name);
}
if (value) {
// Consume a kwargs value
if (!copied_kwargs) {
kwargs = reinterpret_steal<dict>(PyDict_Copy(kwargs.ptr()));
copied_kwargs = true;
}
if (PyDict_DelItemString(kwargs.ptr(), arg_rec.name) == -1) {
throw error_already_set();
}
} else if (arg_rec.value) {
value = arg_rec.value;
}
if (!arg_rec.none && value.is_none()) {
break;
}
if (value) {
// If we're at the py::args index then first insert a stub for it to be
// replaced later
if (func.has_args && call.args.size() == func.nargs_pos) {
call.args.push_back(none());
}
call.args.push_back(value);
call.args_convert.push_back(arg_rec.convert);
} else {
break;
}
}
if (args_copied < num_args) {
continue; // Not enough arguments, defaults, or kwargs to fill the
// positional arguments
}
}
// 3. Check everything was consumed (unless we have a kwargs arg)
if (kwargs && !kwargs.empty() && !func.has_kwargs) {
continue; // Unconsumed kwargs, but no py::kwargs argument to accept them
}
// 4a. If we have a py::args argument, create a new tuple with leftovers
if (func.has_args) {
tuple extra_args;
if (args_to_copy == 0) {
// We didn't copy out any position arguments from the args_in tuple, so we
// can reuse it directly without copying:
extra_args = reinterpret_borrow<tuple>(args_in);
} else if (positional_args_copied >= n_args_in) {
extra_args = tuple(0);
} else {
size_t args_size = n_args_in - positional_args_copied;
extra_args = tuple(args_size);
for (size_t i = 0; i < args_size; ++i) {
extra_args[i] = PyTuple_GET_ITEM(args_in, positional_args_copied + i);
}
}
if (call.args.size() <= func.nargs_pos) {
call.args.push_back(extra_args);
} else {
call.args[func.nargs_pos] = extra_args;
}
call.args_convert.push_back(false);
call.args_ref = std::move(extra_args);
}
// 4b. If we have a py::kwargs, pass on any remaining kwargs
if (func.has_kwargs) {
if (!kwargs.ptr()) {
kwargs = dict(); // If we didn't get one, send an empty one
}
call.args.push_back(kwargs);
call.args_convert.push_back(false);
call.kwargs_ref = std::move(kwargs);
}
// 5. Put everything in a vector. Not technically step 5, we've been building it
// in `call.args` all along.
#if defined(PYBIND11_DETAILED_ERROR_MESSAGES)
if (call.args.size() != func.nargs || call.args_convert.size() != func.nargs) {
pybind11_fail("Internal error: function call dispatcher inserted wrong number "
"of arguments!");
}
#endif
std::vector<bool> second_pass_convert;
if (overloaded) {
// We're in the first no-convert pass, so swap out the conversion flags for a
// set of all-false flags. If the call fails, we'll swap the flags back in for
// the conversion-allowed call below.
second_pass_convert.resize(func.nargs, false);
call.args_convert.swap(second_pass_convert);
}
// 6. Call the function.
try {
loader_life_support guard{};
result = func.impl(call);
} catch (reference_cast_error &) {
result = PYBIND11_TRY_NEXT_OVERLOAD;
}
if (result.ptr() != PYBIND11_TRY_NEXT_OVERLOAD) {
break;
}
if (overloaded) {
// The (overloaded) call failed; if the call has at least one argument that
// permits conversion (i.e. it hasn't been explicitly specified `.noconvert()`)
// then add this call to the list of second pass overloads to try.
for (size_t i = func.is_method ? 1 : 0; i < pos_args; i++) {
if (second_pass_convert[i]) {
// Found one: swap the converting flags back in and store the call for
// the second pass.
call.args_convert.swap(second_pass_convert);
second_pass.push_back(std::move(call));
break;
}
}
}
}
if (overloaded && !second_pass.empty() && result.ptr() == PYBIND11_TRY_NEXT_OVERLOAD) {
// The no-conversion pass finished without success, try again with conversion
// allowed
for (auto &call : second_pass) {
try {
loader_life_support guard{};
result = call.func.impl(call);
} catch (reference_cast_error &) {
result = PYBIND11_TRY_NEXT_OVERLOAD;
}
if (result.ptr() != PYBIND11_TRY_NEXT_OVERLOAD) {
// The error reporting logic below expects 'it' to be valid, as it would be
// if we'd encountered this failure in the first-pass loop.
if (!result) {
it = &call.func;
}
break;
}
}
}
} catch (error_already_set &e) {
e.restore();
return nullptr;
#ifdef __GLIBCXX__
} catch (abi::__forced_unwind &) {
throw;
#endif
} catch (...) {
/* When an exception is caught, give each registered exception
translator a chance to translate it to a Python exception. First
all module-local translators will be tried in reverse order of
registration. If none of the module-locale translators handle
the exception (or there are no module-locale translators) then
the global translators will be tried, also in reverse order of
registration.
A translator may choose to do one of the following:
- catch the exception and call PyErr_SetString or PyErr_SetObject
to set a standard (or custom) Python exception, or
- do nothing and let the exception fall through to the next translator, or
- delegate translation to the next translator by throwing a new type of exception.
*/
auto &local_exception_translators
= get_local_internals().registered_exception_translators;
if (detail::apply_exception_translators(local_exception_translators)) {
return nullptr;
}
auto &exception_translators = get_internals().registered_exception_translators;
if (detail::apply_exception_translators(exception_translators)) {
return nullptr;
}
PyErr_SetString(PyExc_SystemError,
"Exception escaped from default exception translator!");
return nullptr;
}
auto append_note_if_missing_header_is_suspected = [](std::string &msg) {
if (msg.find("std::") != std::string::npos) {
msg += "\n\n"
"Did you forget to `#include <pybind11/stl.h>`? Or <pybind11/complex.h>,\n"
"<pybind11/functional.h>, <pybind11/chrono.h>, etc. Some automatic\n"
"conversions are optional and require extra headers to be included\n"
"when compiling your pybind11 module.";
}
};
if (result.ptr() == PYBIND11_TRY_NEXT_OVERLOAD) {
if (overloads->is_operator) {
return handle(Py_NotImplemented).inc_ref().ptr();
}
std::string msg = std::string(overloads->name) + "(): incompatible "
+ std::string(overloads->is_constructor ? "constructor" : "function")
+ " arguments. The following argument types are supported:\n";
int ctr = 0;
for (const function_record *it2 = overloads; it2 != nullptr; it2 = it2->next) {
msg += " " + std::to_string(++ctr) + ". ";
bool wrote_sig = false;
if (overloads->is_constructor) {
// For a constructor, rewrite `(self: Object, arg0, ...) -> NoneType` as
// `Object(arg0, ...)`
std::string sig = it2->signature;
size_t start = sig.find('(') + 7; // skip "(self: "
if (start < sig.size()) {
// End at the , for the next argument
size_t end = sig.find(", "), next = end + 2;
size_t ret = sig.rfind(" -> ");
// Or the ), if there is no comma:
if (end >= sig.size()) {
next = end = sig.find(')');
}
if (start < end && next < sig.size()) {
msg.append(sig, start, end - start);
msg += '(';
msg.append(sig, next, ret - next);
wrote_sig = true;
}
}
}
if (!wrote_sig) {
msg += it2->signature;
}
msg += '\n';
}
msg += "\nInvoked with: ";
auto args_ = reinterpret_borrow<tuple>(args_in);
bool some_args = false;
for (size_t ti = overloads->is_constructor ? 1 : 0; ti < args_.size(); ++ti) {
if (!some_args) {
some_args = true;
} else {
msg += ", ";
}
try {
msg += pybind11::repr(args_[ti]);
} catch (const error_already_set &) {
msg += "<repr raised Error>";
}
}
if (kwargs_in) {
auto kwargs = reinterpret_borrow<dict>(kwargs_in);
if (!kwargs.empty()) {
if (some_args) {
msg += "; ";
}
msg += "kwargs: ";
bool first = true;
for (auto kwarg : kwargs) {
if (first) {
first = false;
} else {
msg += ", ";
}
msg += pybind11::str("{}=").format(kwarg.first);
try {
msg += pybind11::repr(kwarg.second);
} catch (const error_already_set &) {
msg += "<repr raised Error>";
}
}
}
}
append_note_if_missing_header_is_suspected(msg);
// Attach additional error info to the exception if supported
if (PyErr_Occurred()) {
// #HelpAppreciated: unit test coverage for this branch.
raise_from(PyExc_TypeError, msg.c_str());
return nullptr;
}
PyErr_SetString(PyExc_TypeError, msg.c_str());
return nullptr;
}
if (!result) {
std::string msg = "Unable to convert function return value to a "
"Python type! The signature was\n\t";
msg += it->signature;
append_note_if_missing_header_is_suspected(msg);
// Attach additional error info to the exception if supported
if (PyErr_Occurred()) {
raise_from(PyExc_TypeError, msg.c_str());
return nullptr;
}
PyErr_SetString(PyExc_TypeError, msg.c_str());
return nullptr;
}
if (overloads->is_constructor && !self_value_and_holder.holder_constructed()) {
auto *pi = reinterpret_cast<instance *>(parent.ptr());
self_value_and_holder.type->init_instance(pi, nullptr);
}
return result.ptr();
}
};
/// Wrapper for Python extension modules
class module_ : public object {
public:
PYBIND11_OBJECT_DEFAULT(module_, object, PyModule_Check)
/// Create a new top-level Python module with the given name and docstring
PYBIND11_DEPRECATED("Use PYBIND11_MODULE or module_::create_extension_module instead")
explicit module_(const char *name, const char *doc = nullptr) {
*this = create_extension_module(name, doc, new PyModuleDef());
}
/** \rst
Create Python binding for a new function within the module scope. ``Func``
can be a plain C++ function, a function pointer, or a lambda function. For
details on the ``Extra&& ... extra`` argument, see section :ref:`extras`.
\endrst */
template <typename Func, typename... Extra>
module_ &def(const char *name_, Func &&f, const Extra &...extra) {
cpp_function func(std::forward<Func>(f),
name(name_),
scope(*this),
sibling(getattr(*this, name_, none())),
extra...);
// NB: allow overwriting here because cpp_function sets up a chain with the intention of
// overwriting (and has already checked internally that it isn't overwriting
// non-functions).
add_object(name_, func, true /* overwrite */);
return *this;
}
/** \rst
Create and return a new Python submodule with the given name and docstring.
This also works recursively, i.e.
.. code-block:: cpp
py::module_ m("example", "pybind11 example plugin");
py::module_ m2 = m.def_submodule("sub", "A submodule of 'example'");
py::module_ m3 = m2.def_submodule("subsub", "A submodule of 'example.sub'");
\endrst */
module_ def_submodule(const char *name, const char *doc = nullptr) {
const char *this_name = PyModule_GetName(m_ptr);
if (this_name == nullptr) {
throw error_already_set();
}
std::string full_name = std::string(this_name) + '.' + name;
handle submodule = PyImport_AddModule(full_name.c_str());
if (!submodule) {
throw error_already_set();
}
auto result = reinterpret_borrow<module_>(submodule);
if (doc && options::show_user_defined_docstrings()) {
result.attr("__doc__") = pybind11::str(doc);
}
attr(name) = result;
return result;
}
/// Import and return a module or throws `error_already_set`.
static module_ import(const char *name) {
PyObject *obj = PyImport_ImportModule(name);
if (!obj) {
throw error_already_set();
}
return reinterpret_steal<module_>(obj);
}
/// Reload the module or throws `error_already_set`.
void reload() {
PyObject *obj = PyImport_ReloadModule(ptr());
if (!obj) {
throw error_already_set();
}
*this = reinterpret_steal<module_>(obj);
}
/** \rst
Adds an object to the module using the given name. Throws if an object with the given name
already exists.
``overwrite`` should almost always be false: attempting to overwrite objects that pybind11
has established will, in most cases, break things.
\endrst */
PYBIND11_NOINLINE void add_object(const char *name, handle obj, bool overwrite = false) {
if (!overwrite && hasattr(*this, name)) {
pybind11_fail(
"Error during initialization: multiple incompatible definitions with name \""
+ std::string(name) + "\"");
}
PyModule_AddObject(ptr(), name, obj.inc_ref().ptr() /* steals a reference */);
}
using module_def = PyModuleDef; // TODO: Can this be removed (it was needed only for Python 2)?
/** \rst
Create a new top-level module that can be used as the main module of a C extension.
``def`` should point to a statically allocated module_def.
\endrst */
static module_ create_extension_module(const char *name, const char *doc, module_def *def) {
// module_def is PyModuleDef
// Placement new (not an allocation).
def = new (def)
PyModuleDef{/* m_base */ PyModuleDef_HEAD_INIT,
/* m_name */ name,
/* m_doc */ options::show_user_defined_docstrings() ? doc : nullptr,
/* m_size */ -1,
/* m_methods */ nullptr,
/* m_slots */ nullptr,
/* m_traverse */ nullptr,
/* m_clear */ nullptr,
/* m_free */ nullptr};
auto *m = PyModule_Create(def);
if (m == nullptr) {
if (PyErr_Occurred()) {
throw error_already_set();
}
pybind11_fail("Internal error in module_::create_extension_module()");
}
// TODO: Should be reinterpret_steal for Python 3, but Python also steals it again when
// returned from PyInit_...
// For Python 2, reinterpret_borrow was correct.
return reinterpret_borrow<module_>(m);
}
};
// When inside a namespace (or anywhere as long as it's not the first item on a line),
// C++20 allows "module" to be used. This is provided for backward compatibility, and for
// simplicity, if someone wants to use py::module for example, that is perfectly safe.
using module = module_;
/// \ingroup python_builtins
/// Return a dictionary representing the global variables in the current execution frame,
/// or ``__main__.__dict__`` if there is no frame (usually when the interpreter is embedded).
inline dict globals() {
PyObject *p = PyEval_GetGlobals();
return reinterpret_borrow<dict>(p ? p : module_::import("__main__").attr("__dict__").ptr());
}
template <typename... Args, typename = detail::enable_if_t<args_are_all_keyword_or_ds<Args...>()>>
PYBIND11_DEPRECATED("make_simple_namespace should be replaced with "
"py::module_::import(\"types\").attr(\"SimpleNamespace\") ")
object make_simple_namespace(Args &&...args_) {
return module_::import("types").attr("SimpleNamespace")(std::forward<Args>(args_)...);
}
PYBIND11_NAMESPACE_BEGIN(detail)
/// Generic support for creating new Python heap types
class generic_type : public object {
public:
PYBIND11_OBJECT_DEFAULT(generic_type, object, PyType_Check)
protected:
void initialize(const type_record &rec) {
if (rec.scope && hasattr(rec.scope, "__dict__")
&& rec.scope.attr("__dict__").contains(rec.name)) {
pybind11_fail("generic_type: cannot initialize type \"" + std::string(rec.name)
+ "\": an object with that name is already defined");
}
if ((rec.module_local ? get_local_type_info(*rec.type) : get_global_type_info(*rec.type))
!= nullptr) {
pybind11_fail("generic_type: type \"" + std::string(rec.name)
+ "\" is already registered!");
}
m_ptr = make_new_python_type(rec);
/* Register supplemental type information in C++ dict */
auto *tinfo = new detail::type_info();
tinfo->type = (PyTypeObject *) m_ptr;
tinfo->cpptype = rec.type;
tinfo->type_size = rec.type_size;
tinfo->type_align = rec.type_align;
tinfo->operator_new = rec.operator_new;
tinfo->holder_size_in_ptrs = size_in_ptrs(rec.holder_size);
tinfo->init_instance = rec.init_instance;
tinfo->dealloc = rec.dealloc;
tinfo->simple_type = true;
tinfo->simple_ancestors = true;
tinfo->default_holder = rec.default_holder;
tinfo->module_local = rec.module_local;
auto &internals = get_internals();
auto tindex = std::type_index(*rec.type);
tinfo->direct_conversions = &internals.direct_conversions[tindex];
if (rec.module_local) {
get_local_internals().registered_types_cpp[tindex] = tinfo;
} else {
internals.registered_types_cpp[tindex] = tinfo;
}
internals.registered_types_py[(PyTypeObject *) m_ptr] = {tinfo};
if (rec.bases.size() > 1 || rec.multiple_inheritance) {
mark_parents_nonsimple(tinfo->type);
tinfo->simple_ancestors = false;
} else if (rec.bases.size() == 1) {
auto *parent_tinfo = get_type_info((PyTypeObject *) rec.bases[0].ptr());
assert(parent_tinfo != nullptr);
bool parent_simple_ancestors = parent_tinfo->simple_ancestors;
tinfo->simple_ancestors = parent_simple_ancestors;
// The parent can no longer be a simple type if it has MI and has a child
parent_tinfo->simple_type = parent_tinfo->simple_type && parent_simple_ancestors;
}
if (rec.module_local) {
// Stash the local typeinfo and loader so that external modules can access it.
tinfo->module_local_load = &type_caster_generic::local_load;
setattr(m_ptr, PYBIND11_MODULE_LOCAL_ID, capsule(tinfo));
}
}
/// Helper function which tags all parents of a type using mult. inheritance
void mark_parents_nonsimple(PyTypeObject *value) {
auto t = reinterpret_borrow<tuple>(value->tp_bases);
for (handle h : t) {
auto *tinfo2 = get_type_info((PyTypeObject *) h.ptr());
if (tinfo2) {
tinfo2->simple_type = false;
}
mark_parents_nonsimple((PyTypeObject *) h.ptr());
}
}
void install_buffer_funcs(buffer_info *(*get_buffer)(PyObject *, void *),
void *get_buffer_data) {
auto *type = (PyHeapTypeObject *) m_ptr;
auto *tinfo = detail::get_type_info(&type->ht_type);
if (!type->ht_type.tp_as_buffer) {
pybind11_fail("To be able to register buffer protocol support for the type '"
+ get_fully_qualified_tp_name(tinfo->type)
+ "' the associated class<>(..) invocation must "
"include the pybind11::buffer_protocol() annotation!");
}
tinfo->get_buffer = get_buffer;
tinfo->get_buffer_data = get_buffer_data;
}
// rec_func must be set for either fget or fset.
void def_property_static_impl(const char *name,
handle fget,
handle fset,
detail::function_record *rec_func) {
const auto is_static = (rec_func != nullptr) && !(rec_func->is_method && rec_func->scope);
const auto has_doc = (rec_func != nullptr) && (rec_func->doc != nullptr)
&& pybind11::options::show_user_defined_docstrings();
auto property = handle(
(PyObject *) (is_static ? get_internals().static_property_type : &PyProperty_Type));
attr(name) = property(fget.ptr() ? fget : none(),
fset.ptr() ? fset : none(),
/*deleter*/ none(),
pybind11::str(has_doc ? rec_func->doc : ""));
}
};
/// Set the pointer to operator new if it exists. The cast is needed because it can be overloaded.
template <typename T,
typename = void_t<decltype(static_cast<void *(*) (size_t)>(T::operator new))>>
void set_operator_new(type_record *r) {
r->operator_new = &T::operator new;
}
template <typename>
void set_operator_new(...) {}
template <typename T, typename SFINAE = void>
struct has_operator_delete : std::false_type {};
template <typename T>
struct has_operator_delete<T, void_t<decltype(static_cast<void (*)(void *)>(T::operator delete))>>
: std::true_type {};
template <typename T, typename SFINAE = void>
struct has_operator_delete_size : std::false_type {};
template <typename T>
struct has_operator_delete_size<
T,
void_t<decltype(static_cast<void (*)(void *, size_t)>(T::operator delete))>> : std::true_type {
};
/// Call class-specific delete if it exists or global otherwise. Can also be an overload set.
template <typename T, enable_if_t<has_operator_delete<T>::value, int> = 0>
void call_operator_delete(T *p, size_t, size_t) {
T::operator delete(p);
}
template <typename T,
enable_if_t<!has_operator_delete<T>::value && has_operator_delete_size<T>::value, int>
= 0>
void call_operator_delete(T *p, size_t s, size_t) {
T::operator delete(p, s);
}
inline void call_operator_delete(void *p, size_t s, size_t a) {
(void) s;
(void) a;
#if defined(__cpp_aligned_new) && (!defined(_MSC_VER) || _MSC_VER >= 1912)
if (a > __STDCPP_DEFAULT_NEW_ALIGNMENT__) {
# ifdef __cpp_sized_deallocation
::operator delete(p, s, std::align_val_t(a));
# else
::operator delete(p, std::align_val_t(a));
# endif
return;
}
#endif
#ifdef __cpp_sized_deallocation
::operator delete(p, s);
#else
::operator delete(p);
#endif
}
inline void add_class_method(object &cls, const char *name_, const cpp_function &cf) {
cls.attr(cf.name()) = cf;
if (std::strcmp(name_, "__eq__") == 0 && !cls.attr("__dict__").contains("__hash__")) {
cls.attr("__hash__") = none();
}
}
PYBIND11_NAMESPACE_END(detail)
/// Given a pointer to a member function, cast it to its `Derived` version.
/// Forward everything else unchanged.
template <typename /*Derived*/, typename F>
auto method_adaptor(F &&f) -> decltype(std::forward<F>(f)) {
return std::forward<F>(f);
}
template <typename Derived, typename Return, typename Class, typename... Args>
auto method_adaptor(Return (Class::*pmf)(Args...)) -> Return (Derived::*)(Args...) {
static_assert(
detail::is_accessible_base_of<Class, Derived>::value,
"Cannot bind an inaccessible base class method; use a lambda definition instead");
return pmf;
}
template <typename Derived, typename Return, typename Class, typename... Args>
auto method_adaptor(Return (Class::*pmf)(Args...) const) -> Return (Derived::*)(Args...) const {
static_assert(
detail::is_accessible_base_of<Class, Derived>::value,
"Cannot bind an inaccessible base class method; use a lambda definition instead");
return pmf;
}
template <typename type_, typename... options>
class class_ : public detail::generic_type {
template <typename T>
using is_holder = detail::is_holder_type<type_, T>;
template <typename T>
using is_subtype = detail::is_strict_base_of<type_, T>;
template <typename T>
using is_base = detail::is_strict_base_of<T, type_>;
// struct instead of using here to help MSVC:
template <typename T>
struct is_valid_class_option : detail::any_of<is_holder<T>, is_subtype<T>, is_base<T>> {};
public:
using type = type_;
using type_alias = detail::exactly_one_t<is_subtype, void, options...>;
constexpr static bool has_alias = !std::is_void<type_alias>::value;
using holder_type = detail::exactly_one_t<is_holder, std::unique_ptr<type>, options...>;
static_assert(detail::all_of<is_valid_class_option<options>...>::value,
"Unknown/invalid class_ template parameters provided");
static_assert(!has_alias || std::is_polymorphic<type>::value,
"Cannot use an alias class with a non-polymorphic type");
PYBIND11_OBJECT(class_, generic_type, PyType_Check)
template <typename... Extra>
class_(handle scope, const char *name, const Extra &...extra) {
using namespace detail;
// MI can only be specified via class_ template options, not constructor parameters
static_assert(
none_of<is_pyobject<Extra>...>::value || // no base class arguments, or:
(constexpr_sum(is_pyobject<Extra>::value...) == 1 && // Exactly one base
constexpr_sum(is_base<options>::value...) == 0 && // no template option bases
// no multiple_inheritance attr
none_of<std::is_same<multiple_inheritance, Extra>...>::value),
"Error: multiple inheritance bases must be specified via class_ template options");
type_record record;
record.scope = scope;
record.name = name;
record.type = &typeid(type);
record.type_size = sizeof(conditional_t<has_alias, type_alias, type>);
record.type_align = alignof(conditional_t<has_alias, type_alias, type> &);
record.holder_size = sizeof(holder_type);
record.init_instance = init_instance;
record.dealloc = dealloc;
record.default_holder = detail::is_instantiation<std::unique_ptr, holder_type>::value;
set_operator_new<type>(&record);
/* Register base classes specified via template arguments to class_, if any */
PYBIND11_EXPAND_SIDE_EFFECTS(add_base<options>(record));
/* Process optional arguments, if any */
process_attributes<Extra...>::init(extra..., &record);
generic_type::initialize(record);
if (has_alias) {
auto &instances = record.module_local ? get_local_internals().registered_types_cpp
: get_internals().registered_types_cpp;
instances[std::type_index(typeid(type_alias))]
= instances[std::type_index(typeid(type))];
}
}
template <typename Base, detail::enable_if_t<is_base<Base>::value, int> = 0>
static void add_base(detail::type_record &rec) {
rec.add_base(typeid(Base), [](void *src) -> void * {
return static_cast<Base *>(reinterpret_cast<type *>(src));
});
}
template <typename Base, detail::enable_if_t<!is_base<Base>::value, int> = 0>
static void add_base(detail::type_record &) {}
template <typename Func, typename... Extra>
class_ &def(const char *name_, Func &&f, const Extra &...extra) {
cpp_function cf(method_adaptor<type>(std::forward<Func>(f)),
name(name_),
is_method(*this),
sibling(getattr(*this, name_, none())),
extra...);
add_class_method(*this, name_, cf);
return *this;
}
template <typename Func, typename... Extra>
class_ &def_static(const char *name_, Func &&f, const Extra &...extra) {
static_assert(!std::is_member_function_pointer<Func>::value,
"def_static(...) called with a non-static member function pointer");
cpp_function cf(std::forward<Func>(f),
name(name_),
scope(*this),
sibling(getattr(*this, name_, none())),
extra...);
auto cf_name = cf.name();
attr(std::move(cf_name)) = staticmethod(std::move(cf));
return *this;
}
template <typename T, typename... Extra, detail::enable_if_t<T::op_enable_if_hook, int> = 0>
class_ &def(const T &op, const Extra &...extra) {
op.execute(*this, extra...);
return *this;
}
template <typename T, typename... Extra, detail::enable_if_t<T::op_enable_if_hook, int> = 0>
class_ &def_cast(const T &op, const Extra &...extra) {
op.execute_cast(*this, extra...);
return *this;
}
template <typename... Args, typename... Extra>
class_ &def(const detail::initimpl::constructor<Args...> &init, const Extra &...extra) {
PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(init);
init.execute(*this, extra...);
return *this;
}
template <typename... Args, typename... Extra>
class_ &def(const detail::initimpl::alias_constructor<Args...> &init, const Extra &...extra) {
PYBIND11_WORKAROUND_INCORRECT_MSVC_C4100(init);
init.execute(*this, extra...);
return *this;
}
template <typename... Args, typename... Extra>
class_ &def(detail::initimpl::factory<Args...> &&init, const Extra &...extra) {
std::move(init).execute(*this, extra...);
return *this;
}
template <typename... Args, typename... Extra>
class_ &def(detail::initimpl::pickle_factory<Args...> &&pf, const Extra &...extra) {
std::move(pf).execute(*this, extra...);
return *this;
}
template <typename Func>
class_ &def_buffer(Func &&func) {
struct capture {
Func func;
};
auto *ptr = new capture{std::forward<Func>(func)};
install_buffer_funcs(
[](PyObject *obj, void *ptr) -> buffer_info * {
detail::make_caster<type> caster;
if (!caster.load(obj, false)) {
return nullptr;
}
return new buffer_info(((capture *) ptr)->func(std::move(caster)));
},
ptr);
weakref(m_ptr, cpp_function([ptr](handle wr) {
delete ptr;
wr.dec_ref();
}))
.release();
return *this;
}
template <typename Return, typename Class, typename... Args>
class_ &def_buffer(Return (Class::*func)(Args...)) {
return def_buffer([func](type &obj) { return (obj.*func)(); });
}
template <typename Return, typename Class, typename... Args>
class_ &def_buffer(Return (Class::*func)(Args...) const) {
return def_buffer([func](const type &obj) { return (obj.*func)(); });
}
template <typename C, typename D, typename... Extra>
class_ &def_readwrite(const char *name, D C::*pm, const Extra &...extra) {
static_assert(std::is_same<C, type>::value || std::is_base_of<C, type>::value,
"def_readwrite() requires a class member (or base class member)");
cpp_function fget([pm](const type &c) -> const D & { return c.*pm; }, is_method(*this)),
fset([pm](type &c, const D &value) { c.*pm = value; }, is_method(*this));
def_property(name, fget, fset, return_value_policy::reference_internal, extra...);
return *this;
}
template <typename C, typename D, typename... Extra>
class_ &def_readonly(const char *name, const D C::*pm, const Extra &...extra) {
static_assert(std::is_same<C, type>::value || std::is_base_of<C, type>::value,
"def_readonly() requires a class member (or base class member)");
cpp_function fget([pm](const type &c) -> const D & { return c.*pm; }, is_method(*this));
def_property_readonly(name, fget, return_value_policy::reference_internal, extra...);
return *this;
}
template <typename D, typename... Extra>
class_ &def_readwrite_static(const char *name, D *pm, const Extra &...extra) {
cpp_function fget([pm](const object &) -> const D & { return *pm; }, scope(*this)),
fset([pm](const object &, const D &value) { *pm = value; }, scope(*this));
def_property_static(name, fget, fset, return_value_policy::reference, extra...);
return *this;
}
template <typename D, typename... Extra>
class_ &def_readonly_static(const char *name, const D *pm, const Extra &...extra) {
cpp_function fget([pm](const object &) -> const D & { return *pm; }, scope(*this));
def_property_readonly_static(name, fget, return_value_policy::reference, extra...);
return *this;
}
/// Uses return_value_policy::reference_internal by default
template <typename Getter, typename... Extra>
class_ &def_property_readonly(const char *name, const Getter &fget, const Extra &...extra) {
return def_property_readonly(name,
cpp_function(method_adaptor<type>(fget)),
return_value_policy::reference_internal,
extra...);
}
/// Uses cpp_function's return_value_policy by default
template <typename... Extra>
class_ &
def_property_readonly(const char *name, const cpp_function &fget, const Extra &...extra) {
return def_property(name, fget, nullptr, extra...);
}
/// Uses return_value_policy::reference by default
template <typename Getter, typename... Extra>
class_ &
def_property_readonly_static(const char *name, const Getter &fget, const Extra &...extra) {
return def_property_readonly_static(
name, cpp_function(fget), return_value_policy::reference, extra...);
}
/// Uses cpp_function's return_value_policy by default
template <typename... Extra>
class_ &def_property_readonly_static(const char *name,
const cpp_function &fget,
const Extra &...extra) {
return def_property_static(name, fget, nullptr, extra...);
}
/// Uses return_value_policy::reference_internal by default
template <typename Getter, typename Setter, typename... Extra>
class_ &
def_property(const char *name, const Getter &fget, const Setter &fset, const Extra &...extra) {
return def_property(name, fget, cpp_function(method_adaptor<type>(fset)), extra...);
}
template <typename Getter, typename... Extra>
class_ &def_property(const char *name,
const Getter &fget,
const cpp_function &fset,
const Extra &...extra) {
return def_property(name,
cpp_function(method_adaptor<type>(fget)),
fset,
return_value_policy::reference_internal,
extra...);
}
/// Uses cpp_function's return_value_policy by default
template <typename... Extra>
class_ &def_property(const char *name,
const cpp_function &fget,
const cpp_function &fset,
const Extra &...extra) {
return def_property_static(name, fget, fset, is_method(*this), extra...);
}
/// Uses return_value_policy::reference by default
template <typename Getter, typename... Extra>
class_ &def_property_static(const char *name,
const Getter &fget,
const cpp_function &fset,
const Extra &...extra) {
return def_property_static(
name, cpp_function(fget), fset, return_value_policy::reference, extra...);
}
/// Uses cpp_function's return_value_policy by default
template <typename... Extra>
class_ &def_property_static(const char *name,
const cpp_function &fget,
const cpp_function &fset,
const Extra &...extra) {
static_assert(0 == detail::constexpr_sum(std::is_base_of<arg, Extra>::value...),
"Argument annotations are not allowed for properties");
auto rec_fget = get_function_record(fget), rec_fset = get_function_record(fset);
auto *rec_active = rec_fget;
if (rec_fget) {
char *doc_prev = rec_fget->doc; /* 'extra' field may include a property-specific
documentation string */
detail::process_attributes<Extra...>::init(extra..., rec_fget);
if (rec_fget->doc && rec_fget->doc != doc_prev) {
std::free(doc_prev);
rec_fget->doc = PYBIND11_COMPAT_STRDUP(rec_fget->doc);
}
}
if (rec_fset) {
char *doc_prev = rec_fset->doc;
detail::process_attributes<Extra...>::init(extra..., rec_fset);
if (rec_fset->doc && rec_fset->doc != doc_prev) {
std::free(doc_prev);
rec_fset->doc = PYBIND11_COMPAT_STRDUP(rec_fset->doc);
}
if (!rec_active) {
rec_active = rec_fset;
}
}
def_property_static_impl(name, fget, fset, rec_active);
return *this;
}
private:
/// Initialize holder object, variant 1: object derives from enable_shared_from_this
template <typename T>
static void init_holder(detail::instance *inst,
detail::value_and_holder &v_h,
const holder_type * /* unused */,
const std::enable_shared_from_this<T> * /* dummy */) {
auto sh = std::dynamic_pointer_cast<typename holder_type::element_type>(
detail::try_get_shared_from_this(v_h.value_ptr<type>()));
if (sh) {
new (std::addressof(v_h.holder<holder_type>())) holder_type(std::move(sh));
v_h.set_holder_constructed();
}
if (!v_h.holder_constructed() && inst->owned) {
new (std::addressof(v_h.holder<holder_type>())) holder_type(v_h.value_ptr<type>());
v_h.set_holder_constructed();
}
}
static void init_holder_from_existing(const detail::value_and_holder &v_h,
const holder_type *holder_ptr,
std::true_type /*is_copy_constructible*/) {
new (std::addressof(v_h.holder<holder_type>()))
holder_type(*reinterpret_cast<const holder_type *>(holder_ptr));
}
static void init_holder_from_existing(const detail::value_and_holder &v_h,
const holder_type *holder_ptr,
std::false_type /*is_copy_constructible*/) {
new (std::addressof(v_h.holder<holder_type>()))
holder_type(std::move(*const_cast<holder_type *>(holder_ptr)));
}
/// Initialize holder object, variant 2: try to construct from existing holder object, if
/// possible
static void init_holder(detail::instance *inst,
detail::value_and_holder &v_h,
const holder_type *holder_ptr,
const void * /* dummy -- not enable_shared_from_this<T>) */) {
if (holder_ptr) {
init_holder_from_existing(v_h, holder_ptr, std::is_copy_constructible<holder_type>());
v_h.set_holder_constructed();
} else if (detail::always_construct_holder<holder_type>::value || inst->owned) {
new (std::addressof(v_h.holder<holder_type>())) holder_type(v_h.value_ptr<type>());
v_h.set_holder_constructed();
}
}
/// Performs instance initialization including constructing a holder and registering the known
/// instance. Should be called as soon as the `type` value_ptr is set for an instance. Takes
/// an optional pointer to an existing holder to use; if not specified and the instance is
/// `.owned`, a new holder will be constructed to manage the value pointer.
static void init_instance(detail::instance *inst, const void *holder_ptr) {
auto v_h = inst->get_value_and_holder(detail::get_type_info(typeid(type)));
if (!v_h.instance_registered()) {
register_instance(inst, v_h.value_ptr(), v_h.type);
v_h.set_instance_registered();
}
init_holder(inst, v_h, (const holder_type *) holder_ptr, v_h.value_ptr<type>());
}
/// Deallocates an instance; via holder, if constructed; otherwise via operator delete.
static void dealloc(detail::value_and_holder &v_h) {
// We could be deallocating because we are cleaning up after a Python exception.
// If so, the Python error indicator will be set. We need to clear that before
// running the destructor, in case the destructor code calls more Python.
// If we don't, the Python API will exit with an exception, and pybind11 will
// throw error_already_set from the C++ destructor which is forbidden and triggers
// std::terminate().
error_scope scope;
if (v_h.holder_constructed()) {
v_h.holder<holder_type>().~holder_type();
v_h.set_holder_constructed(false);
} else {
detail::call_operator_delete(
v_h.value_ptr<type>(), v_h.type->type_size, v_h.type->type_align);
}
v_h.value_ptr() = nullptr;
}
static detail::function_record *get_function_record(handle h) {
h = detail::get_function(h);
if (!h) {
return nullptr;
}
handle func_self = PyCFunction_GET_SELF(h.ptr());
if (!func_self) {
throw error_already_set();
}
if (!isinstance<capsule>(func_self)) {
return nullptr;
}
auto cap = reinterpret_borrow<capsule>(func_self);
if (!detail::is_function_record_capsule(cap)) {
return nullptr;
}
return cap.get_pointer<detail::function_record>();
}
};
/// Binds an existing constructor taking arguments Args...
template <typename... Args>
detail::initimpl::constructor<Args...> init() {
return {};
}
/// Like `init<Args...>()`, but the instance is always constructed through the alias class (even
/// when not inheriting on the Python side).
template <typename... Args>
detail::initimpl::alias_constructor<Args...> init_alias() {
return {};
}
/// Binds a factory function as a constructor
template <typename Func, typename Ret = detail::initimpl::factory<Func>>
Ret init(Func &&f) {
return {std::forward<Func>(f)};
}
/// Dual-argument factory function: the first function is called when no alias is needed, the
/// second when an alias is needed (i.e. due to python-side inheritance). Arguments must be
/// identical.
template <typename CFunc, typename AFunc, typename Ret = detail::initimpl::factory<CFunc, AFunc>>
Ret init(CFunc &&c, AFunc &&a) {
return {std::forward<CFunc>(c), std::forward<AFunc>(a)};
}
/// Binds pickling functions `__getstate__` and `__setstate__` and ensures that the type
/// returned by `__getstate__` is the same as the argument accepted by `__setstate__`.
template <typename GetState, typename SetState>
detail::initimpl::pickle_factory<GetState, SetState> pickle(GetState &&g, SetState &&s) {
return {std::forward<GetState>(g), std::forward<SetState>(s)};
}
PYBIND11_NAMESPACE_BEGIN(detail)
inline str enum_name(handle arg) {
dict entries = arg.get_type().attr("__entries");
for (auto kv : entries) {
if (handle(kv.second[int_(0)]).equal(arg)) {
return pybind11::str(kv.first);
}
}
return "???";
}
struct enum_base {
enum_base(const handle &base, const handle &parent) : m_base(base), m_parent(parent) {}
PYBIND11_NOINLINE void init(bool is_arithmetic, bool is_convertible) {
m_base.attr("__entries") = dict();
auto property = handle((PyObject *) &PyProperty_Type);
auto static_property = handle((PyObject *) get_internals().static_property_type);
m_base.attr("__repr__") = cpp_function(
[](const object &arg) -> str {
handle type = type::handle_of(arg);
object type_name = type.attr("__name__");
return pybind11::str("<{}.{}: {}>")
.format(std::move(type_name), enum_name(arg), int_(arg));
},
name("__repr__"),
is_method(m_base));
m_base.attr("name") = property(cpp_function(&enum_name, name("name"), is_method(m_base)));
m_base.attr("__str__") = cpp_function(
[](handle arg) -> str {
object type_name = type::handle_of(arg).attr("__name__");
return pybind11::str("{}.{}").format(std::move(type_name), enum_name(arg));
},
name("name"),
is_method(m_base));
if (options::show_enum_members_docstring()) {
m_base.attr("__doc__") = static_property(
cpp_function(
[](handle arg) -> std::string {
std::string docstring;
dict entries = arg.attr("__entries");
if (((PyTypeObject *) arg.ptr())->tp_doc) {
docstring += std::string(
reinterpret_cast<PyTypeObject *>(arg.ptr())->tp_doc);
docstring += "\n\n";
}
docstring += "Members:";
for (auto kv : entries) {
auto key = std::string(pybind11::str(kv.first));
auto comment = kv.second[int_(1)];
docstring += "\n\n ";
docstring += key;
if (!comment.is_none()) {
docstring += " : ";
docstring += pybind11::str(comment).cast<std::string>();
}
}
return docstring;
},
name("__doc__")),
none(),
none(),
"");
}
m_base.attr("__members__") = static_property(cpp_function(
[](handle arg) -> dict {
dict entries = arg.attr("__entries"),
m;
for (auto kv : entries) {
m[kv.first] = kv.second[int_(0)];
}
return m;
},
name("__members__")),
none(),
none(),
"");
#define PYBIND11_ENUM_OP_STRICT(op, expr, strict_behavior) \
m_base.attr(op) = cpp_function( \
[](const object &a, const object &b) { \
if (!type::handle_of(a).is(type::handle_of(b))) \
strict_behavior; /* NOLINT(bugprone-macro-parentheses) */ \
return expr; \
}, \
name(op), \
is_method(m_base), \
arg("other"))
#define PYBIND11_ENUM_OP_CONV(op, expr) \
m_base.attr(op) = cpp_function( \
[](const object &a_, const object &b_) { \
int_ a(a_), b(b_); \
return expr; \
}, \
name(op), \
is_method(m_base), \
arg("other"))
#define PYBIND11_ENUM_OP_CONV_LHS(op, expr) \
m_base.attr(op) = cpp_function( \
[](const object &a_, const object &b) { \
int_ a(a_); \
return expr; \
}, \
name(op), \
is_method(m_base), \
arg("other"))
if (is_convertible) {
PYBIND11_ENUM_OP_CONV_LHS("__eq__", !b.is_none() && a.equal(b));
PYBIND11_ENUM_OP_CONV_LHS("__ne__", b.is_none() || !a.equal(b));
if (is_arithmetic) {
PYBIND11_ENUM_OP_CONV("__lt__", a < b);
PYBIND11_ENUM_OP_CONV("__gt__", a > b);
PYBIND11_ENUM_OP_CONV("__le__", a <= b);
PYBIND11_ENUM_OP_CONV("__ge__", a >= b);
PYBIND11_ENUM_OP_CONV("__and__", a & b);
PYBIND11_ENUM_OP_CONV("__rand__", a & b);
PYBIND11_ENUM_OP_CONV("__or__", a | b);
PYBIND11_ENUM_OP_CONV("__ror__", a | b);
PYBIND11_ENUM_OP_CONV("__xor__", a ^ b);
PYBIND11_ENUM_OP_CONV("__rxor__", a ^ b);
m_base.attr("__invert__")
= cpp_function([](const object &arg) { return ~(int_(arg)); },
name("__invert__"),
is_method(m_base));
}
} else {
PYBIND11_ENUM_OP_STRICT("__eq__", int_(a).equal(int_(b)), return false);
PYBIND11_ENUM_OP_STRICT("__ne__", !int_(a).equal(int_(b)), return true);
if (is_arithmetic) {
#define PYBIND11_THROW throw type_error("Expected an enumeration of matching type!");
PYBIND11_ENUM_OP_STRICT("__lt__", int_(a) < int_(b), PYBIND11_THROW);
PYBIND11_ENUM_OP_STRICT("__gt__", int_(a) > int_(b), PYBIND11_THROW);
PYBIND11_ENUM_OP_STRICT("__le__", int_(a) <= int_(b), PYBIND11_THROW);
PYBIND11_ENUM_OP_STRICT("__ge__", int_(a) >= int_(b), PYBIND11_THROW);
#undef PYBIND11_THROW
}
}
#undef PYBIND11_ENUM_OP_CONV_LHS
#undef PYBIND11_ENUM_OP_CONV
#undef PYBIND11_ENUM_OP_STRICT
m_base.attr("__getstate__") = cpp_function(
[](const object &arg) { return int_(arg); }, name("__getstate__"), is_method(m_base));
m_base.attr("__hash__") = cpp_function(
[](const object &arg) { return int_(arg); }, name("__hash__"), is_method(m_base));
}
PYBIND11_NOINLINE void value(char const *name_, object value, const char *doc = nullptr) {
dict entries = m_base.attr("__entries");
str name(name_);
if (entries.contains(name)) {
std::string type_name = (std::string) str(m_base.attr("__name__"));
throw value_error(std::move(type_name) + ": element \"" + std::string(name_)
+ "\" already exists!");
}
entries[name] = pybind11::make_tuple(value, doc);
m_base.attr(std::move(name)) = std::move(value);
}
PYBIND11_NOINLINE void export_values() {
dict entries = m_base.attr("__entries");
for (auto kv : entries) {
m_parent.attr(kv.first) = kv.second[int_(0)];
}
}
handle m_base;
handle m_parent;
};
template <bool is_signed, size_t length>
struct equivalent_integer {};
template <>
struct equivalent_integer<true, 1> {
using type = int8_t;
};
template <>
struct equivalent_integer<false, 1> {
using type = uint8_t;
};
template <>
struct equivalent_integer<true, 2> {
using type = int16_t;
};
template <>
struct equivalent_integer<false, 2> {
using type = uint16_t;
};
template <>
struct equivalent_integer<true, 4> {
using type = int32_t;
};
template <>
struct equivalent_integer<false, 4> {
using type = uint32_t;
};
template <>
struct equivalent_integer<true, 8> {
using type = int64_t;
};
template <>
struct equivalent_integer<false, 8> {
using type = uint64_t;
};
template <typename IntLike>
using equivalent_integer_t =
typename equivalent_integer<std::is_signed<IntLike>::value, sizeof(IntLike)>::type;
PYBIND11_NAMESPACE_END(detail)
/// Binds C++ enumerations and enumeration classes to Python
template <typename Type>
class enum_ : public class_<Type> {
public:
using Base = class_<Type>;
using Base::attr;
using Base::def;
using Base::def_property_readonly;
using Base::def_property_readonly_static;
using Underlying = typename std::underlying_type<Type>::type;
// Scalar is the integer representation of underlying type
using Scalar = detail::conditional_t<detail::any_of<detail::is_std_char_type<Underlying>,
std::is_same<Underlying, bool>>::value,
detail::equivalent_integer_t<Underlying>,
Underlying>;
template <typename... Extra>
enum_(const handle &scope, const char *name, const Extra &...extra)
: class_<Type>(scope, name, extra...), m_base(*this, scope) {
constexpr bool is_arithmetic = detail::any_of<std::is_same<arithmetic, Extra>...>::value;
constexpr bool is_convertible = std::is_convertible<Type, Underlying>::value;
m_base.init(is_arithmetic, is_convertible);
def(init([](Scalar i) { return static_cast<Type>(i); }), arg("value"));
def_property_readonly("value", [](Type value) { return (Scalar) value; });
def("__int__", [](Type value) { return (Scalar) value; });
def("__index__", [](Type value) { return (Scalar) value; });
attr("__setstate__") = cpp_function(
[](detail::value_and_holder &v_h, Scalar arg) {
detail::initimpl::setstate<Base>(
v_h, static_cast<Type>(arg), Py_TYPE(v_h.inst) != v_h.type->type);
},
detail::is_new_style_constructor(),
pybind11::name("__setstate__"),
is_method(*this),
arg("state"));
}
/// Export enumeration entries into the parent scope
enum_ &export_values() {
m_base.export_values();
return *this;
}
/// Add an enumeration entry
enum_ &value(char const *name, Type value, const char *doc = nullptr) {
m_base.value(name, pybind11::cast(value, return_value_policy::copy), doc);
return *this;
}
private:
detail::enum_base m_base;
};
PYBIND11_NAMESPACE_BEGIN(detail)
PYBIND11_NOINLINE void keep_alive_impl(handle nurse, handle patient) {
if (!nurse || !patient) {
pybind11_fail("Could not activate keep_alive!");
}
if (patient.is_none() || nurse.is_none()) {
return; /* Nothing to keep alive or nothing to be kept alive by */
}
auto tinfo = all_type_info(Py_TYPE(nurse.ptr()));
if (!tinfo.empty()) {
/* It's a pybind-registered type, so we can store the patient in the
* internal list. */
add_patient(nurse.ptr(), patient.ptr());
} else {
/* Fall back to clever approach based on weak references taken from
* Boost.Python. This is not used for pybind-registered types because
* the objects can be destroyed out-of-order in a GC pass. */
cpp_function disable_lifesupport([patient](handle weakref) {
patient.dec_ref();
weakref.dec_ref();
});
weakref wr(nurse, disable_lifesupport);
patient.inc_ref(); /* reference patient and leak the weak reference */
(void) wr.release();
}
}
PYBIND11_NOINLINE void
keep_alive_impl(size_t Nurse, size_t Patient, function_call &call, handle ret) {
auto get_arg = [&](size_t n) {
if (n == 0) {
return ret;
}
if (n == 1 && call.init_self) {
return call.init_self;
}
if (n <= call.args.size()) {
return call.args[n - 1];
}
return handle();
};
keep_alive_impl(get_arg(Nurse), get_arg(Patient));
}
inline std::pair<decltype(internals::registered_types_py)::iterator, bool>
all_type_info_get_cache(PyTypeObject *type) {
auto res = get_internals()
.registered_types_py
#ifdef __cpp_lib_unordered_map_try_emplace
.try_emplace(type);
#else
.emplace(type, std::vector<detail::type_info *>());
#endif
if (res.second) {
// New cache entry created; set up a weak reference to automatically remove it if the type
// gets destroyed:
weakref((PyObject *) type, cpp_function([type](handle wr) {
get_internals().registered_types_py.erase(type);
// TODO consolidate the erasure code in pybind11_meta_dealloc() in class.h
auto &cache = get_internals().inactive_override_cache;
for (auto it = cache.begin(), last = cache.end(); it != last;) {
if (it->first == reinterpret_cast<PyObject *>(type)) {
it = cache.erase(it);
} else {
++it;
}
}
wr.dec_ref();
}))
.release();
}
return res;
}
/* There are a large number of apparently unused template arguments because
* each combination requires a separate py::class_ registration.
*/
template <typename Access,
return_value_policy Policy,
typename Iterator,
typename Sentinel,
typename ValueType,
typename... Extra>
struct iterator_state {
Iterator it;
Sentinel end;
bool first_or_done;
};
// Note: these helpers take the iterator by non-const reference because some
// iterators in the wild can't be dereferenced when const. The & after Iterator
// is required for MSVC < 16.9. SFINAE cannot be reused for result_type due to
// bugs in ICC, NVCC, and PGI compilers. See PR #3293.
template <typename Iterator, typename SFINAE = decltype(*std::declval<Iterator &>())>
struct iterator_access {
using result_type = decltype(*std::declval<Iterator &>());
// NOLINTNEXTLINE(readability-const-return-type) // PR #3263
result_type operator()(Iterator &it) const { return *it; }
};
template <typename Iterator, typename SFINAE = decltype((*std::declval<Iterator &>()).first)>
class iterator_key_access {
private:
using pair_type = decltype(*std::declval<Iterator &>());
public:
/* If either the pair itself or the element of the pair is a reference, we
* want to return a reference, otherwise a value. When the decltype
* expression is parenthesized it is based on the value category of the
* expression; otherwise it is the declared type of the pair member.
* The use of declval<pair_type> in the second branch rather than directly
* using *std::declval<Iterator &>() is a workaround for nvcc
* (it's not used in the first branch because going via decltype and back
* through declval does not perfectly preserve references).
*/
using result_type
= conditional_t<std::is_reference<decltype(*std::declval<Iterator &>())>::value,
decltype(((*std::declval<Iterator &>()).first)),
decltype(std::declval<pair_type>().first)>;
result_type operator()(Iterator &it) const { return (*it).first; }
};
template <typename Iterator, typename SFINAE = decltype((*std::declval<Iterator &>()).second)>
class iterator_value_access {
private:
using pair_type = decltype(*std::declval<Iterator &>());
public:
using result_type
= conditional_t<std::is_reference<decltype(*std::declval<Iterator &>())>::value,
decltype(((*std::declval<Iterator &>()).second)),
decltype(std::declval<pair_type>().second)>;
result_type operator()(Iterator &it) const { return (*it).second; }
};
template <typename Access,
return_value_policy Policy,
typename Iterator,
typename Sentinel,
typename ValueType,
typename... Extra>
iterator make_iterator_impl(Iterator first, Sentinel last, Extra &&...extra) {
using state = detail::iterator_state<Access, Policy, Iterator, Sentinel, ValueType, Extra...>;
// TODO: state captures only the types of Extra, not the values
if (!detail::get_type_info(typeid(state), false)) {
class_<state>(handle(), "iterator", pybind11::module_local())
.def("__iter__", [](state &s) -> state & { return s; })
.def(
"__next__",
[](state &s) -> ValueType {
if (!s.first_or_done) {
++s.it;
} else {
s.first_or_done = false;
}
if (s.it == s.end) {
s.first_or_done = true;
throw stop_iteration();
}
return Access()(s.it);
// NOLINTNEXTLINE(readability-const-return-type) // PR #3263
},
std::forward<Extra>(extra)...,
Policy);
}
return cast(state{first, last, true});
}
PYBIND11_NAMESPACE_END(detail)
/// Makes a python iterator from a first and past-the-end C++ InputIterator.
template <return_value_policy Policy = return_value_policy::reference_internal,
typename Iterator,
typename Sentinel,
typename ValueType = typename detail::iterator_access<Iterator>::result_type,
typename... Extra>
iterator make_iterator(Iterator first, Sentinel last, Extra &&...extra) {
return detail::make_iterator_impl<detail::iterator_access<Iterator>,
Policy,
Iterator,
Sentinel,
ValueType,
Extra...>(first, last, std::forward<Extra>(extra)...);
}
/// Makes a python iterator over the keys (`.first`) of a iterator over pairs from a
/// first and past-the-end InputIterator.
template <return_value_policy Policy = return_value_policy::reference_internal,
typename Iterator,
typename Sentinel,
typename KeyType = typename detail::iterator_key_access<Iterator>::result_type,
typename... Extra>
iterator make_key_iterator(Iterator first, Sentinel last, Extra &&...extra) {
return detail::make_iterator_impl<detail::iterator_key_access<Iterator>,
Policy,
Iterator,
Sentinel,
KeyType,
Extra...>(first, last, std::forward<Extra>(extra)...);
}
/// Makes a python iterator over the values (`.second`) of a iterator over pairs from a
/// first and past-the-end InputIterator.
template <return_value_policy Policy = return_value_policy::reference_internal,
typename Iterator,
typename Sentinel,
typename ValueType = typename detail::iterator_value_access<Iterator>::result_type,
typename... Extra>
iterator make_value_iterator(Iterator first, Sentinel last, Extra &&...extra) {
return detail::make_iterator_impl<detail::iterator_value_access<Iterator>,
Policy,
Iterator,
Sentinel,
ValueType,
Extra...>(first, last, std::forward<Extra>(extra)...);
}
/// Makes an iterator over values of an stl container or other container supporting
/// `std::begin()`/`std::end()`
template <return_value_policy Policy = return_value_policy::reference_internal,
typename Type,
typename... Extra>
iterator make_iterator(Type &value, Extra &&...extra) {
return make_iterator<Policy>(
std::begin(value), std::end(value), std::forward<Extra>(extra)...);
}
/// Makes an iterator over the keys (`.first`) of a stl map-like container supporting
/// `std::begin()`/`std::end()`
template <return_value_policy Policy = return_value_policy::reference_internal,
typename Type,
typename... Extra>
iterator make_key_iterator(Type &value, Extra &&...extra) {
return make_key_iterator<Policy>(
std::begin(value), std::end(value), std::forward<Extra>(extra)...);
}
/// Makes an iterator over the values (`.second`) of a stl map-like container supporting
/// `std::begin()`/`std::end()`
template <return_value_policy Policy = return_value_policy::reference_internal,
typename Type,
typename... Extra>
iterator make_value_iterator(Type &value, Extra &&...extra) {
return make_value_iterator<Policy>(
std::begin(value), std::end(value), std::forward<Extra>(extra)...);
}
template <typename InputType, typename OutputType>
void implicitly_convertible() {
struct set_flag {
bool &flag;
explicit set_flag(bool &flag_) : flag(flag_) { flag_ = true; }
~set_flag() { flag = false; }
};
auto implicit_caster = [](PyObject *obj, PyTypeObject *type) -> PyObject * {
static bool currently_used = false;
if (currently_used) { // implicit conversions are non-reentrant
return nullptr;
}
set_flag flag_helper(currently_used);
if (!detail::make_caster<InputType>().load(obj, false)) {
return nullptr;
}
tuple args(1);
args[0] = obj;
PyObject *result = PyObject_Call((PyObject *) type, args.ptr(), nullptr);
if (result == nullptr) {
PyErr_Clear();
}
return result;
};
if (auto *tinfo = detail::get_type_info(typeid(OutputType))) {
tinfo->implicit_conversions.emplace_back(std::move(implicit_caster));
} else {
pybind11_fail("implicitly_convertible: Unable to find type " + type_id<OutputType>());
}
}
inline void register_exception_translator(ExceptionTranslator &&translator) {
detail::get_internals().registered_exception_translators.push_front(
std::forward<ExceptionTranslator>(translator));
}
/**
* Add a new module-local exception translator. Locally registered functions
* will be tried before any globally registered exception translators, which
* will only be invoked if the module-local handlers do not deal with
* the exception.
*/
inline void register_local_exception_translator(ExceptionTranslator &&translator) {
detail::get_local_internals().registered_exception_translators.push_front(
std::forward<ExceptionTranslator>(translator));
}
/**
* Wrapper to generate a new Python exception type.
*
* This should only be used with PyErr_SetString for now.
* It is not (yet) possible to use as a py::base.
* Template type argument is reserved for future use.
*/
template <typename type>
class exception : public object {
public:
exception() = default;
exception(handle scope, const char *name, handle base = PyExc_Exception) {
std::string full_name
= scope.attr("__name__").cast<std::string>() + std::string(".") + name;
m_ptr = PyErr_NewException(const_cast<char *>(full_name.c_str()), base.ptr(), nullptr);
if (hasattr(scope, "__dict__") && scope.attr("__dict__").contains(name)) {
pybind11_fail("Error during initialization: multiple incompatible "
"definitions with name \""
+ std::string(name) + "\"");
}
scope.attr(name) = *this;
}
// Sets the current python exception to this exception object with the given message
void operator()(const char *message) { PyErr_SetString(m_ptr, message); }
};
PYBIND11_NAMESPACE_BEGIN(detail)
// Returns a reference to a function-local static exception object used in the simple
// register_exception approach below. (It would be simpler to have the static local variable
// directly in register_exception, but that makes clang <3.5 segfault - issue #1349).
template <typename CppException>
exception<CppException> &get_exception_object() {
static exception<CppException> ex;
return ex;
}
// Helper function for register_exception and register_local_exception
template <typename CppException>
exception<CppException> &
register_exception_impl(handle scope, const char *name, handle base, bool isLocal) {
auto &ex = detail::get_exception_object<CppException>();
if (!ex) {
ex = exception<CppException>(scope, name, base);
}
auto register_func
= isLocal ? &register_local_exception_translator : &register_exception_translator;
register_func([](std::exception_ptr p) {
if (!p) {
return;
}
try {
std::rethrow_exception(p);
} catch (const CppException &e) {
detail::get_exception_object<CppException>()(e.what());
}
});
return ex;
}
PYBIND11_NAMESPACE_END(detail)
/**
* Registers a Python exception in `m` of the given `name` and installs a translator to
* translate the C++ exception to the created Python exception using the what() method.
* This is intended for simple exception translations; for more complex translation, register the
* exception object and translator directly.
*/
template <typename CppException>
exception<CppException> &
register_exception(handle scope, const char *name, handle base = PyExc_Exception) {
return detail::register_exception_impl<CppException>(scope, name, base, false /* isLocal */);
}
/**
* Registers a Python exception in `m` of the given `name` and installs a translator to
* translate the C++ exception to the created Python exception using the what() method.
* This translator will only be used for exceptions that are thrown in this module and will be
* tried before global exception translators, including those registered with register_exception.
* This is intended for simple exception translations; for more complex translation, register the
* exception object and translator directly.
*/
template <typename CppException>
exception<CppException> &
register_local_exception(handle scope, const char *name, handle base = PyExc_Exception) {
return detail::register_exception_impl<CppException>(scope, name, base, true /* isLocal */);
}
PYBIND11_NAMESPACE_BEGIN(detail)
PYBIND11_NOINLINE void print(const tuple &args, const dict &kwargs) {
auto strings = tuple(args.size());
for (size_t i = 0; i < args.size(); ++i) {
strings[i] = str(args[i]);
}
auto sep = kwargs.contains("sep") ? kwargs["sep"] : str(" ");
auto line = sep.attr("join")(std::move(strings));
object file;
if (kwargs.contains("file")) {
file = kwargs["file"].cast<object>();
} else {
try {
file = module_::import("sys").attr("stdout");
} catch (const error_already_set &) {
/* If print() is called from code that is executed as
part of garbage collection during interpreter shutdown,
importing 'sys' can fail. Give up rather than crashing the
interpreter in this case. */
return;
}
}
auto write = file.attr("write");
write(std::move(line));
write(kwargs.contains("end") ? kwargs["end"] : str("\n"));
if (kwargs.contains("flush") && kwargs["flush"].cast<bool>()) {
file.attr("flush")();
}
}
PYBIND11_NAMESPACE_END(detail)
template <return_value_policy policy = return_value_policy::automatic_reference, typename... Args>
void print(Args &&...args) {
auto c = detail::collect_arguments<policy>(std::forward<Args>(args)...);
detail::print(c.args(), c.kwargs());
}
inline void
error_already_set::m_fetched_error_deleter(detail::error_fetch_and_normalize *raw_ptr) {
gil_scoped_acquire gil;
error_scope scope;
delete raw_ptr;
}
inline const char *error_already_set::what() const noexcept {
gil_scoped_acquire gil;
error_scope scope;
return m_fetched_error->error_string().c_str();
}
PYBIND11_NAMESPACE_BEGIN(detail)
inline function
get_type_override(const void *this_ptr, const type_info *this_type, const char *name) {
handle self = get_object_handle(this_ptr, this_type);
if (!self) {
return function();
}
handle type = type::handle_of(self);
auto key = std::make_pair(type.ptr(), name);
/* Cache functions that aren't overridden in Python to avoid
many costly Python dictionary lookups below */
auto &cache = get_internals().inactive_override_cache;
if (cache.find(key) != cache.end()) {
return function();
}
function override = getattr(self, name, function());
if (override.is_cpp_function()) {
cache.insert(std::move(key));
return function();
}
/* Don't call dispatch code if invoked from overridden function.
Unfortunately this doesn't work on PyPy. */
#if !defined(PYPY_VERSION)
# if PY_VERSION_HEX >= 0x03090000
PyFrameObject *frame = PyThreadState_GetFrame(PyThreadState_Get());
if (frame != nullptr) {
PyCodeObject *f_code = PyFrame_GetCode(frame);
// f_code is guaranteed to not be NULL
if ((std::string) str(f_code->co_name) == name && f_code->co_argcount > 0) {
PyObject *locals = PyEval_GetLocals();
if (locals != nullptr) {
PyObject *co_varnames = PyObject_GetAttrString((PyObject *) f_code, "co_varnames");
PyObject *self_arg = PyTuple_GET_ITEM(co_varnames, 0);
Py_DECREF(co_varnames);
PyObject *self_caller = dict_getitem(locals, self_arg);
if (self_caller == self.ptr()) {
Py_DECREF(f_code);
Py_DECREF(frame);
return function();
}
}
}
Py_DECREF(f_code);
Py_DECREF(frame);
}
# else
PyFrameObject *frame = PyThreadState_Get()->frame;
if (frame != nullptr && (std::string) str(frame->f_code->co_name) == name
&& frame->f_code->co_argcount > 0) {
PyFrame_FastToLocals(frame);
PyObject *self_caller
= dict_getitem(frame->f_locals, PyTuple_GET_ITEM(frame->f_code->co_varnames, 0));
if (self_caller == self.ptr()) {
return function();
}
}
# endif
#else
/* PyPy currently doesn't provide a detailed cpyext emulation of
frame objects, so we have to emulate this using Python. This
is going to be slow..*/
dict d;
d["self"] = self;
d["name"] = pybind11::str(name);
PyObject *result
= PyRun_String("import inspect\n"
"frame = inspect.currentframe()\n"
"if frame is not None:\n"
" frame = frame.f_back\n"
" if frame is not None and str(frame.f_code.co_name) == name and "
"frame.f_code.co_argcount > 0:\n"
" self_caller = frame.f_locals[frame.f_code.co_varnames[0]]\n"
" if self_caller == self:\n"
" self = None\n",
Py_file_input,
d.ptr(),
d.ptr());
if (result == nullptr)
throw error_already_set();
Py_DECREF(result);
if (d["self"].is_none())
return function();
#endif
return override;
}
PYBIND11_NAMESPACE_END(detail)
/** \rst
Try to retrieve a python method by the provided name from the instance pointed to by the
this_ptr.
:this_ptr: The pointer to the object the overridden method should be retrieved for. This should
be the first non-trampoline class encountered in the inheritance chain.
:name: The name of the overridden Python method to retrieve.
:return: The Python method by this name from the object or an empty function wrapper.
\endrst */
template <class T>
function get_override(const T *this_ptr, const char *name) {
auto *tinfo = detail::get_type_info(typeid(T));
return tinfo ? detail::get_type_override(this_ptr, tinfo, name) : function();
}
#define PYBIND11_OVERRIDE_IMPL(ret_type, cname, name, ...) \
do { \
pybind11::gil_scoped_acquire gil; \
pybind11::function override \
= pybind11::get_override(static_cast<const cname *>(this), name); \
if (override) { \
auto o = override(__VA_ARGS__); \
if (pybind11::detail::cast_is_temporary_value_reference<ret_type>::value) { \
static pybind11::detail::override_caster_t<ret_type> caster; \
return pybind11::detail::cast_ref<ret_type>(std::move(o), caster); \
} \
return pybind11::detail::cast_safe<ret_type>(std::move(o)); \
} \
} while (false)
/** \rst
Macro to populate the virtual method in the trampoline class. This macro tries to look up a
method named 'fn' from the Python side, deals with the :ref:`gil` and necessary argument
conversions to call this method and return the appropriate type.
See :ref:`overriding_virtuals` for more information. This macro should be used when the method
name in C is not the same as the method name in Python. For example with `__str__`.
.. code-block:: cpp
std::string toString() override {
PYBIND11_OVERRIDE_NAME(
std::string, // Return type (ret_type)
Animal, // Parent class (cname)
"__str__", // Name of method in Python (name)
toString, // Name of function in C++ (fn)
);
}
\endrst */
#define PYBIND11_OVERRIDE_NAME(ret_type, cname, name, fn, ...) \
do { \
PYBIND11_OVERRIDE_IMPL(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), name, __VA_ARGS__); \
return cname::fn(__VA_ARGS__); \
} while (false)
/** \rst
Macro for pure virtual functions, this function is identical to
:c:macro:`PYBIND11_OVERRIDE_NAME`, except that it throws if no override can be found.
\endrst */
#define PYBIND11_OVERRIDE_PURE_NAME(ret_type, cname, name, fn, ...) \
do { \
PYBIND11_OVERRIDE_IMPL(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), name, __VA_ARGS__); \
pybind11::pybind11_fail( \
"Tried to call pure virtual function \"" PYBIND11_STRINGIFY(cname) "::" name "\""); \
} while (false)
/** \rst
Macro to populate the virtual method in the trampoline class. This macro tries to look up the
method from the Python side, deals with the :ref:`gil` and necessary argument conversions to
call this method and return the appropriate type. This macro should be used if the method name
in C and in Python are identical.
See :ref:`overriding_virtuals` for more information.
.. code-block:: cpp
class PyAnimal : public Animal {
public:
// Inherit the constructors
using Animal::Animal;
// Trampoline (need one for each virtual function)
std::string go(int n_times) override {
PYBIND11_OVERRIDE_PURE(
std::string, // Return type (ret_type)
Animal, // Parent class (cname)
go, // Name of function in C++ (must match Python name) (fn)
n_times // Argument(s) (...)
);
}
};
\endrst */
#define PYBIND11_OVERRIDE(ret_type, cname, fn, ...) \
PYBIND11_OVERRIDE_NAME(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), #fn, fn, __VA_ARGS__)
/** \rst
Macro for pure virtual functions, this function is identical to :c:macro:`PYBIND11_OVERRIDE`,
except that it throws if no override can be found.
\endrst */
#define PYBIND11_OVERRIDE_PURE(ret_type, cname, fn, ...) \
PYBIND11_OVERRIDE_PURE_NAME( \
PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), #fn, fn, __VA_ARGS__)
// Deprecated versions
PYBIND11_DEPRECATED("get_type_overload has been deprecated")
inline function
get_type_overload(const void *this_ptr, const detail::type_info *this_type, const char *name) {
return detail::get_type_override(this_ptr, this_type, name);
}
template <class T>
inline function get_overload(const T *this_ptr, const char *name) {
return get_override(this_ptr, name);
}
#define PYBIND11_OVERLOAD_INT(ret_type, cname, name, ...) \
PYBIND11_OVERRIDE_IMPL(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), name, __VA_ARGS__)
#define PYBIND11_OVERLOAD_NAME(ret_type, cname, name, fn, ...) \
PYBIND11_OVERRIDE_NAME(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), name, fn, __VA_ARGS__)
#define PYBIND11_OVERLOAD_PURE_NAME(ret_type, cname, name, fn, ...) \
PYBIND11_OVERRIDE_PURE_NAME( \
PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), name, fn, __VA_ARGS__);
#define PYBIND11_OVERLOAD(ret_type, cname, fn, ...) \
PYBIND11_OVERRIDE(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), fn, __VA_ARGS__)
#define PYBIND11_OVERLOAD_PURE(ret_type, cname, fn, ...) \
PYBIND11_OVERRIDE_PURE(PYBIND11_TYPE(ret_type), PYBIND11_TYPE(cname), fn, __VA_ARGS__);
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE)