blob: 0f29840c3b2073dbf37885474487b44782a2b228 [file] [log] [blame]
# Copyright (c) 2014, 2016, 2018-2019, 2022 ARM Limited
# All rights reserved
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder. You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Copyright (c) 2003-2005 The Regents of The University of Michigan
# Copyright (c) 2013,2015 Advanced Micro Devices, Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import os
import re
import sys
import traceback
# get type names
from types import *
from grammar import Grammar
from .operand_list import *
from .operand_types import *
from .util import *
debug = False
####################
# Template objects.
#
# Template objects are format strings that allow substitution from
# the attribute spaces of other objects (e.g. InstObjParams instances).
labelRE = re.compile(r"(?<!%)%\(([^\)]+)\)[sd]")
class Template(object):
def __init__(self, parser, t):
self.parser = parser
self.template = t
def subst(self, d):
myDict = None
# Protect non-Python-dict substitutions (e.g. if there's a printf
# in the templated C++ code)
template = protectNonSubstPercents(self.template)
# Build a dict ('myDict') to use for the template substitution.
# Start with the template namespace. Make a copy since we're
# going to modify it.
myDict = self.parser.templateMap.copy()
if isinstance(d, InstObjParams):
# If we're dealing with an InstObjParams object, we need
# to be a little more sophisticated. The instruction-wide
# parameters are already formed, but the parameters which
# are only function wide still need to be generated.
compositeCode = ""
myDict.update(d.__dict__)
# The "operands" and "snippets" attributes of the InstObjParams
# objects are for internal use and not substitution.
del myDict["operands"]
del myDict["snippets"]
snippetLabels = [
l for l in labelRE.findall(template) if l in d.snippets
]
snippets = dict(
[
(s, self.parser.mungeSnippet(d.snippets[s]))
for s in snippetLabels
]
)
myDict.update(snippets)
compositeCode = " ".join(list(map(str, snippets.values())))
# Add in template itself in case it references any
# operands explicitly (like Mem)
compositeCode += " " + template
operands = SubOperandList(self.parser, compositeCode, d.operands)
myDict[
"reg_idx_arr_decl"
] = "RegId srcRegIdxArr[%d]; RegId destRegIdxArr[%d]" % (
d.operands.numSrcRegs + d.srcRegIdxPadding,
d.operands.numDestRegs + d.destRegIdxPadding,
)
# The reinterpret casts are largely because an array with a known
# size cannot be passed as an argument which is an array with an
# unknown size in C++.
myDict[
"set_reg_idx_arr"
] = """
setRegIdxArrays(
reinterpret_cast<RegIdArrayPtr>(
&std::remove_pointer_t<decltype(this)>::srcRegIdxArr),
reinterpret_cast<RegIdArrayPtr>(
&std::remove_pointer_t<decltype(this)>::destRegIdxArr));
"""
pcstate_decl = (
f"{self.parser.namespace}::PCState __parserAutoPCState;\n"
)
myDict["op_decl"] = operands.concatAttrStrings("op_decl")
if operands.readPC or operands.setPC:
myDict["op_decl"] += pcstate_decl
is_src = lambda op: op.is_src
is_dest = lambda op: op.is_dest
myDict["op_src_decl"] = operands.concatSomeAttrStrings(
is_src, "op_src_decl"
)
myDict["op_dest_decl"] = operands.concatSomeAttrStrings(
is_dest, "op_dest_decl"
)
if operands.readPC:
myDict["op_src_decl"] += pcstate_decl
if operands.setPC:
myDict["op_dest_decl"] += pcstate_decl
myDict["op_rd"] = operands.concatAttrStrings("op_rd")
if operands.readPC:
myDict["op_rd"] = (
"set(__parserAutoPCState, xc->pcState());\n"
+ myDict["op_rd"]
)
# Compose the op_wb string. If we're going to write back the
# PC state because we changed some of its elements, we'll need to
# do that as early as possible. That allows later uncoordinated
# modifications to the PC to layer appropriately.
reordered = list(operands.items)
reordered.reverse()
op_wb_str = ""
pcWbStr = "xc->pcState(__parserAutoPCState);\n"
for op_desc in reordered:
if op_desc.isPCPart() and op_desc.is_dest:
op_wb_str = op_desc.op_wb + pcWbStr + op_wb_str
pcWbStr = ""
else:
op_wb_str = op_desc.op_wb + op_wb_str
myDict["op_wb"] = op_wb_str
elif isinstance(d, dict):
# if the argument is a dictionary, we just use it.
myDict.update(d)
elif hasattr(d, "__dict__"):
# if the argument is an object, we use its attribute map.
myDict.update(d.__dict__)
else:
raise TypeError("Template.subst() arg must be or have dictionary")
return template % myDict
# Convert to string.
def __str__(self):
return self.template
################
# Format object.
#
# A format object encapsulates an instruction format. It must provide
# a defineInst() method that generates the code for an instruction
# definition.
class Format(object):
def __init__(self, id, params, code):
self.id = id
self.params = params
label = "def format " + id
self.user_code = compile(fixPythonIndentation(code), label, "exec")
param_list = ", ".join(params)
f = f"""def defInst(_code, _context, {param_list}):
my_locals = vars().copy()
exec(_code, _context, my_locals)
return my_locals
"""
c = compile(f, label + " wrapper", "exec")
exec(c, globals())
self.func = defInst
def defineInst(self, parser, name, args, lineno):
parser.updateExportContext()
context = parser.exportContext.copy()
if len(name):
Name = name[0].upper()
if len(name) > 1:
Name += name[1:]
context.update({"name": name, "Name": Name})
try:
vars = self.func(self.user_code, context, *args[0], **args[1])
except Exception as exc:
if debug:
raise
error(lineno, f'error defining "{name}": {exc}.')
for k in list(vars.keys()):
if k not in (
"header_output",
"decoder_output",
"exec_output",
"decode_block",
):
del vars[k]
return GenCode(parser, **vars)
# Special null format to catch an implicit-format instruction
# definition outside of any format block.
class NoFormat(object):
def __init__(self):
self.defaultInst = ""
def defineInst(self, parser, name, args, lineno):
error(
lineno, f'instruction definition "{name}" with no active format!'
)
###############
# GenCode class
#
# The GenCode class encapsulates generated code destined for various
# output files. The header_output and decoder_output attributes are
# strings containing code destined for decoder.hh and decoder.cc
# respectively. The decode_block attribute contains code to be
# incorporated in the decode function itself (that will also end up in
# decoder.cc). The exec_output attribute is the string of code for the
# exec.cc file. The has_decode_default attribute is used in the decode block
# to allow explicit default clauses to override default default clauses.
class GenCode(object):
# Constructor.
def __init__(
self,
parser,
header_output="",
decoder_output="",
exec_output="",
decode_block="",
has_decode_default=False,
):
self.parser = parser
self.header_output = header_output
self.decoder_output = decoder_output
self.exec_output = exec_output
self.decode_block = decode_block
self.has_decode_default = has_decode_default
# Write these code chunks out to the filesystem. They will be properly
# interwoven by the write_top_level_files().
def emit(self):
if self.header_output:
self.parser.get_file("header").write(self.header_output)
if self.decoder_output:
self.parser.get_file("decoder").write(self.decoder_output)
if self.exec_output:
self.parser.get_file("exec").write(self.exec_output)
if self.decode_block:
self.parser.get_file("decode_block").write(self.decode_block)
# Override '+' operator: generate a new GenCode object that
# concatenates all the individual strings in the operands.
def __add__(self, other):
return GenCode(
self.parser,
self.header_output + other.header_output,
self.decoder_output + other.decoder_output,
self.exec_output + other.exec_output,
self.decode_block + other.decode_block,
self.has_decode_default or other.has_decode_default,
)
# Prepend a string (typically a comment) to all the strings.
def prepend_all(self, pre):
self.header_output = pre + self.header_output
self.decoder_output = pre + self.decoder_output
self.decode_block = pre + self.decode_block
self.exec_output = pre + self.exec_output
# Wrap the decode block in a pair of strings (e.g., 'case foo:'
# and 'break;'). Used to build the big nested switch statement.
def wrap_decode_block(self, pre, post=""):
self.decode_block = pre + indent(self.decode_block) + post
#####################################################################
#
# Bitfield Operator Support
#
#####################################################################
bitOp1ArgRE = re.compile(r"<\s*(\w+)\s*:\s*>")
bitOpWordRE = re.compile(r"(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>")
bitOpExprRE = re.compile(r"\)<\s*(\w+)\s*:\s*(\w+)\s*>")
def substBitOps(code):
# first convert single-bit selectors to two-index form
# i.e., <n> --> <n:n>
code = bitOp1ArgRE.sub(r"<\1:\1>", code)
# simple case: selector applied to ID (name)
# i.e., foo<a:b> --> bits(foo, a, b)
code = bitOpWordRE.sub(r"bits(\1, \2, \3)", code)
# if selector is applied to expression (ending in ')'),
# we need to search backward for matching '('
match = bitOpExprRE.search(code)
while match:
exprEnd = match.start()
here = exprEnd - 1
nestLevel = 1
while nestLevel > 0:
if code[here] == "(":
nestLevel -= 1
elif code[here] == ")":
nestLevel += 1
here -= 1
if here < 0:
sys.exit("Didn't find '('!")
exprStart = here + 1
newExpr = r"bits(%s, %s, %s)" % (
code[exprStart : exprEnd + 1],
match.group(1),
match.group(2),
)
code = code[:exprStart] + newExpr + code[match.end() :]
match = bitOpExprRE.search(code)
return code
#####################################################################
#
# Code Parser
#
# The remaining code is the support for automatically extracting
# instruction characteristics from pseudocode.
#
#####################################################################
# Force the argument to be a list. Useful for flags, where a caller
# can specify a singleton flag or a list of flags. Also usful for
# converting tuples to lists so they can be modified.
def makeList(arg):
if isinstance(arg, list):
return arg
elif isinstance(arg, tuple):
return list(arg)
elif not arg:
return []
else:
return [arg]
def makeFlagConstructor(flag_list):
if len(flag_list) == 0:
return ""
# filter out repeated flags
flag_list.sort()
i = 1
while i < len(flag_list):
if flag_list[i] == flag_list[i - 1]:
del flag_list[i]
else:
i += 1
pre = "\n\tflags["
post = "] = true;"
code = pre + (post + pre).join(flag_list) + post
return code
# Assume all instruction flags are of the form 'IsFoo'
instFlagRE = re.compile(r"Is.*")
# OpClass constants end in 'Op' except No_OpClass
opClassRE = re.compile(r".*Op|No_OpClass")
class InstObjParams(object):
def __init__(
self, parser, mnem, class_name, base_class="", snippets={}, opt_args=[]
):
self.mnemonic = mnem
self.class_name = class_name
self.base_class = base_class
if not isinstance(snippets, dict):
snippets = {"code": snippets}
compositeCode = " ".join(list(map(str, snippets.values())))
self.snippets = snippets
self.operands = OperandList(parser, compositeCode)
self.srcRegIdxPadding = 0
self.destRegIdxPadding = 0
# The header of the constructor declares the variables to be used
# in the body of the constructor.
header = ""
self.constructor = header + self.operands.concatAttrStrings(
"constructor"
)
self.flags = self.operands.concatAttrLists("flags")
self.op_class = None
# Optional arguments are assumed to be either StaticInst flags
# or an OpClass value. To avoid having to import a complete
# list of these values to match against, we do it ad-hoc
# with regexps.
for oa in opt_args:
if instFlagRE.match(oa):
self.flags.append(oa)
elif opClassRE.match(oa):
self.op_class = oa
else:
error(
'InstObjParams: optional arg "%s" not recognized '
"as StaticInst::Flag or OpClass." % oa
)
# Make a basic guess on the operand class if not set.
# These are good enough for most cases.
if not self.op_class:
if "IsStore" in self.flags:
# The order matters here: 'IsFloating' and 'IsInteger' are
# usually set in FP instructions because of the base
# register
if "IsFloating" in self.flags:
self.op_class = "FloatMemWriteOp"
else:
self.op_class = "MemWriteOp"
elif "IsLoad" in self.flags or "IsPrefetch" in self.flags:
# The order matters here: 'IsFloating' and 'IsInteger' are
# usually set in FP instructions because of the base
# register
if "IsFloating" in self.flags:
self.op_class = "FloatMemReadOp"
else:
self.op_class = "MemReadOp"
elif "IsFloating" in self.flags:
self.op_class = "FloatAddOp"
elif "IsVector" in self.flags:
self.op_class = "SimdAddOp"
elif "IsMatrix" in self.flags:
self.op_class = "MatrixOp"
else:
self.op_class = "IntAluOp"
# add flag initialization to contructor here to include
# any flags added via opt_args
self.constructor += makeFlagConstructor(self.flags)
# if 'IsFloating' is set, add call to the FP enable check
# function (which should be provided by isa_desc via a declare)
# if 'IsVector' is set, add call to the Vector enable check
# function (which should be provided by isa_desc via a declare)
if "IsFloating" in self.flags:
self.fp_enable_check = "fault = checkFpEnableFault(xc);"
else:
self.fp_enable_check = ""
def padSrcRegIdx(self, padding):
self.srcRegIdxPadding = padding
def padDestRegIdx(self, padding):
self.destRegIdxPadding = padding
#######################
#
# ISA Parser
# parses ISA DSL and emits C++ headers and source
#
class ISAParser(Grammar):
def __init__(self, output_dir):
super().__init__()
self.output_dir = output_dir
self.filename = None # for output file watermarking/scaremongering
# variable to hold templates
self.templateMap = {}
# variable to hold operands
self.operandNameMap = {}
# Regular expressions for working with operands
self._operandsRE = None
self._operandsWithExtRE = None
# This dictionary maps format name strings to Format objects.
self.formatMap = {}
# Track open files and, if applicable, how many chunks it has been
# split into so far.
self.files = {}
self.splits = {}
# isa_name / namespace identifier from namespace declaration.
# before the namespace declaration, None.
self.isa_name = None
self.namespace = None
# The format stack.
self.formatStack = Stack(NoFormat())
# The default case stack.
self.defaultStack = Stack(None)
# Stack that tracks current file and line number. Each
# element is a tuple (filename, lineno) that records the
# *current* filename and the line number in the *previous*
# file where it was included.
self.fileNameStack = Stack()
symbols = ("makeList", "re")
self.exportContext = dict([(s, eval(s)) for s in symbols])
self.exportContext.update(
{
"overrideInOperand": overrideInOperand,
"IntRegOp": IntRegOperandDesc,
"FloatRegOp": FloatRegOperandDesc,
"CCRegOp": CCRegOperandDesc,
"VecElemOp": VecElemOperandDesc,
"VecRegOp": VecRegOperandDesc,
"VecPredRegOp": VecPredRegOperandDesc,
"MatRegOp": MatRegOperandDesc,
"ControlRegOp": ControlRegOperandDesc,
"MemOp": MemOperandDesc,
"PCStateOp": PCStateOperandDesc,
}
)
self.maxMiscDestRegs = 0
def operandsRE(self):
if not self._operandsRE:
self.buildOperandREs()
return self._operandsRE
def operandsWithExtRE(self):
if not self._operandsWithExtRE:
self.buildOperandREs()
return self._operandsWithExtRE
def __getitem__(self, i): # Allow object (self) to be
return getattr(self, i) # passed to %-substitutions
# Change the file suffix of a base filename:
# (e.g.) decoder.cc -> decoder-g.cc.inc for 'global' outputs
def suffixize(self, s, sec):
extn = re.compile("(\.[^\.]+)$") # isolate extension
if self.namespace:
return extn.sub(r"-ns\1.inc", s) # insert some text on either side
else:
return extn.sub(r"-g\1.inc", s)
# Get the file object for emitting code into the specified section
# (header, decoder, exec, decode_block).
def get_file(self, section):
if section == "decode_block":
filename = "decode-method.cc.inc"
else:
if section == "header":
file = "decoder.hh"
else:
file = f"{section}.cc"
filename = self.suffixize(file, section)
try:
return self.files[filename]
except KeyError:
pass
f = self.open(filename)
self.files[filename] = f
# The splittable files are the ones with many independent
# per-instruction functions - the decoder's instruction constructors
# and the instruction execution (execute()) methods. These both have
# the suffix -ns.cc.inc, meaning they are within the namespace part
# of the ISA, contain object-emitting C++ source, and are included
# into other top-level files. These are the files that need special
# #define's to allow parts of them to be compiled separately. Rather
# than splitting the emissions into separate files, the monolithic
# output of the ISA parser is maintained, but the value (or lack
# thereof) of the __SPLIT definition during C preprocessing will
# select the different chunks. If no 'split' directives are used,
# the cpp emissions have no effect.
if re.search("-ns.cc.inc$", filename):
print("#if !defined(__SPLIT) || (__SPLIT == 1)", file=f)
self.splits[f] = 1
# ensure requisite #include's
elif filename == "decoder-g.hh.inc":
print('#include "base/bitfield.hh"', file=f)
return f
# Weave together the parts of the different output sections by
# #include'ing them into some very short top-level .cc/.hh files.
# These small files make it much clearer how this tool works, since
# you directly see the chunks emitted as files that are #include'd.
def write_top_level_files(self):
# decoder header - everything depends on this
file = "decoder.hh"
with self.open(file) as f:
f.write(
"#ifndef __ARCH_%(isa)s_GENERATED_DECODER_HH__\n"
"#define __ARCH_%(isa)s_GENERATED_DECODER_HH__\n\n"
% {"isa": self.isa_name.upper()}
)
fn = "decoder-g.hh.inc"
assert fn in self.files
f.write(f'#include "{fn}"\n')
fn = "decoder-ns.hh.inc"
assert fn in self.files
f.write("namespace gem5\n{\n")
f.write(
'namespace %s {\n#include "%s"\n} // namespace %s\n'
% (self.namespace, fn, self.namespace)
)
f.write("} // namespace gem5")
f.write(
f"\n#endif // __ARCH_{self.isa_name.upper()}_GENERATED_DECODER_HH__\n"
)
# decoder method - cannot be split
file = "decoder.cc"
with self.open(file) as f:
fn = "base/compiler.hh"
f.write(f'#include "{fn}"\n')
fn = "decoder-g.cc.inc"
assert fn in self.files
f.write(f'#include "{fn}"\n')
fn = "decoder.hh"
f.write(f'#include "{fn}"\n')
fn = "decode-method.cc.inc"
# is guaranteed to have been written for parse to complete
f.write(f'#include "{fn}"\n')
extn = re.compile("(\.[^\.]+)$")
# instruction constructors
splits = self.splits[self.get_file("decoder")]
file_ = "inst-constrs.cc"
for i in range(1, splits + 1):
if splits > 1:
file = extn.sub(r"-%d\1" % i, file_)
else:
file = file_
with self.open(file) as f:
fn = "decoder-g.cc.inc"
assert fn in self.files
f.write(f'#include "{fn}"\n')
fn = "decoder.hh"
f.write(f'#include "{fn}"\n')
fn = "decoder-ns.cc.inc"
assert fn in self.files
print("namespace gem5\n{\n", file=f)
print("namespace %s {" % self.namespace, file=f)
if splits > 1:
print("#define __SPLIT %u" % i, file=f)
print(f'#include "{fn}"', file=f)
print("} // namespace %s" % self.namespace, file=f)
print("} // namespace gem5", file=f)
# instruction execution
splits = self.splits[self.get_file("exec")]
for i in range(1, splits + 1):
file = "generic_cpu_exec.cc"
if splits > 1:
file = extn.sub(r"_%d\1" % i, file)
with self.open(file) as f:
fn = "exec-g.cc.inc"
assert fn in self.files
f.write(f'#include "{fn}"\n')
f.write('#include "cpu/exec_context.hh"\n')
f.write('#include "decoder.hh"\n')
fn = "exec-ns.cc.inc"
assert fn in self.files
print("namespace gem5\n{\n", file=f)
print("namespace %s {" % self.namespace, file=f)
if splits > 1:
print("#define __SPLIT %u" % i, file=f)
print(f'#include "{fn}"', file=f)
print("} // namespace %s" % self.namespace, file=f)
print("} // namespace gem5", file=f)
scaremonger_template = """// DO NOT EDIT
// This file was automatically generated from an ISA description:
// %(filename)s
"""
#####################################################################
#
# Lexer
#
# The PLY lexer module takes two things as input:
# - A list of token names (the string list 'tokens')
# - A regular expression describing a match for each token. The
# regexp for token FOO can be provided in two ways:
# - as a string variable named t_FOO
# - as the doc string for a function named t_FOO. In this case,
# the function is also executed, allowing an action to be
# associated with each token match.
#
#####################################################################
# Reserved words. These are listed separately as they are matched
# using the same regexp as generic IDs, but distinguished in the
# t_ID() function. The PLY documentation suggests this approach.
reserved = (
"BITFIELD",
"DECODE",
"DECODER",
"DEFAULT",
"DEF",
"EXEC",
"FORMAT",
"HEADER",
"LET",
"NAMESPACE",
"OPERAND_TYPES",
"OPERANDS",
"OUTPUT",
"SIGNED",
"SPLIT",
"TEMPLATE",
)
# List of tokens. The lex module requires this.
tokens = reserved + (
# identifier
"ID",
# integer literal
"INTLIT",
# string literal
"STRLIT",
# code literal
"CODELIT",
# ( ) [ ] { } < > , ; . : :: *
"LPAREN",
"RPAREN",
"LBRACKET",
"RBRACKET",
"LBRACE",
"RBRACE",
"LESS",
"GREATER",
"EQUALS",
"COMMA",
"SEMI",
"DOT",
"COLON",
"DBLCOLON",
"ASTERISK",
# C preprocessor directives
"CPPDIRECTIVE"
# The following are matched but never returned. commented out to
# suppress PLY warning
# newfile directive
# 'NEWFILE',
# endfile directive
# 'ENDFILE'
)
# Regular expressions for token matching
t_LPAREN = r"\("
t_RPAREN = r"\)"
t_LBRACKET = r"\["
t_RBRACKET = r"\]"
t_LBRACE = r"\{"
t_RBRACE = r"\}"
t_LESS = r"\<"
t_GREATER = r"\>"
t_EQUALS = r"="
t_COMMA = r","
t_SEMI = r";"
t_DOT = r"\."
t_COLON = r":"
t_DBLCOLON = r"::"
t_ASTERISK = r"\*"
# Identifiers and reserved words
reserved_map = {}
for r in reserved:
reserved_map[r.lower()] = r
def t_ID(self, t):
r"[A-Za-z_]\w*"
t.type = self.reserved_map.get(t.value, "ID")
return t
# Integer literal
def t_INTLIT(self, t):
r"-?(0x[\da-fA-F]+)|\d+"
try:
t.value = int(t.value, 0)
except ValueError:
error(t.lexer.lineno, f'Integer value "{t.value}" too large')
t.value = 0
return t
# String literal. Note that these use only single quotes, and
# can span multiple lines.
def t_STRLIT(self, t):
r"(?m)'([^'])+'"
# strip off quotes
t.value = t.value[1:-1]
t.lexer.lineno += t.value.count("\n")
return t
# "Code literal"... like a string literal, but delimiters are
# '{{' and '}}' so they get formatted nicely under emacs c-mode
def t_CODELIT(self, t):
r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
# strip off {{ & }}
t.value = t.value[2:-2]
t.lexer.lineno += t.value.count("\n")
return t
def t_CPPDIRECTIVE(self, t):
r"^\#[^\#].*\n"
t.lexer.lineno += t.value.count("\n")
return t
def t_NEWFILE(self, t):
r'^\#\#newfile\s+"[^"]*"\n'
self.fileNameStack.push(t.lexer.lineno)
t.lexer.lineno = LineTracker(t.value[11:-2])
def t_ENDFILE(self, t):
r"^\#\#endfile\n"
t.lexer.lineno = self.fileNameStack.pop()
#
# The functions t_NEWLINE, t_ignore, and t_error are
# special for the lex module.
#
# Newlines
def t_NEWLINE(self, t):
r"\n+"
t.lexer.lineno += t.value.count("\n")
# Comments
def t_comment(self, t):
r"//.*"
# Completely ignored characters
t_ignore = " \t\x0c"
# Error handler
def t_error(self, t):
error(t.lexer.lineno, f"illegal character '{t.value[0]}'")
t.skip(1)
#####################################################################
#
# Parser
#
# Every function whose name starts with 'p_' defines a grammar
# rule. The rule is encoded in the function's doc string, while
# the function body provides the action taken when the rule is
# matched. The argument to each function is a list of the values
# of the rule's symbols: t[0] for the LHS, and t[1..n] for the
# symbols on the RHS. For tokens, the value is copied from the
# t.value attribute provided by the lexer. For non-terminals, the
# value is assigned by the producing rule; i.e., the job of the
# grammar rule function is to set the value for the non-terminal
# on the LHS (by assigning to t[0]).
#####################################################################
# The LHS of the first grammar rule is used as the start symbol
# (in this case, 'specification'). Note that this rule enforces
# that there will be exactly one namespace declaration, with 0 or
# more global defs/decls before and after it. The defs & decls
# before the namespace decl will be outside the namespace; those
# after will be inside. The decoder function is always inside the
# namespace.
def p_specification(self, t):
"specification : opt_defs_and_outputs top_level_decode_block"
for f in self.splits.keys():
f.write("\n#endif\n")
for f in self.files.values(): # close ALL the files;
f.close() # not doing so can cause compilation to fail
self.write_top_level_files()
t[0] = True
# 'opt_defs_and_outputs' is a possibly empty sequence of def and/or
# output statements. Its productions do the hard work of eventually
# instantiating a GenCode, which are generally emitted (written to disk)
# as soon as possible, except for the decode_block, which has to be
# accumulated into one large function of nested switch/case blocks.
def p_opt_defs_and_outputs_0(self, t):
"opt_defs_and_outputs : empty"
def p_opt_defs_and_outputs_1(self, t):
"opt_defs_and_outputs : defs_and_outputs"
def p_defs_and_outputs_0(self, t):
"defs_and_outputs : def_or_output"
def p_defs_and_outputs_1(self, t):
"defs_and_outputs : defs_and_outputs def_or_output"
# The list of possible definition/output statements.
# They are all processed as they are seen.
def p_def_or_output(self, t):
"""def_or_output : name_decl
| def_format
| def_bitfield
| def_bitfield_struct
| def_template
| def_operand_types
| def_operands
| output
| global_let
| split"""
# Utility function used by both invocations of splitting - explicit
# 'split' keyword and split() function inside "let {{ }};" blocks.
def split(self, sec, write=False):
assert sec != "header" and "header cannot be split"
f = self.get_file(sec)
self.splits[f] += 1
s = "\n#endif\n#if __SPLIT == %u\n" % self.splits[f]
if write:
f.write(s)
else:
return s
# split output file to reduce compilation time
def p_split(self, t):
"split : SPLIT output_type SEMI"
assert self.isa_name and "'split' not allowed before namespace decl"
self.split(t[2], True)
def p_output_type(self, t):
"""output_type : DECODER
| HEADER
| EXEC"""
t[0] = t[1]
# ISA name declaration looks like "namespace <foo>;"
def p_name_decl(self, t):
"name_decl : NAMESPACE ID SEMI"
assert self.isa_name == None and "Only 1 namespace decl permitted"
self.isa_name = t[2]
self.namespace = t[2] + "Inst"
# Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
# directly to the appropriate output section.
# Massage output block by substituting in template definitions and
# bit operators. We handle '%'s embedded in the string that don't
# indicate template substitutions by doubling them first so that the
# format operation will reduce them back to single '%'s.
def process_output(self, s):
s = protectNonSubstPercents(s)
return substBitOps(s % self.templateMap)
def p_output(self, t):
"output : OUTPUT output_type CODELIT SEMI"
kwargs = {t[2] + "_output": self.process_output(t[3])}
GenCode(self, **kwargs).emit()
def make_split(self):
def _split(sec):
return self.split(sec)
return _split
# global let blocks 'let {{...}}' (Python code blocks) are
# executed directly when seen. Note that these execute in a
# special variable context 'exportContext' to prevent the code
# from polluting this script's namespace.
def p_global_let(self, t):
"global_let : LET CODELIT SEMI"
self.updateExportContext()
self.exportContext["header_output"] = ""
self.exportContext["decoder_output"] = ""
self.exportContext["exec_output"] = ""
self.exportContext["decode_block"] = ""
self.exportContext["split"] = self.make_split()
split_setup = """
def wrap(func):
def split(sec):
globals()[sec + '_output'] += func(sec)
return split
split = wrap(split)
del wrap
"""
# This tricky setup (immediately above) allows us to just write
# (e.g.) "split('exec')" in the Python code and the split #ifdef's
# will automatically be added to the exec_output variable. The inner
# Python execution environment doesn't know about the split points,
# so we carefully inject and wrap a closure that can retrieve the
# next split's #define from the parser and add it to the current
# emission-in-progress.
try:
exec(split_setup + fixPythonIndentation(t[2]), self.exportContext)
except Exception as exc:
traceback.print_exc(file=sys.stdout)
if debug:
raise
error(t.lineno(1), f"In global let block: {exc}")
GenCode(
self,
header_output=self.exportContext["header_output"],
decoder_output=self.exportContext["decoder_output"],
exec_output=self.exportContext["exec_output"],
decode_block=self.exportContext["decode_block"],
).emit()
# Define the mapping from operand type extensions to C++ types and
# bit widths (stored in operandTypeMap).
def p_def_operand_types(self, t):
"def_operand_types : DEF OPERAND_TYPES CODELIT SEMI"
try:
self.operandTypeMap = eval("{" + t[3] + "}")
except Exception as exc:
if debug:
raise
error(t.lineno(1), f"In def operand_types: {exc}")
# Define the mapping from operand names to operand classes and
# other traits. Stored in operandNameMap.
def p_def_operands(self, t):
"def_operands : DEF OPERANDS CODELIT SEMI"
if not hasattr(self, "operandTypeMap"):
error(
t.lineno(1),
"error: operand types must be defined before operands",
)
try:
user_dict = eval("{" + t[3] + "}", self.exportContext)
except Exception as exc:
if debug:
raise
error(t.lineno(1), f"In def operands: {exc}")
self.buildOperandNameMap(user_dict, t.lexer.lineno)
# A bitfield definition looks like:
# 'def [signed] bitfield <ID> [<first>:<last>]'
# This generates a preprocessor macro in the output file.
def p_def_bitfield_0(self, t):
"def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI"
expr = "bits(machInst, %2d, %2d)" % (t[6], t[8])
if t[2] == "signed":
expr = "sext<%d>(%s)" % (t[6] - t[8] + 1, expr)
hash_define = f"#undef {t[4]}\n#define {t[4]}\t{expr}\n"
GenCode(self, header_output=hash_define).emit()
# alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
def p_def_bitfield_1(self, t):
"def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI"
expr = "bits(machInst, %2d, %2d)" % (t[6], t[6])
if t[2] == "signed":
expr = "sext<%d>(%s)" % (1, expr)
hash_define = f"#undef {t[4]}\n#define {t[4]}\t{expr}\n"
GenCode(self, header_output=hash_define).emit()
# alternate form for structure member: 'def bitfield <ID> <ID>'
def p_def_bitfield_struct(self, t):
"def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI"
if t[2] != "":
error(
t.lineno(1), "error: structure bitfields are always unsigned."
)
expr = f"machInst.{t[5]}"
hash_define = f"#undef {t[4]}\n#define {t[4]}\t{expr}\n"
GenCode(self, header_output=hash_define).emit()
def p_id_with_dot_0(self, t):
"id_with_dot : ID"
t[0] = t[1]
def p_id_with_dot_1(self, t):
"id_with_dot : ID DOT id_with_dot"
t[0] = t[1] + t[2] + t[3]
def p_opt_signed_0(self, t):
"opt_signed : SIGNED"
t[0] = t[1]
def p_opt_signed_1(self, t):
"opt_signed : empty"
t[0] = ""
def p_def_template(self, t):
"def_template : DEF TEMPLATE ID CODELIT SEMI"
if t[3] in self.templateMap:
print(f"warning: template {t[3]} already defined")
self.templateMap[t[3]] = Template(self, t[4])
# An instruction format definition looks like
# "def format <fmt>(<params>) {{...}};"
def p_def_format(self, t):
"def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI"
(id, params, code) = (t[3], t[5], t[7])
self.defFormat(id, params, code, t.lexer.lineno)
# The formal parameter list for an instruction format is a
# possibly empty list of comma-separated parameters. Positional
# (standard, non-keyword) parameters must come first, followed by
# keyword parameters, followed by a '*foo' parameter that gets
# excess positional arguments (as in Python). Each of these three
# parameter categories is optional.
#
# Note that we do not support the '**foo' parameter for collecting
# otherwise undefined keyword args. Otherwise the parameter list
# is (I believe) identical to what is supported in Python.
#
# The param list generates a tuple, where the first element is a
# list of the positional params and the second element is a dict
# containing the keyword params.
def p_param_list_0(self, t):
"param_list : positional_param_list COMMA nonpositional_param_list"
t[0] = t[1] + t[3]
def p_param_list_1(self, t):
"""param_list : positional_param_list
| nonpositional_param_list"""
t[0] = t[1]
def p_positional_param_list_0(self, t):
"positional_param_list : empty"
t[0] = []
def p_positional_param_list_1(self, t):
"positional_param_list : ID"
t[0] = [t[1]]
def p_positional_param_list_2(self, t):
"positional_param_list : positional_param_list COMMA ID"
t[0] = t[1] + [t[3]]
def p_nonpositional_param_list_0(self, t):
"nonpositional_param_list : keyword_param_list COMMA excess_args_param"
t[0] = t[1] + t[3]
def p_nonpositional_param_list_1(self, t):
"""nonpositional_param_list : keyword_param_list
| excess_args_param"""
t[0] = t[1]
def p_keyword_param_list_0(self, t):
"keyword_param_list : keyword_param"
t[0] = [t[1]]
def p_keyword_param_list_1(self, t):
"keyword_param_list : keyword_param_list COMMA keyword_param"
t[0] = t[1] + [t[3]]
def p_keyword_param(self, t):
"keyword_param : ID EQUALS expr"
t[0] = t[1] + " = " + t[3].__repr__()
def p_excess_args_param(self, t):
"excess_args_param : ASTERISK ID"
# Just concatenate them: '*ID'. Wrap in list to be consistent
# with positional_param_list and keyword_param_list.
t[0] = [t[1] + t[2]]
# End of format definition-related rules.
##############
#
# A decode block looks like:
# decode <field1> [, <field2>]* [default <inst>] { ... }
#
def p_top_level_decode_block(self, t):
"top_level_decode_block : decode_block"
codeObj = t[1]
codeObj.wrap_decode_block(
"""
using namespace gem5;
StaticInstPtr
%(isa_name)s::Decoder::decodeInst(%(isa_name)s::ExtMachInst machInst)
{
using namespace %(namespace)s;
"""
% self,
"}",
)
codeObj.emit()
def p_decode_block(self, t):
"decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE"
default_defaults = self.defaultStack.pop()
codeObj = t[5]
# use the "default defaults" only if there was no explicit
# default statement in decode_stmt_list
if not codeObj.has_decode_default:
codeObj += default_defaults
codeObj.wrap_decode_block("switch (%s) {\n" % t[2], "}\n")
t[0] = codeObj
# The opt_default statement serves only to push the "default
# defaults" onto defaultStack. This value will be used by nested
# decode blocks, and used and popped off when the current
# decode_block is processed (in p_decode_block() above).
def p_opt_default_0(self, t):
"opt_default : empty"
# no default specified: reuse the one currently at the top of
# the stack
self.defaultStack.push(self.defaultStack.top())
# no meaningful value returned
t[0] = None
def p_opt_default_1(self, t):
"opt_default : DEFAULT inst"
# push the new default
codeObj = t[2]
codeObj.wrap_decode_block("\ndefault:\n", "break;\n")
self.defaultStack.push(codeObj)
# no meaningful value returned
t[0] = None
def p_decode_stmt_list_0(self, t):
"decode_stmt_list : decode_stmt"
t[0] = t[1]
def p_decode_stmt_list_1(self, t):
"decode_stmt_list : decode_stmt decode_stmt_list"
if t[1].has_decode_default and t[2].has_decode_default:
error(t.lineno(1), "Two default cases in decode block")
t[0] = t[1] + t[2]
#
# Decode statement rules
#
# There are four types of statements allowed in a decode block:
# 1. Format blocks 'format <foo> { ... }'
# 2. Nested decode blocks
# 3. Instruction definitions.
# 4. C preprocessor directives.
# Preprocessor directives found in a decode statement list are
# passed through to the output, replicated to all of the output
# code streams. This works well for ifdefs, so we can ifdef out
# both the declarations and the decode cases generated by an
# instruction definition. Handling them as part of the grammar
# makes it easy to keep them in the right place with respect to
# the code generated by the other statements.
def p_decode_stmt_cpp(self, t):
"decode_stmt : CPPDIRECTIVE"
t[0] = GenCode(self, t[1], t[1], t[1], t[1])
# A format block 'format <foo> { ... }' sets the default
# instruction format used to handle instruction definitions inside
# the block. This format can be overridden by using an explicit
# format on the instruction definition or with a nested format
# block.
def p_decode_stmt_format(self, t):
"decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE"
# The format will be pushed on the stack when 'push_format_id'
# is processed (see below). Once the parser has recognized
# the full production (though the right brace), we're done
# with the format, so now we can pop it.
self.formatStack.pop()
t[0] = t[4]
# This rule exists so we can set the current format (& push the
# stack) when we recognize the format name part of the format
# block.
def p_push_format_id(self, t):
"push_format_id : ID"
try:
self.formatStack.push(self.formatMap[t[1]])
t[0] = ("", f"// format {t[1]}")
except KeyError:
error(t.lineno(1), f'instruction format "{t[1]}" not defined.')
# Nested decode block: if the value of the current field matches
# the specified constant(s), do a nested decode on some other field.
def p_decode_stmt_decode(self, t):
"decode_stmt : case_list COLON decode_block"
case_list = t[1]
codeObj = t[3]
# just wrap the decoding code from the block as a case in the
# outer switch statement.
codeObj.wrap_decode_block(
f"\n{''.join(case_list)}\n", "GEM5_UNREACHABLE;\n"
)
codeObj.has_decode_default = case_list == ["default:"]
t[0] = codeObj
# Instruction definition (finally!).
def p_decode_stmt_inst(self, t):
"decode_stmt : case_list COLON inst SEMI"
case_list = t[1]
codeObj = t[3]
codeObj.wrap_decode_block(f"\n{''.join(case_list)}", "break;\n")
codeObj.has_decode_default = case_list == ["default:"]
t[0] = codeObj
# The constant list for a decode case label must be non-empty, and must
# either be the keyword 'default', or made up of one or more
# comma-separated integer literals or strings which evaluate to
# constants when compiled as C++.
def p_case_list_0(self, t):
"case_list : DEFAULT"
t[0] = ["default:"]
def prep_int_lit_case_label(self, lit):
if lit >= 2**32:
return "case %#xULL: " % lit
else:
return "case %#x: " % lit
def prep_str_lit_case_label(self, lit):
return f"case {lit}: "
def p_case_list_1(self, t):
"case_list : INTLIT"
t[0] = [self.prep_int_lit_case_label(t[1])]
def p_case_list_2(self, t):
"case_list : STRLIT"
t[0] = [self.prep_str_lit_case_label(t[1])]
def p_case_list_3(self, t):
"case_list : case_list COMMA INTLIT"
t[0] = t[1]
t[0].append(self.prep_int_lit_case_label(t[3]))
def p_case_list_4(self, t):
"case_list : case_list COMMA STRLIT"
t[0] = t[1]
t[0].append(self.prep_str_lit_case_label(t[3]))
# Define an instruction using the current instruction format
# (specified by an enclosing format block).
# "<mnemonic>(<args>)"
def p_inst_0(self, t):
"inst : ID LPAREN arg_list RPAREN"
# Pass the ID and arg list to the current format class to deal with.
currentFormat = self.formatStack.top()
codeObj = currentFormat.defineInst(self, t[1], t[3], t.lexer.lineno)
args = ",".join(list(map(str, t[3])))
args = re.sub("(?m)^", "//", args)
args = re.sub("^//", "", args)
comment = f"\n// {currentFormat.id}::{t[1]}({args})\n"
codeObj.prepend_all(comment)
t[0] = codeObj
# Define an instruction using an explicitly specified format:
# "<fmt>::<mnemonic>(<args>)"
def p_inst_1(self, t):
"inst : ID DBLCOLON ID LPAREN arg_list RPAREN"
try:
format = self.formatMap[t[1]]
except KeyError:
error(t.lineno(1), f'instruction format "{t[1]}" not defined.')
codeObj = format.defineInst(self, t[3], t[5], t.lexer.lineno)
comment = f"\n// {t[1]}::{t[3]}({t[5]})\n"
codeObj.prepend_all(comment)
t[0] = codeObj
# The arg list generates a tuple, where the first element is a
# list of the positional args and the second element is a dict
# containing the keyword args.
def p_arg_list_0(self, t):
"arg_list : positional_arg_list COMMA keyword_arg_list"
t[0] = (t[1], t[3])
def p_arg_list_1(self, t):
"arg_list : positional_arg_list"
t[0] = (t[1], {})
def p_arg_list_2(self, t):
"arg_list : keyword_arg_list"
t[0] = ([], t[1])
def p_positional_arg_list_0(self, t):
"positional_arg_list : empty"
t[0] = []
def p_positional_arg_list_1(self, t):
"positional_arg_list : expr"
t[0] = [t[1]]
def p_positional_arg_list_2(self, t):
"positional_arg_list : positional_arg_list COMMA expr"
t[0] = t[1] + [t[3]]
def p_keyword_arg_list_0(self, t):
"keyword_arg_list : keyword_arg"
t[0] = t[1]
def p_keyword_arg_list_1(self, t):
"keyword_arg_list : keyword_arg_list COMMA keyword_arg"
t[0] = t[1]
t[0].update(t[3])
def p_keyword_arg(self, t):
"keyword_arg : ID EQUALS expr"
t[0] = {t[1]: t[3]}
#
# Basic expressions. These constitute the argument values of
# "function calls" (i.e. instruction definitions in the decode
# block) and default values for formal parameters of format
# functions.
#
# Right now, these are either strings, integers, or (recursively)
# lists of exprs (using Python square-bracket list syntax). Note
# that bare identifiers are trated as string constants here (since
# there isn't really a variable namespace to refer to).
#
def p_expr_0(self, t):
"""expr : ID
| INTLIT
| STRLIT
| CODELIT"""
t[0] = t[1]
def p_expr_1(self, t):
"""expr : LBRACKET list_expr RBRACKET"""
t[0] = t[2]
def p_list_expr_0(self, t):
"list_expr : expr"
t[0] = [t[1]]
def p_list_expr_1(self, t):
"list_expr : list_expr COMMA expr"
t[0] = t[1] + [t[3]]
def p_list_expr_2(self, t):
"list_expr : empty"
t[0] = []
#
# Empty production... use in other rules for readability.
#
def p_empty(self, t):
"empty :"
pass
# Parse error handler. Note that the argument here is the
# offending *token*, not a grammar symbol (hence the need to use
# t.value)
def p_error(self, t):
if t:
error(t.lexer.lineno, f"syntax error at '{t.value}'")
else:
error("unknown syntax error")
# END OF GRAMMAR RULES
def updateExportContext(self):
# Create a wrapper class that allows us to grab the current parser.
class InstObjParamsWrapper(InstObjParams):
def __init__(iop, *args, **kwargs):
super().__init__(self, *args, **kwargs)
self.exportContext["InstObjParams"] = InstObjParamsWrapper
self.exportContext.update(self.templateMap)
def defFormat(self, id, params, code, lineno):
"""Define a new format"""
# make sure we haven't already defined this one
if id in self.formatMap:
error(lineno, f"format {id} redefined.")
# create new object and store in global map
self.formatMap[id] = Format(id, params, code)
def buildOperandNameMap(self, user_dict, lineno):
operand_name = {}
for op_name, op_desc in user_dict.items():
assert isinstance(op_desc, OperandDesc)
base_cls = op_desc.attrs["base_cls"]
op_desc.setName(op_name)
# New class name will be e.g. "IntRegOperand_Ra"
cls_name = base_cls.__name__ + "_" + op_name
# The following statement creates a new class called
# <cls_name> as a subclass of <base_cls> with the attributes
# in op_desc.attrs, just as if we evaluated a class declaration.
operand_name[op_name] = type(cls_name, (base_cls,), op_desc.attrs)
self.operandNameMap.update(operand_name)
def buildOperandREs(self):
# Define operand variables.
operands = list(self.operandNameMap.keys())
# Add the elems defined in the vector operands and
# build a map elem -> vector (used in OperandList)
elem_to_vec = {}
for op_name, op in self.operandNameMap.items():
if hasattr(op, "elems"):
for elem in op.elems.keys():
operands.append(elem)
elem_to_vec[elem] = op_name
self.elemToVector = elem_to_vec
extensions = self.operandTypeMap.keys()
operandsREString = r"""
(?<!\w|:) # neg. lookbehind assertion: prevent partial matches
((%s)(?:_(%s))?) # match: operand with optional '_' then suffix
(?!\w) # neg. lookahead assertion: prevent partial matches
""" % (
"|".join(operands),
"|".join(extensions),
)
self._operandsRE = re.compile(
operandsREString, re.MULTILINE | re.VERBOSE
)
# Same as operandsREString, but extension is mandatory, and only two
# groups are returned (base and ext, not full name as above).
# Used for subtituting '_' for '.' to make C++ identifiers.
operandsWithExtREString = r"(?<!\w)(%s)_(%s)(?!\w)" % (
"|".join(operands),
"|".join(extensions),
)
self._operandsWithExtRE = re.compile(
operandsWithExtREString, re.MULTILINE
)
def substMungedOpNames(self, code):
"""Munge operand names in code string to make legal C++
variable names. This means getting rid of the type extension
if any. Will match base_name attribute of Operand object.)"""
return self.operandsWithExtRE().sub(r"\1", code)
def mungeSnippet(self, s):
"""Fix up code snippets for final substitution in templates."""
if isinstance(s, str):
return self.substMungedOpNames(substBitOps(s))
else:
return s
def open(self, name, bare=False):
"""Open the output file for writing and include scary warning."""
filename = os.path.join(self.output_dir, name)
f = open(filename, "w")
if f:
if not bare:
f.write(ISAParser.scaremonger_template % self)
return f
def update(self, file, contents):
"""Update the output file only. Scons should handle the case when
the new contents are unchanged using its built-in hash feature."""
f = self.open(file)
f.write(contents)
f.close()
# This regular expression matches '##include' directives
includeRE = re.compile(
r'^\s*##include\s+"(?P<filename>[^"]*)".*$', re.MULTILINE
)
def replace_include(self, matchobj, dirname):
"""Function to replace a matched '##include' directive with the
contents of the specified file (with nested ##includes
replaced recursively). 'matchobj' is an re match object
(from a match of includeRE) and 'dirname' is the directory
relative to which the file path should be resolved."""
fname = matchobj.group("filename")
full_fname = os.path.normpath(os.path.join(dirname, fname))
contents = '##newfile "%s"\n%s\n##endfile\n' % (
full_fname,
self.read_and_flatten(full_fname),
)
return contents
def read_and_flatten(self, filename):
"""Read a file and recursively flatten nested '##include' files."""
current_dir = os.path.dirname(filename)
try:
contents = open(filename).read()
except IOError:
error(f'Error including file "{filename}"')
self.fileNameStack.push(LineTracker(filename))
# Find any includes and include them
def replace(matchobj):
return self.replace_include(matchobj, current_dir)
contents = self.includeRE.sub(replace, contents)
self.fileNameStack.pop()
return contents
AlreadyGenerated = {}
def _parse_isa_desc(self, isa_desc_file):
"""Read in and parse the ISA description."""
# The build system can end up running the ISA parser twice: once to
# finalize the build dependencies, and then to actually generate
# the files it expects (in src/arch/$ARCH/generated). This code
# doesn't do anything different either time, however; the SCons
# invocations just expect different things. Since this code runs
# within SCons, we can just remember that we've already run and
# not perform a completely unnecessary run, since the ISA parser's
# effect is idempotent.
if isa_desc_file in ISAParser.AlreadyGenerated:
return
# grab the last three path components of isa_desc_file
self.filename = "/".join(isa_desc_file.split("/")[-3:])
# Read file and (recursively) all included files into a string.
# PLY requires that the input be in a single string so we have to
# do this up front.
isa_desc = self.read_and_flatten(isa_desc_file)
# Initialize lineno tracker
self.lex.lineno = LineTracker(isa_desc_file)
# Parse.
self.parse_string(isa_desc)
ISAParser.AlreadyGenerated[isa_desc_file] = None
def parse_isa_desc(self, *args, **kwargs):
try:
self._parse_isa_desc(*args, **kwargs)
except ISAParserError as e:
print(backtrace(self.fileNameStack))
print(f"At {e.lineno}:")
print(e)
sys.exit(1)
# Called as script: get args from command line.
# Args are: <isa desc file> <output dir>
if __name__ == "__main__":
ISAParser(sys.argv[2]).parse_isa_desc(sys.argv[1])